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TBK1 Limits mTORC1 by Promoting 
Phosphorylation of Raptor Ser877
Ricardo J. Antonia  1,7, Johnny Castillo1, Laura E. Herring  2, D. Stephen Serafin1,3, 
Pengda Liu1,4, Lee M. Graves2, Albert S. Baldwin1 & Robert S. Hagan  5,6

While best known for its role in the innate immune system, the TANK-binding kinase 1 (TBK1) is now 
known to play a role in modulating cellular growth and autophagy. One of the major ways that TBK1 
accomplishes this task is by modulating the mechanistic Target of Rapamycin (mTOR), a master 
regulator that when activated promotes cell growth and inhibits autophagy. However, whether TBK1 
promotes or inhibits mTOR activity is highly cell type and context dependent. To further understand 
the mechanism whereby TBK1 regulates mTOR, we tested the hypothesis that TBK1 phosphorylates 
a key component of the mTOR complex 1 (mTORC1), Raptor. Using kinase assays coupled with mass 
spectrometry, we mapped the position of the TBK1 dependent phosphorylation sites on Raptor in vitro. 
Among the sites identified in vitro, we found that TBK1 promotes Raptor Ser877 phosphorylation in 
cells both basally and in response to pathogen-associated molecules known to induce TBK1 activity. 
The levels of Raptor Ser877 phosphorylation were inversely correlated with the levels of mTOR 
activity. Expression of a mutant Raptor that could not be phosphorylated at Ser877 led to an increase 
in mTORC1 activity. We conclude that TBK1 limits mTORC1 activity by promoting Raptor Ser877 
phosphorylation.

TANK-binding kinase 1 (TBK1) is an IKK-related kinase that is known for its role in the innate immune system1. 
In response to pathogens and pathogen-associated molecules, TBK1 is recruited to the Interferon Regulatory 
Factor 3 (IRF3) transcription factor by adaptor molecules including TANK, STING, and TRIF. TBK1 then phos-
phorylates IRF3 at multiple serines including Ser396, which promotes its DNA binding and transcription acti-
vation potential. IRF3, in turn, promotes transcription of type I interferons and other host proteins to promote 
pathogen clearance1. Beyond its role in innate immunity, TBK1 is known to be necessary for the pathology of 
diseases including cancer2,3 and metabolic syndromes such as obesity and diabetes4.

The importance of TBK1 in these diseases may be due in part to its ability regulate the mechanistic Target of 
Rapamycin (mTOR)5,6, a kinase known as a master regulator of cell growth7,8. When mTOR is active, it promotes 
cell growth primarily by stimulating protein synthesis and inhibiting autophagy, but also regulates a myriad of 
cell processes related to cell growth and metabolism7. mTOR is found in two distinct complexes, mTORC1 and 
mTORC2. In addition to mTOR, mTORC1 contains regulatory proteins Raptor, MLST8, PRAS40, and DEPTOR7. 
Raptor (regulatory associated protein of mTOR) promotes mTORC1 kinase activity and substrate specificity by 
binding to TOS-motif containing proteins and directing them towards the active site of the mTOR kinase domain 
for phosphorylation9. The canonical substrates for mTORC1 include several proteins that regulate protein trans-
lation (e.g. pS70 S6K and 4EBP-1) and autophagy (e.g. Ulk1). mTORC2 on the other hand primarily phosphoryl-
ates Akt, PKC, and SGK110.

While mTORC1 signaling is most well-characterized in response to changes in growth factors and nutri-
ents, it is now appreciated that many different signaling pathways, including those that activate TBK1, converge 
on mTOR. However, the mechanism and consequences of TBK1-mediated mTOR regulation remain incom-
pletely understood and are likely to be highly context-dependent. Several publications indicate that TBK1 may 
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repress mTOR activity, while others indicate that TBK1 may activate mTOR. For example, overexpression of 
wild-type but not kinase-dead TBK1 was sufficient to block mTORC1 phosphorylation of p70S6K in prostate 
cancer cells and TBK1-mediated suppression of mTOR was linked to prostate cancer dormancy6. In a model 
of chronic immune activation induced by knockout of the Three-prime repair exonuclease 1 (Trex1), TBK1 
was linked to suppression of mTORC1 activity11. TBK1 is also known to promote autophagy, a process that is 
strongly opposed by mTORC112. In contrast, several publications indicated that TBK1 promotes activation of the 
upstream mTORC1 activator, Akt13 and one recent report demonstrated that TBK1 increases mTORC1 activity 
through direct phosphorylation of mTOR itself5.

