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prognostic Modeling and 
prevention of Diabetes Using 
Machine Learning technique
Sajida perveen1, Muhammad Shahbaz1,2, Karim Keshavjee  2,3 & Aziz Guergachi2,4,5

Stratifying individuals at risk for developing diabetes could enable targeted delivery of interventional 
programs to those at highest risk, while avoiding the effort and costs of prevention and treatment in 
those at low risk. the objective of this study was to explore the potential role of a Hidden Markov Model 
(HMM), a machine learning technique, in validating the performance of the framingham Diabetes Risk 
Scoring Model (FDRSM), a well-respected prognostic model. Can HMM predict 8-year risk of developing 
diabetes in an individual effectively? To our knowledge, no study has attempted use of HMM to validate 
the performance of FDRSM. We used Electronic Medical Record (EMR) data, of 172,168 primary care 
patients to derive the 8-year risk of developing diabetes in an individual using HMM. The Area Under 
Receiver Operating Characteristic Curve (AROC) in our study sample of 911 individuals for whom all risk 
factors and follow up data were available is 86.9% compared to AROCs of 78.6% and 85% reported in a 
previously conducted validation study of fDRSM in the same canadian population and the framingham 
study respectively. these results demonstrate that the discrimination capability of our proposed HMM 
is superior to the validation study conducted using the fDRSM in a canadian population and in the 
framingham population. We conclude that HMM is capable of identifying patients at increased risk of 
developing diabetes within the next 8-years.

Diabetes mellitus is a chronic and lifelong metabolic disorder1 that occurs either when the pancreas does not 
secret enough insulin, due to destruction of pancreatic beta cells by T cells through an autoimmune mechanism, 
precipitating insulin-dependent/type 1 diabetes2, or when the body’s cells do not respond to insulin as effectively 
as they once did and unable to properly utilize the energy produced from the food, resulting in elevated levels of 
glucose circulating in the blood, otherwise known as insulin resistance or type 2 diabetes3.

The prevalence of type 2 diabetes (T2DM) has increased dramatically across the globe to 8.5% of the popu-
lation in 2014, incurring tremendous human, economic and social costs. It imposes a considerable burden on 
society in the form of low productivity, increased healthcare expenditures, premature mortality and intangible 
costs in the form of a poor quality of life. The number of adults living with all types of diabetes is now over four 
times higher than just 40 years ago4. This has led the World Health Organization (WHO) to consider diabetes to 
be an epidemic. By 2045, the number of diabetic patients is projected to increase by 48% to over 620 million5–7. 
In 2017, the expenditures directly attributable to diabetes were approximately $727 billion, accounting for about 
12% of the global healthcare expenditure on adults5.

The underlying reason for developing diabetes varies by type. But, regardless of type of diabetes, poor glycemic 
control, may, over time, lead to various potentially life threatening micro-vascular and macro-vascular compli-
cations. Approximately 40% of adults with renal disease have diabetes, while 10–15% of diabetic nephropathy 
patients suffer from diabetic retinopathy worldwide8. In addition, at least 68% of diabetic patients die from some 
form of cardiac disease and as many as 16% die of stroke9. Diabetes is therefore not only a disease in itself but is 
also a potentiator for many other serious conditions. In 2017, 352 million individuals were at risk of developing 
T2DM and 1 in 2 (212 million) individuals with T2DM went undiagnosed5. Worldwide, the socio-economic 
consequences due to the high prevalence of this disease is concerning.
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Given that diabetes and its complications are preventable, the rising rate of T2DM and the complications that 
result from metabolic deterioration necessitate efforts to improve early detection of T2DM risk. In this context, 
there is a dire need for alternative approaches that: (1) are aimed at pre-emptive risk stratification and prevention, 
(2) provide insights needed for healthcare providers, patients, providers and health policy makers, and (3) are 
based on aggregated knowledge obtained from interpreting massive amount of healthcare data10. This need bears 
more weight when seeing through the fact that at least 50–80% of individuals with T2DM remain oblivious of 
their diagnostic status11. Studies reveal that 30–50% of individuals with newly diagnosed T2DM have one or more 
macro-vascular or micro-vascular complications at the time of diagnosis12.