When a large panel of lung cancer cell lines was analyzed for their sensitivity to TBK1 inhibition, the authors 
observed a wide range of sensitivity of the cell lines to TBK1 inhibitors, with some cell lines being very resistant to 
TBK1 inhibition and others being highly sensitive to TBK1 inhibition3. Interestingly, in cell lines that were sensi-
tive to TBK1 inhibition, TBK1 inhibitors decreased markers of mTOR activity, whereas the opposite occurred in 
TBK1 inhibitor resistant cell lines. This observation indicates that TBK1 activity has the opposite effect on mTOR 
activity in different cell lines. This contradiction, where some studies suggest that TBK1 activates mTORC1 while 
and others suggest that TBK1 inhibits mTORC1, indicates that the role of TBK1 in mTORC1 regulation is com-
plex and context-dependent.

To further understand the relationship between TBK1 and mTOR signaling we tested whether TBK1 phos-
phorylates a critical component of the mTORC1 complex, Raptor. Raptor is regulated by phosphorylation on 
multiple sites by a diverse set of signaling cascades and kinases, and this allows for fine-tuning of mTORC1 sig-
naling14,15. Using a proteomics approach, we found that TBK1 regulates Raptor Ser877 phosphorylation, both in 
cell-free kinase assays and in intact cells. TBK1 regulated Raptor Ser877 both basally in mouse embryonic fibro-
blasts (MEF) and in response to stimuli known to activate TBK1. Recombinant TBK1 is sufficient for multisite 
phosphorylation of purified Raptor in vitro, and genetic deletion, siRNA depletion, and chemical inhibition reveal 
that TBK1 is necessary for Raptor Ser877 phosphorylation in cells. While phosphorylation of Raptor Ser877 
has been documented16, the function of this phosphorylation and the upstream signals that regulate this site 
remained poorly characterized. The data presented herein indicates that Raptor Ser877 phosphorylation limits 
mTORC1 signaling and this may represent a mechanism whereby TBK1 limits mTORC1 activity.

Results and Discussion
TBK1 phosphorylates Raptor in cell-free kinase assays. While the direct phosphorylation and acti-
vation of mTOR by TBK1 has been proposed5, other reports have described the negative regulation of mTORC1 
by TBK1 without a clear mechanism6. Several reports have indicated that TBK1 physically interacts with multiple 
components of mTORC13,6, indicating that TBK1 kinase activity might regulate a component of the mTORC1 
complex in cells. We hypothesized that TBK1 suppresses mTORC1 by direct phosphorylation of a component of 
the mTORC1 complex.

To test this hypothesis, we immunoprecipitated myc-mTOR from HEK293T cells under conditions that pre-
serve mTORC1 and mTORC2 components and combined the resulting complex with recombinant TBK1 in the 
presence of radiolabeled ATP. The addition of TBK1 to the reaction did not increase the levels of 32P-γ-ATP incor-
porated into mTOR itself (Fig. 1a). However, recombinant TBK1 promoted phosphorylation of an approximately 
150 kDa protein when incubated with mTOR immunoprecipitates (Fig. 1a, red arrow). This activity was not 
blocked by the addition of either of the mTOR inhibitors rapamycin or pp242, further suggesting that it was not 
due to mTOR kinase activity (Fig. 1a). Since mTOR was precipitated under conditions permissive for mTORC1 
and mTORC217,18 formation, we speculated that TBK1 phosphorylates an mTOR complex subunit in this size 
range. Two proteins, Raptor (149 kDa) and Rictor (192 kDa) were strong candidates as both proteins are known 
to be tightly and constitutively associated with mTOR. We immunoprecipitated tagged Raptor or Rictor from 
HEK293Ts and found that recombinant TBK1 showed activity towards Raptor but not towards Rictor (Fig. 1b).

Others have reported that TBK1 and IKKε can phosphorylate mTOR at Ser 2159 to promote its kinase activ-
ity5. That work screened a panel of recombinant kinases in vitro against an immobilized 32aa fragment of mTOR 
(aa2114-2175) fused to GST; Raptor was absent in this schema, and when TBK1 was tested against immuno-
precipitated mTOR complexes, phosphorylation was measured with an antibody specific for phospho-Ser2159 
mTOR. The presence of Raptor in our cell-free reactions may explain why we observed that recombinant TBK1 
preferentially phosphorylates Raptor over mTOR in this context, as it may have served as a preferential substrate 
for TBK1.