T2DM risk prediction models along with their variants have been widely investigated13. In 2007, a risk scoring 
model was published by the Framingham offspring study to identify individuals most likely to develop T2DM in 
the future14. The Framingham Diabetes Risk Scoring Model (FDRSM) is a well known and widely used model, 
built using data from the Framingham heart study. The FDRSM uses point-in-time data to determine the 8-year 
risk for developing T2DM in an individual15. As such, the FDRSM allows clinicians and healthcare providers to 
implement intervention measures in those individuals who are at increased risk of developing T2DM. However, 
there are concerns when adopting risk scoring models in term of their applicability to local populations, capacity 
to calibrate and discriminate the model. Dekker et al.16, for instance, report, in their 2017 paper, that “most clin-
ical risk scores are useless” and that “assuming linearity of predictors” is an example of methodological mistakes 
frequently made by researchers. In their 2018 paper, Steyerberg et al.17 add that these mistakes are “quite common 
in current scientific practice and lead to prediction models that cannot be trusted”.

Furthermore these scoring models are based on prospective studies (such as the Framingham heart study) that 
are very expensive and time consuming, especially when dealing with diseases with long latency. Therefore, we 
should consider and test alternative approaches to develop and validate risk models with the objective of better 
predicting disease risk and progression, prevent disease and allow patients to make better decisions about their 
health.

Machine learning (ML) techniques have shown increased relevance over the last few years and have been 
applied successfully to a variety of problems, including risk assessment18,19. ML has the potential to transform 
sequences of clinical measurements, as opposed to point-in-time measurements, into valuable knowledge, 
required for decisive steps to characterize disease risk and progression. Given that risk cumulates over time and 
is not a discrete state, longitudinal Electronic Medical Record (EMR) data can play a vital role in keeping track of 
repeated clinical measurements related to a patients’ condition over time3. The Hidden Markov Model (HMM) is 
a particularly attractive technique for assessing the temporal evolution of a disease using clinical measurements 
obtained from a longitudinal sample of patients in an EMR database.

We developed a HMM-based risk model that leverages longitudinal EMR data for early identification of 
T2DM risk in an individual. We also used the model to validate the performance of the FDRSM based on the dis-
crimination capability of our proposed model. This could potentially result in more effective and better decision 
making around patient screening and proactive care with less time and investment.

Materials and Methods
Study design, participants and data collection. EMR data was obtained from the Canadian Primary 
Care Sentinel Surveillance Network (CPCSSN) which is a pioneer multi-disease EMR-based surveillance system 
in Canada, based at Queen’s University20. Data from participating networks, provided by family physicians and 
other primary care providers, are aggregated into a single national database (http://cpcssn.ca/). The dataset used 
for this study contains 812,007 records of 172,168 unique individuals, for a period ranging from August 5, 2003 
to June 30, 2015, with each record containing different attributes related to demographics, diagnosis, lab results 
and vital signs.

All patients were assigned a reference number and were tracked for 8 years to discover their health status 
using this reference number only. With the exception of parental history of diabetes that were not available in our 
source database, the same physical and blood biochemical examinations that were addressed by the FDRSM15 
were chosen in this study for follow up including BP (blood pressure), sex, body mass index (BMI), fasting 
blood glucose (FBG) levels, age, high density lipoprotein (HDL) and triglycerides (TG). Table 1 demonstrates an 
abstract detail of the CPCSSN dataset.