To determine which sites on Raptor were phosphorylated in cell-free kinase assays, we performed a reaction as 
in Fig. 1a, except that unlabeled ATP was used in the reaction. Three reactions were performed: (1) HA-Raptor (2) 
HA-Raptor +ATP or (3) HA-Raptor +ATP and +TBK1. Each reaction was separated using SDS-PAGE, stained 
with Coomassie and the band corresponding to Raptor was excised, trypsin digested, enriched for phosphopep-
tides and then analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The 
peptides identified from the second reaction are presumed to be from another kinase that could be co-purified 
from cells with HA-Raptor, such as mTOR. In this way, we could tell which sites were phosphorylated specifically 
due to TBK1 activity and not a contaminating kinase that might co-purify with HA-Raptor. The phosphopeptides 
enriched in the third reaction were presumed to be due to TBK1 activity. In total, we identified five phosphopep-
tides that were enriched in the samples incubated with TBK1. The phosphorylation sites corresponded to Ser44, 
Ser122, Ser836, Ser877 and Ser982 (Table 1 and Fig. 1c). Three of the six phosphorylation sites had either leucine 
or isoleucine at the +1 position relative to the phosphorylation site, which matches the preferred substrate motif 
for TBK119,20 (Fig. 1d). While TBK1 substrate motifs have been described, a significant portion of verified TBK1 
substrates appear to lack this motif and are regulated by colocalization of substrate and kinase1,19,21,22. It may 
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therefore be that the TBK1-dependent phosphorylation sites that match the motif are regulated by increases in 
TBK1 activity, whereas the others may be regulated by changes in TBK1 binding to Raptor.

TBK1 promotes Raptor Ser877 phosphorylation in cells and in cell-free kinase assays. We next 
examined which of these candidate phosphorylation sites identified in cell-free kinase assays were dependent 
on TBK1 activity in intact cells. HA-Raptor was immunoprecipitated from HEK 293 T cells either unstimulated, 
stimulated with a known inducer of TBK1, phorbol myristoyl acetate (PMA)23, or a combination of PMA in 
conjunction with the TBK1 inhibitor AZ-5E24. As in Fig. 1, we excised the band that corresponded to Raptor 
and performed mass spectrometry. We identified five sites that were induced by PMA and blocked by AZ-5E 
(Table 1): Ser877, Ser863, Ser 859, Ser696, and T706, corresponding to both of the multisite phosphorylation 

Figure 1. Identification of TBK1 dependent Raptor phosphorylation sites phosphorylation in vitro. (a) Myc-
mTOR was immunoprecipitated from HEK293T cells under conditions that preserve mTORC1/2 complexes 
and subjected to in vitro kinase assay containing 32P-γ-ATP with or without recombinant TBK1. mTORC1 
activity was assessed by phosphorylation of 4EBP1. Indicated samples were pre-incubated for 30 minutes 
with the mTOR inhibitors rapamycin or pp242 (each 100 nM). Reactions were resolved with SDS-PAGE and 
autoradiograpy. The black arrows indicate which bands correspond to myc-mTOR and which correspond to 
TBK1. The red arrow indicates a putative TBK1 substrate. (b) As in A except that either HA-Raptor or HA-
Rictor were immunoprecipitated and incubated with recombinant GST-TBK1. The black arrows indicate which 
bands correspond to which proteins (N.S = non-specific). (c) Domain structure of Raptor showing the positions 
of the phosphorylation sites identified by mass spectrometry. (d) Alignment of the primary amino sequence 
of the phosphorylation sites identified by mass spectrometry with the preferred TBK1 substrate consensus 
sequence. Residues that match the sequence are highlighted in yellow.
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clusters previously identified14. Only Ser877 was identified as TBK1 dependent in both cell-free kinase assays and 
in cells (Fig. 2a and Table 1). While we were unable to identify any of the other phosphorylation sites as TBK1 
dependent in cell-free assays, these sites might be present in other cells or tissues or may be induced by differ-
ent stimuli. Raptor Ser877 and the surrounding sequence share similarity with several known TBK1 target sites 
including IRF3 Ser398, E2F1 Ser332 and Akt Ser 473 (Fig. 2b), indicating that the amino acid sequence surround-
ing Raptor Ser877 is a strong candidate for TBK1 phosphorylation.

Of note, in cell-free kinase assays Raptor peptides with monophosphorylated Ser877 were detected in reac-
tions that contained ATP but lacked recombinant TBK1 (Table 1). This may occur by several mechanisms. First, 
endogenous TBK1 may promote basal phosphorylation at this site prior to any stimulus, as we observe later in 
Fig. 2c,e. Second, given that several groups have found that Raptor can co-precipitate TBK1 in cells3,6, it is possi-
ble that endogenous TBK1 is present in the kinase reaction. Third, it is also possible that another kinase present 
in the reaction, such as mTOR, was responsible for the phosphorylation of Raptor Ser877. One study indicates 
that Raptor Ser877 phosphorylation was decreased in response to the mTOR inhibitors Torin 1 and rapamycin, 
and another demonstrated that Rheb overexpression could lead to increases in Raptor S877 phosphorylation, 
each consistent with the view that mTOR itself phosphorylates Ser87725,26. However, another study indicated 
that Raptor Ser877 phosphorylation was insensitive to Rapamycin or mTOR activity induced by insulin14. In the 
context of TBK1, we have found situations where inhibition of TBK1 led to an increase in mTOR activity but a 
decrease in the levels of Raptor Ser877 phosphorylation (see Figs 3a and 4b). This indicates that TBK1 does not 
increase Raptor Ser877 phosphorylation by increasing mTOR activity.