Patients records with missing data related to any risk factors considered relevant in this study (n = 1,215) or 
lost to follow-up due to non-attendance at the end of the follow-up period (n = 170,042) were excluded; overall, 
171,257 individuals were excluded from the research dataset. Thus, this prospective dataset resulted in a total of 
911 participants ≥18 years old, of whom 61.03% were female. All of these patients had complete information 
related to each risk factor included in the study and did not have any differential loss to follow up. Subsequently, 
each record was augmented with disease status based on their health status induced from the most recent labora-
tory test results. Approximately 214 (23.49%) of individuals in our derived dataset were diagnosed with diabetes, 
of whom 52.8% were women, as depicted in Table 2.

All laboratory results in the CPCSSN database are recorded in mmol/L, clinical characteristics and demo-
graphics are depicted by mean ± standard deviation for categorical and continuous variables and are expressed 
as frequencies and percentages.

CPCSSN obtained ethics approval for all participating networks from the Health Canada Research Ethics 
Board and research ethics boards of all local host universities. All participating CPCSSN providers provided writ-
ten informed consent for the collection and analysis of their EMR data. The PARAT tool from Privacy Analytics 
(Ottawa, Canada) was used to fully anonymize the data. Subsequently, Ryerson University research ethics board 
provided a waiver of ethics review for this study. All the methods and activities were performed in accordance 
with relevant guidelines and regulations.

https://doi.org/10.1038/s41598-019-49563-6
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proposed method. HMM is a parametric machine learning technique that has been widely deployed as a 
temporal latent variable model for modeling dynamic systems21–23. HMMs represent probability distributions 
over sequences of observations. Unlike Markov Chain models, none of the states are directly observable and the 
available data depends on hidden states via the measurement model. Before providing a probabilistic temporal 
prediction and evaluation of FDRSM, in accordance with our preliminary experiments, some informal insight 
into the structure of HMMs is given below.

Our model is assumed to be composed of the set of hidden states = … …S {s , s , s s }1 2 3 m (corresponding to 
diabetic or non-diabetic; usually si= 0 for the non- diabetic state and sj = 1 for the diabetic state) and a set of 
parameters θ π= A B{ , , } (explained in the paragraphs below). These parameters are then used for further 
analysis.

Predictors Findings

Demographic (Sex, Age)

Female, sample size (%) 100,566 (57)

Female age mean ± SD,Years 49.5 ± 24.8

Male age mean ± SD,Years 48.2 ± 24.1

Vital Signs/clinical measures

Systolic BP, mean ± SD, mm Hg 129.34 ± 17.183

Chronic obstructive pulmonary disease, N (%) 9939 (2.4)

Dementia, N (%) 12007 (1.8)

Depression, N (%) 32672 (10)

Diabetes Mellitus, N (%) 26077 (6)

Epilepsy, N (%) 5553 (0.8)

Hypertension, N (%) 61370(13)

Osteoarthritis, N (%) 37274(7)

Parkinson’s Disease, N (%) 1825 (0.2)

Lab Values

Fasting blood glucose, mean ± SD, mmol/L 5.54 ± 1.91

TG, mean ± SD, mmol/L 1.523 ± 0.962

LDL, mean ± SD, mmol/L 2.83 ± 0.99

High density lipoprotein, mean ± SD, mmol/L 1.3893 ± 0.416

BMI, mean ± SD, kg/m2 37.113 ± 1528.71

A1C, mean ± SD, mmol/L 6.268 ± 0.976

Cholesterol mean ± SD, mmol/L 4.893 ± 1.159

Table 1. Characteristics of the population in the CPCSSN database. SD, Standard Deviation; Yr, Year; BP, Blood 
Pressure; LDL, Light Density Lipoprotein; A1C, Glycated Hemoglobin; TG, Triglycerides; BMI, Body Mass 
Index; HDL, High Density Lipoprotein. *Some patients have more than 1 disease in the database.

Predictors Findings

Demographic (Gender, Age)

Sample size without duplicates 911

Female, sample size (%) 556, (61.03)

Male age mean ± SD,Years 58.97 ± 11.96

Female age mean ± SD,Years 58.03 ± 11.02

Vital Signs/clinical measures

Systolic BP, mean ± SD, mm Hg 127.611 ± 15.86

Diabetes Mellitus, N (%) 214 (23.49)

Lab Values

Fasting blood glucose, mmol/L mean ± SD, mmol/L 5.573 ± 1.93

Triglycerides, mean ± SD, mmol/L 1.705 ± 1.027

HDL, sample size, mean ± SD, mmol/L 1.313 ± 0.366

BMI, mean ± SD, kg/m2 28.76 ± 5.818

Table 2. Characteristics of the derived study sample. SD, Standard Deviation; BP, Blood Pressure; BMI, Body 
Mass Index; HDL, High Density Lipoprotein.

https://doi.org/10.1038/s41598-019-49563-6
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•	 The prior probabilities π = ={q s }i 1 i are the probabilities of si being the first state of a system or seeing the 
first real state si as P(si| s0). Collected in a vector π and the si coordinates of π should be interpreted as the ini-
tial state of the system.

•	 The transition probabilities matrix (A) are the probabilities to go from state i to state j at time t : =ai,j
= | =+p(q s q s )t 1 j t i . The prognosis or the course of a disease can be specified by the transition matrix A. The 

transition matrix consists of ai,j that denote the conditional probability or the rate about the system transitions 
from si to sj, whereas the probability of sj at time t depends solely upon on si at time −t 1. In our proposed 
system transition probabilities consist of a square matrix of order m = 2 and must hold the following 
properties24.

≤ ≤ = … ….0 a 1 , i, j 1, 2, 3 m (1)i,j

∑ = = … ..= a 1, i 1, 2, 3, m (2)j 1
m

i,j

•	 The emission probabilities matrix (B) characterize the likelihood of a certain observation oi, if the model is in 
state si. The HMM we use involves observed variables = ….V and K 1, 2, nk ,whereas n = 6, that are condi-
tioned upon the hidden states at time t. The choice of observed variables used in this study is based on the 
FDRSM. The fundamental principle behind HMM is the estimation of an optimal hidden state sequence of a 
process using observed variables over time, whereas the observed variables have no one-to-one relationship 
with hidden states but are associated through the probability distribution.

As the data set used in this study contained continuous valued observations
= = …. = ….O O t T l L{ , 1, 2, , , 1, 2, 3, }t

l( )  and O Rt
D where T is the length of each sequence and l is 

the numbers of independent observation sequences. We retained risk factors values as continuous, as transform-
ing continuous variables into discrete categories by putting them in class intervals resulted in loss of information 
in discovering the true underlying association among latent states and observable factors25. Thus, the observation 
probabi l ity  assumes the Gaussian distr ibut ion,  then we have a  cont inuous HMM with 

= = = σµb (K) b (O V ) (V , , ),i i t k k i i  where µ i and σi are the mean and variance of the distribution correspond-
ing to the state si, respectively, and   is the probability density function that can be defined as follows:

σ = σ =
πσ






− −
σ






µ µ µp x x x
( , ) ( , ) 1

2
exp ( )

2 (3)0

2

Then, HMM is specified by

πλ = σµ{A, , , } (4)

The vectors of μ and σ for the proposed system along with the initial probability and transition probability 
matrixes are provided in Supplementary File 1. All experiments and statistical analyses were performed using 
IBM SPSS Statistics (version 19) and Python (Version 2.7). Once the dataset was prepared and the parameters 
drawn from the training set, the viterbi algorithm from the Hidden Markov Model API (Hmmlearrn) was used 
to train the GausianHMM to evaluate the 8-year risk of developing T2DM in an individual. Several variants of 
the basic HMM have been proposed, with slightly different functionality. The basic concept was published in a 
series of classic papers by Baum et al.26. The area under the receiver operating characteristic curve (AROC) is used 
to determine the effectiveness of our proposed approach. Figure 1 demonstrates the result of the AROC in our 
derived study sample.