To validate the mass spectrometry findings, we used a phosphospecific antibody that specifically recognizes 
phosphorylated Raptor Ser877. In A549 cells, a 1 hour treatment with AZ-5E led to a decrease in Raptor Ser877 
phosphorylation (Fig. 2c). Overexpression of wildtype (wt) TBK1 in HEK293T cells induced Raptor Ser877 phos-
phorylation (Fig. 2d), but overexpression of kinase-dead (kd) TBK1 K38A did not, suggesting that the kinase 
activity of TBK1 is required for Raptor Ser877 phosphorylation in this context (Fig. 2d). Notably, the signal from 
the antibody was highly specific to Raptor Ser877 phosphorylation as mutating Ser877 to Ala completely erased 
the signal (Fig. 2d).

In cell-free kinase assays, TBK1 strongly promoted the abundance of a doubly phosphorylated Ser877/Ser886 
peptide, while in PMA-stimulated cells we observed primarily the AZ-5E sensitive accumulation of monophos-
phorylated Ser877.

Since TBK1 is known to be activated by pathogen-associated molecular patterns (PAMPS) such as LPS1, 
we hypothesized that treatment of cells with these agonists would induce Raptor Ser877 in a TBK1-dependent 
manner. We treated wildtype or TBK1 knockout MEFs (TBK1 −/−) with LPS for 1 hour after 1 hour of serum 
starvation. Under these conditions, TBK1 KO MEFs exhibited decreased basal and LPS-induced Raptor Ser877 
phosphorylation as compared to wildtype (Fig. 2e). Interestingly, TBK1 −/− MEFs had greater levels of p70S6K 
Thr389 phosphorylation, both at baseline and in response to LPS. We focused on Thr389 p70S6K phosphoryla-
tion because it is a well-characterized and direct phosphorylation target of mTORC1, but it remains possible that 
TBK1 differentially regulates the various targets of mTORC1.

Peptide Sequence
Phospho 
Site (s) m/z [Da] Charge

ΔM 
[ppm]

Localization 
probability

Mascot 
score

Cell-Free normalized 
abundance

HEK293T normalized 
abundance

Control (+ATP)
(+ATP  
+ TBK1) Control PMA

PMA  
+ AZ-5E

[39].IEGSKpSLAQSWR.[50] S44* 721.346 2 0.93 100% 37 0.3 1.2 1.5

[119].YKQpSLDPTVDEVK.[131] S122* 801.377 2 0.57 100% 38 0.0 0.0 1.0

[359].SYNCTPVpSpSPR.[369] S366/S367* 674.274 2 0.05 50% 30 0.6 2.0 0.4 0.8 0.0 1.2

[691].NYALPpSPATTEGGSLTPVR.[709] S696 1006.474 2 2.22 100% 56 1.7 1.0 0.3 0.0 1.7 0.3

[691].NYALPSPATTEGGSLpTPVR.[709] T706 1005.981 2 1.32 100% 75 0.7 2.0 0.4 0.7 2.0 0.3

[719].SVSpSYGNIR.[727] S722 531.735 2 0.6 100% 39 0.3 2.1 0.6 1.5 0.0 0.5

[833].VLNpSIAYK.[840] S836* 494.249 2 0.06 100% 34 0.0 0.0 1.0

[850].VLDTSSLTQpSAPApSPTNK.[867] S859, S863 988.936 2 2.42 100%, 100% 88 0.9 1.3 0.9 1.1 1.6 0.3

[850].VLDTSSLTQSAPApSPTNK.[867] S863 948.952 2 1.82 100% 104 0.9 1.6 0.5 1.1 1.4 0.5

[868].GVHIHQAGGpSPPASSTSSSSLTNDVAK.[894] S877 891.415 3 0.66 100% 101 0.7 1.8 0.4 0.5 1.5 0.0

[868].GVHIHQAGGpSPPASSTSSpSSLTNDVAK.[894] S877, S886 918.072 3 1.92 100%, 100% 77 0.0 0.5 2.4

[974].IPEEHDLEpSQIR.[986] S982 773.351 2 1.36 100% 42 0.0 0.0 1.0

[1197].MALpSECR.[1203] S1200* 473.679 2 0.07 100% 46 0.8 1.9 0.3

Table 1. Phosphorylation Sites Identified Using Mass Spectrometry. Raptor phosphorylation sites detected 
in cell-free and HEK293T cells. Mass spectrometry (MS) data are derived from the highest scoring 
phosphopeptide across the samples. For confident phosphorylation site localization within a peptide, a 
probability (0–100%) is calculated based on the detected product ions as determined by the phosphoRS 
algorithm41. Mean-normalized quantitative data (peak areas) were calculated for each phosphopeptide in either 
cell-free or HEK293T experiments (values in bold indicate an increase upon TBK1 inclusion in cell free assays 
or depleted upon AZ-5E treatment in cells). An asterisk (*) denotes a phosphorylation sites not previously listed 
in the PhosphoSite database.

https://doi.org/10.1038/s41598-019-49707-8


5Scientific RepoRtS |         (2019) 9:13470  | https://doi.org/10.1038/s41598-019-49707-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

The finding that TBK1 limits mTORC1 activity induced by LPS contrasts with prior reports that TBK1 is 
required for mTORC1-mediated p70S6K Thr389 phosphorylation in response to LPS5. This difference may result 
from a difference in the serum starvation protocol used. Whereas the previous studies removed the serum over-
night, we serum starved the cells for one hour prior to stimulation. Overnight serum starvation can induce many 

Figure 2. TBK1 promotes Raptor Ser877 phosphorylation in cells. (a) MS/MS spectra of the phosphopeptide 
containing phospho-Raptor Ser877 that was found to be less abundant in cells treated with the TBK1 inhibitor 
AZ-5E. (b) Alignment of Raptor Ser877 with known TBK1 target phosphorylation sites. The amino acids in 
red indicate amino acids that are conserved relative to optimized TBK1 motifs. (c) A549 cells were serum 
starved for 1 hour and then were treated with the AZ-5E (5μM) for 1 hour. Whole cell lysates were prepared 
and analyzed by western blotting with the indicated antibodies. Bar graph depicts ratio of phosphorylated:total 
Raptor, n = 4 independent replicates. (d) Either GST-wt or GST-kd TBK1 was overexpressed in HEK293T cells 
along with either HA-wt-Raptor or HA-S877A-Raptor. HA-Raptor was then immunoprecipitated and analyzed 
by western blot using either the phospho-Raptor Ser877 antibody or an antibody that recognizes the HA-tag. 
(e) Serum starved wild type or TBK1 knockout mouse embryonic fibroblasts were either untreated or treated 
with LPS for 1 hour. Whole cell lysates were prepared and then analyzed by western blotting with the indicated 
antibodies. Bar graph depicts ratio of phosphorylated:total Raptor, n = 3 independent replicates.
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changes in cells grown in culture. For instance, serum starvation induces degradation of the Hippo pathway 
components YAP/TAZ27 and these proteins are known to modulate TBK1/IKKε-meditated activation of IRF3 in 
response to cytosolic DNA28. Moreover, YAP/TAZ can regulate mTOR activity by promoting the transcription 
of SLC38A129. Another important consequence of serum starvation is cell-cycle arrest. Both TBK1 activity and 
Raptor Ser877 phosphorylation are known to be regulated by the cell cycle30–32, and overnight serum starvation 
induces cell cycle arrest.

We also observed that total Raptor protein levels were increased in TBK1 −/− MEFS that were stimulated 
with LPS (Fig. 2e). This suggests that TBK1, possibly through Raptor Ser877 phosphorylation, may negatively 
regulate Raptor protein abundance in certain contexts.