Results
We also performed multiple regression analysis to find the significant p-value for individual risk factors for devel-
oping T2DM. According to this statistical analysis, all the risk factors were statistically significant (Nagelkerke 
R2(7) = 0.546). However, the association of gender and T2DM was not overly strong, with an odds ratio of 0.552 
as depicted in Table 3. The Framingham study excluded age and gender variables from the diabetes risk calcula-
tion because of their negative significance. However, we only exclude gender from risk factors and calculate the 
overall 8-year risk for developing T2DM including blood pressure, fasting blood glucose, triglycerides, HDL, 
BMI and age.

Table 4 demonstrates a comparison among our final derived dataset, the Framingham research study sample14 
and the validation study of the FDRSM in the Canadian population15. The average age of our study sample is 58.97 
years and the overall BMI average is 28.76. The cases with systolic blood pressure >130/80 mm Hg, number of 
women, average age and BMI, as well as impaired glucose tolerance, are greater than those of the Framingham 
research sample. Nevertheless, the number of cases with triglycerides levels greater than or equal to the cut-
off point (Triglycerides levels ≥1.7 mmol/L) are also high but cases with HDL levels <0.9 mmol/L in male and 
<1.2 mmol/L in female is much lower than that of the Framingham research sample.

We utilized the jackknife or “leave one out” procedure in order to build HMM. It is a cross-validation tech-
nique first developed by Quenouille27, widely used to evaluate the actual predictive power of computational pre-
dictive model and to minimize the risk of over-fitting. Technically, the goal is to estimate the generalization 
performance of a predictive model as a random effect model. This is done by dropping in turn each observa-
tion and fitting the model for the remaining set of observations. The model is then used to predict the left-out 
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observation. With this procedure, each observation has been predicted as a new observation. Gong28 provided 
a detailed description of the jackknife procedure. Following the jackknife procedure, we randomly selected 3 
different validation partitions with 45 samples of 90% of the participants to evaluate the discriminability of the 
proposed model in order to estimate the 8-year risk of developed T2DM. Subsequently, to evaluate the predictive 
performance of the multivariate HMM, we used AROC as a similarity measure. The AROCs for these validation 
datasets ranged from 0.73 to 0.869, demonstrating a high reliability of discrimination for the HMM model in 
repeated random-sample subsets. However, the final model was chosen based on the performance, both in terms 
of standard error and general behavior in each patient, on the validation dataset.

Figure 1 shows the predictive power of our proposed model over derived study sample, as described above, in 
term of AROC. Theoretically, the AROC can assume values between 0 and 1. However, the practical lower bound 

Figure 1. The receiver operating characteristic curve (AROC) of our proposed model over derived study 
sample.

Explanatory variables OR (95% C.I.) P Value

Age 1.006 (0.993–1.020) 0.000

Male 0.552 (0.472–0.701) 0.030

Systolic blood pressure 0.998 (0.988–1.008) 0.00

BMI 1.011 (0.985–1.038) 0.022

HDL 0.601 (0.312–0.803) 0.004

Triglycerides 1.076 (0.862–1.343) 0.002

Fasting blood glucose 9.936 (7.638–12.925) 0.000

Intercept 0.000

Table 3. Association between individual risk factors and T2DM in the derived dataset. Nagelkerke R2 = 0.546. 
Hosmer and Lemeshow Test = 0.360 (Significantly greater than 0.0005). OR, Odds Ratio; C.I. confidence 
Interval; BMI, Body Mass Index; HDL, High Density Lipoprotein.

Research sample 
in our study

Framingham 
simple 
clinical model

Research sample of 
validation study of 
FDRSM in Canadian 
population

Sample size 911 3140 1970

Female (%) 61.03 53.9 60.6%

Age mean, SD,Years 58.97 ± 11.965 54.0 ± 9.8 56.60(5.29)

Systolic BP >130/85 mm Hg,% 49 44.2 20.1

Triglycerides levels ≥1.7 mmol/L,% 53 31.8 27.9

HDL levels <0.9 mmol/L in male and <1.2 mmol/L in female,% 17 36.9 18.9

Fasting blood glucose levels 5.5 to 6.9 mmol/L, % 47 27.0 30.3

BMI, mean ± SD, kg/m2 28.76 ± 5.818 27.1 ± 4.7 28.28(6.07)