Location of TBK1 phosphorylation targets within the Raptor/mTORC1 structure. To gain 
insight into the function of Raptor Ser877 phosphorylation, we located the position of Raptor Ser877 and other 
putative TBK1 targets within the larger architecture of the mTORC1 complex. Several structural studies have 
shown that Raptor adopts a Z-shaped conformation within mTORC1, with the Caspase-like Raptor N-terminal 
Conserved (RNC) domain packing against the mTOR kinase domain and promoting mTOR dimerization33. The 
RNC domain contains the TOS-binding domain that directs TOS-motif-containing substrates to the mTOR 
active site33–36. Moving towards the C-terminus of Raptor, an extended armadillo repeat domain extends away 
from the central mTOR dimer toroid and ends at a WD40 β-propeller. The structure of Yang et al.34 reveals that a 
disordered region (815–877) bounded by two β strands (809–814 and 878–882) defines the polyphosphorylated 
region containing Raptor Ser877 as well as other observed phosphorylation sites at Ser863 at Ser859 (Fig. 3). 
While Ser877 cannot be visualized directly, the adjacent residue (Pro878) is ordered in the structure and implies 
that Ser877 and the adjacent polyphosphorylated loop point away from the center of the WD40 propeller towards 
the armadillo domain. Likewise, Raptor Ser696 and Ser704, which we observed to be sensitive to the TBK1 inhib-
itor AZ-5E in cells (Table 1), are positioned on the surface of the armadillo domain pointing up towards the 
space bounded by the WD40 propeller and the edge of the mTOR dimer. Raptor Ser877, Ser696, and Ser704 are 
all located at the end of Raptor distal to the RNC, TOS-binding site, and mTOR active site, suggesting they are 
unlikely to contribute to substrate selectivity or mTOR:Raptor association (Fig. 3).

Raptor Ser877 phosphorylation suppresses mTORC1 activity. To examine the function of Raptor 
Ser877 phosphorylation, mTORC1 complexes were immunoprecipitated using Raptor S877A or WT Raptor. 
mTORC1 complexes containing Raptor S877A had greater activity towards a well-established mTORC1 substrate, 
4EBP1, in cell free kinase assays than wild type Raptor (Fig. 4a).

Since S877A Raptor was associated with greater levels of mTORC1 activity in cell-free assays, we hypothesized 
that S877 phosphorylation would limit mTORC1 activity in cells. Since the effect of TBK1 on mTORC1 signaling 
is apparently context-dependent, we first wished to identify growth conditions which TBK1 inhibited mTORC13. 
HCT116 cells grown in full media transfected with siRNA targeting TBK1 led to an increase in the levels of 
phospho-p70S6K Thr389 and a decrease in the levels of Raptor Ser877 phosphorylation (Fig. 4b).

To determine whether Raptor Ser877 phosphorylation promotes or inhibits mTORC1 in HCT116 cells, we 
transiently expressed in CRISPR-edited Raptor knockout HCT116 cells either wildtype Raptor or mutant Raptor 
S877A. Expression of Raptor Ser877A promoted higher levels of p70S6K Thr389 phosphorylation relative to 
wildtype Raptor (Fig. 4b), confirming that Ser877 phosphorylation inhibits mTORC1 signaling.

Active mTORC1 is known to increase cell size via both activation of p70S6K and inhibition of 4EBP137. We 
used cell size as marker of mTORC1 function to test the relative activity of WT and nonphosphorylatable S877A 
Raptor. Both wildtype and Raptor knockout HCT116 cells were transfected with either empty vector, WT Raptor, 

Figure 3. Location of TBK1 phosphorylation targets within the Raptor/mTORC1 structure. Cryo-EM 
structure derived from Yang et al.34 depicting mTORC1 complex with the position of TBK1-dependent Raptor 
phosphorylation sites. mTOR (green), mLST8 (purple), and Raptor (red) are depicted. The loop containing 
Raptor Ser877 is between the blue (T809-V814) and light green (P878-S882) strands of the distal WD40 
domain. Raptor Ser696 and S704 on the adjacent armadillo domain are also depicted.
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or Raptor S877A. All samples were cotransfected with GFP as a marker of transfection. When cell size was meas-
ured by flow cytometry, Raptor knockout HCT116 cells are clearly smaller than WT HCT 116 cells (Fig. 4d). WT 
Raptor increases cells size in both WT and Raptor null cells, though this effect is significant only in Raptor null 
cells, where WT Raptor effectively complements the knockout, returning those cells to the same size as WT cells 
transfected with EV plasmid (Fig. 4d). In Raptor null cells, Raptor S877A increases cells size to a greater extent 
than WT Raptor, signifying greater mTORC1 activity (Fig. 4d). Raptor S877A also increases the size of WT cells 

Figure 4. Expression of Raptor S877A is associated with greater levels of mTORC1 activity. Expression of 
Raptor S877A increases p70S6K phosphorylation. (a) HEK293T cells were transfected with either HA-tagged 
wt-Raptor or Raptor S877A. Raptor was then immunoprecipitated and a kinase assay was performed using 
His-tagged 4EBP1 as a substrate. This activity was blocked by the ATP competitive mTOR inhibitor PP242 
as described in Fig. 1a. The italicized numbers beneath the autoradiograph indicate the relative level of 
phosphorylated 4EBP1 normalized to the total 4EBP1. (b) HCT116 cells were transfected with either siRNA 
either targeting a non-coding region (siN.C.) or TBK1 (siTBK1) for 48 hrs. Whole cell lysates were then 
prepared and analyzed with the indicated antibodies. Bar graph depicts ratios of phosphorylated:total P70S6k 
and phosphorylated: total Raptor, n = 3 independent replicates. (c) HCT116 Raptor −/− cells were transiently 
transfected with either empty vector (EV), wild type (wt) or S877A HA-Raptor. 48 hours after transfection 
whole cell lysates were prepared and analyzed by western blot. ratio of phosphorylated:total P70S6K, n = 3 
independent replicates. (d) WT HCT116 or HCT116 Raptor knockout cells were transfected with plasmids 
encoding GFP and either empty vector control, wild type Raptor, or S877A Raptor for 72 hours. A subset of 
samples were treated for 48 hours with 100 nM rapamycin starting 24 hours after transfection. Cell size was 
determined by flow cytometry of forward scatter area (FSC-A) gated on live (low side scatter), GFP + singlet 
cells. 1000–20,000 GFP + cells per sample were analyzed. Bar graph depicts 3 independent experimental 
replicates and is representative of 4 independent experiments. Statistical significance was determined by 
ordinary one-way ANOVA with multiple comparisons with Tukey’s test. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001.
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expressing endogenous Raptor, though this effect is less pronounced than in Raptor null cells. Finally, rapamycin 
treatment starting 24 hours after transfection completely blocks the effect of Raptor S877A (Fig. 4d), validating 
that the cell size effect of Raptor S877A is via mTOR activation (Fig. 4d).

Only one study has examined the phenotype of a Raptor Ser877 mutant38. In that study, expression of a phos-
phomimetic mutant of Raptor (Ser877D) did not affect the ability of Raptor to bind the Ragulator complex pro-
teins. However, phosphomimetic S-E or S-D mutations only partly approximate serine phosphorylation, as they 
have only half of the negative charge of a true phosphoserine. It remains possible that phosphorylation of Raptor 
Ser877 disrupts binding with Ragulator or other proteins that regulate mTOR activity or substrate preference. 
Based on of the position of Raptor Ser877 within the mTORC1 structure, we hypothesize that this phosphoryla-
tion site is not involved in mTOR complex formation or in Raptor’s ability to promote mTOR substrate recogni-
tion. Phosphorylation of Ser877 may alter the conformation of Raptor, promote its interaction with other negative 
regulators of mTORC1 or alter the stability of Raptor protein to limit mTORC1 signaling.

Here, we present a novel mechanism whereby TBK1 can suppress mTORC1 signaling by promoting phospho-
rylation of Raptor Ser877. An important future direction will be to determine how TBK1 might switch between 
alternate modes of promoting Akt/mTOR activation and repressing mTORC1 activity by Raptor Ser877 phos-
phorylation (see model Fig. 5). One possibility is that TBK1 regulates mTORC1 in an alternating or sequentially 
ordered process in which TBK1 promotes mTOR activity by direct phosphorylation in response to a stimulus 
and at later time points promotes Raptor Ser877 phosphorylation as a self-limiting feedback mechanism. This 
will have implications for the implementation of TBK1 inhibitors in disease models. It will also be important to 
determine the biological relevance of TBK1-mediated mTORC1 repression by Ser877 phosphorylation in in vivo 
models.

Materials and Methods
Cell lines, plasmids, recombinant proteins. All cells were maintained in DMEM (4.5 g/L glucose) 
supplemented with 10% FBS and Penicillin/Streptomycin (Gibco). For serum starvation, cells were grown in 
serum-free media for 1 hour before the experiment. HEK293T and HCT116 cells were obtained from the UNC 
Tissue culture core facility. The wt and TBK −/− MEFs were as described previously24. pRK5-HA-Raptor and 
pRK5-myc-Rictor were obtained from Addgene (Plasmid #8513 and #1860). Genewiz performed the site directed 
mutagenesis of pRK5-HA-Raptor to generate an expression plasmid for Raptor S877A. The GST-Raptor 308–
1019 was a kind gift from Dr. Pengda Liu (University of North Carolina at Chapel Hill). For immunoprecipita-
tion experiments, HA-tag or Myc-tag antibody-conjugated agarose beads were purchased from Cell Signaling 
Technology. The phospho Raptor Ser877 antibody (09–107) was from Millipore, and all of the other antibodies 
were obtained from Cell Signaling Technology. The HCT116 CRISPR-edited Raptor knockout cells were a kind 
gift from Dr. Wenyi Wei (Beth Israel Deaconess Medical Center, Harvard Medical School). Recombinant TBK1  
was purchased from Life/Invitrogen and SignalChem.

Stimulation with immune modulators. MEFs were serum starved for 1 hour prior to stimulation with 
10ug/mL of LPS. LPS was purchased from Invivogen (tlrl-b5lps).

siRNA Knockdowns. siRNA targeting TBK1 was purchased from Dharmacon (Thermo Scientific). HCT116 
cells were transfected using Dharmafect Reagent 1 (Thermo Scientific) according to the manufacturer’s protocol.

Western blot analysis. Whole cell lysates were prepared by washing cells with phosphate buffered saline 
and then lysed in Lysis Buffer (40 mM HEPES pH 7.4, 2 mM EDTA, 10 mM pyrophosphate, 10 mM glycerolphos-
phate, 0.3% CHAPs, 1x complete EDTA-free protease inhibitor (Roche) and Phosphatase Inhibitor Cocktail 3 
(Sigma Aldrich)) for 10 minutes on ice. The proteins were then separated using SDS-PAGE, transferred to nitro-
cellulose membranes and incubated with primary antibodies over night (see above). The signal from each pri-
mary antibody was measured the following day using horseradish peroxidase conjugated secondary antibodies 
(Promega) and visualized using Bio-Rad ChemiDoc western blot imager. The images obtained represent the 
maximum exposure time before the chemiluminescence signal was saturated. Where applicable, densitometry 
analysis was performed using ImageJ39.

Figure 5. Model demonstrating the mechanisms of TBK1 mediated mTOR regulation.

https://doi.org/10.1038/s41598-019-49707-8


9Scientific RepoRtS |         (2019) 9:13470  | https://doi.org/10.1038/s41598-019-49707-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Kinase assay. HEK23T cells were transfected with Myc-mTOR, HA-Raptor or HA-Rictor using X-Treme 
gene transfection reagent (Roche). Two days after transfection, cells were lysed and incubated with the 
HA-antibody or Myc-antibody conjugated agarose beads for 1 hour. The beads were then washed three times 
with Lysis Buffer (without phosphatase inhibitors) and then in kinase assay buffer (1 mM beta-glycerolphosphate, 
20 mM Tris pH 7.4, 12 mM MgCl2 and 100 μM ATP). The radiolabeled ATP was from Perkin Elmer and the unla-
beled ATP was from Sigma Aldrich. The beads were then incubated with the TBK1, ATP or the appropriate nega-
tive control at 30 degrees for 30 minutes. The reaction was stopped using SDS-PAGE Laemmli buffer. His-tagged 
recombinant 4EBP1 was purchased from Sigma-Aldrich.

Mass spectrometry. The mass spectrometry experiments were carried out at the UNC Proteomics Core 
Facility. Bands corresponding to Raptor were in-gel digested with trypsin overnight. Extracted peptides were 
enriched for phosphopeptides using TiO2. The TiO2 elution for each sample was analyzed by LC/MS/MS on a 
ThermoScientific Q-Exactive HF mass spectrometer. Samples were fractionated by C18 (Thermo PepMap RSLC) 
over a 45 min gradient from 5–35%B, where mobile phase A = 0.1% formic acid and mobile phase B = acetonitrile 
with 0.1% formic acid (ThermoScientific Easy nLC 1000). The top 15 most intense ions were chosen for HCD 
fragmentation. Data were searched against a reviewed Human UniProt database using Mascot. The parameters 
used were: 10 ppm precursor ion mass tolerance, 0.02 Da product ion mass tolerance, up to two missed trypsin 
cleavage sites, carbamidomethylation of Cys was set as a fixed modification and oxidation of M, deamidation of 
N, Q, and phospho of S, T, Y were set as variable modifications. A peptide false discovery rate of 5% was used to 
filter all results.

Structural modeling. The structural model of the mTORC1 phosphorylation sites was constructed with 
UCSF Chimera using PDB coordinates 5H6434,40.

Determination of cell size by flow cytometry. WT HCT116 and Raptor knockout HCT116 cells 
(1 × 105) were seeded in 24 well plates overnight prior to transfection with pEGFP (200 ng) and 500 ng of either 
empty vector (pCDNA3), WT Raptor, or Raptor S877A. After 24 hours, 100 nM rapamycin or vehicle was added 
to samples for 48 hours. At 72 hours, cells were washed, trypsinized, and collected for flow cytometry. Dead cells 
were gated away by high side scatter (SSC-A) and two singlet gates were used to exclude doublets and larger 
clumps. Transfected cells were gated by GFP signal and cell size was determined by sample median FSC-A. 
Identical results are seen with FSC-W. Data is indicative of 4 independent experiments.

Data Availability
The proteomics data will be made available through the ProteomeXchange consortium using the PRoteomics 
IDEntifications (PRIDE) database.
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