Table 4. Comparative analysis of our derived research sample with the Framingham study and validation study 
of FDRSM in Canadian population research samples. SD, Standard Deviation; BP, Blood Pressure; BMI, body 
mass index; HDL, high-density lipoprotein.

https://doi.org/10.1038/s41598-019-49563-6
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for a random classifier is 0.5, implying no discriminative capability, while an ideal classifier will take the value of 
1. Figure 1 demonstrates graphically that we have a curve that mimics the Bell curve which means we have a large 
area under the curve. It has a good balance of sensitivity and specificity with an AROC value of 0.869 which is 
statistically significant with p-value < 0.05 and a narrow 95% Confidence Interval (CI).

The AROC in our research sample, using the proposed approach, was 86.9% (p < 0.0005, Standard 
Error = 0.54 [95% CI, (0.763–0.975)]), as shown in Table 5. The proposed method was also evaluated and com-
pared to baseline approaches as depicted in Table 6. It demonstrated a comparative analysis of the AROCs and the 
risk for developing diabetes within 8 years among our research sample, the Framingham study research sample 
using their simple clinical model14 and the validation study of the Framingham risk scoring model on a Canadian 
population15 with AROCs of 86.9%, 85% and 78.6% respectively. Furthermore, experimental results demonstrates 
that the AROC of our proposed model is superior to the model developed for the FDRSM validation study in a 
Canadian population15 and the Framingham simple clinical model14. It can also be concluded that machine learn-
ing techniques have the potential to validate complex models based on prospective studies with high performance 
and are capable of identifying persons who will develop T2DM from those who will not. Whereas Fig. 2 repre-
sents AROC (p < 0.0005, Standard Error = 0.60 [95% CI, (0.710–0.946)]) of our proposed model using risk factor 
consider relevant in this study excluding age, to determine the significance of age in developing diabetes risk.

According to the probabilistic prediction of HMM, we determined that 42% of individuals in our sample had a 
risk of less than 3%; 44% had a risk between 3% and 9% and 13% had a risk for developing diabetes within 8 years 
greater than or equal to 10%. The estimated risk figures, amongst the 3 different risk categories with the cutoff 
value < 3, 3 to 10 and greater than 10, for developing type 2 diabetes within 8 years in the Canadian validation 
study of the FDRSM were respectively 70.1, 16.3 and 13.6, whereas the Framingham study predicted 63.8%, 20.7% 
and 15.6% respectively, as depicted in Table 6.

As the performance of our proposed model was comparatively good, we also estimated the 8-year risk of 
T2DM for 1458 non-diabetic individuals for whom data was available in 2015. We determined that in our base-
line dataset we can identity at least 16.9% (247) individuals at increased high risk for developing T2DM in the 
8-year interval ranging from 2015 to 2022.

Discussion
The increase in T2DM incidence is the main reason for increased diabetes prevalence around the world. It has a 
prolonged latent phase particularly in its early period and is thus poorly controlled29. Several meta analyses and 
clinical trials convincingly suggest that early interventions can postpone or prevent T2DM30,31. Early identifica-
tion of high risk patients even when they are in a normoglycemic state is highly desirable, since interventions to 
prevent diabetes take time to implement. From a clinician and payor prospective, the development of such risk 
assessment techniques could enable optimal allocation of resources and healthcare services with greater confi-
dence32. Although traditional risk factors for diabetes offer general guidance, they are ineffective for individual 
risk assessment33.

Several risk scoring models have been widely investigated to identify patients at high risk for developing 
T2DM as well as to communicate risk estimated effectively. Among them, the FDRSM is a well-known and widely 
used diabetes risk scoring model. This model was proposed to predict the 8-year risk of developing diabetes risk 
in middle-aged adults using 6 risk factors, including BMI, FBG, positive parental history of diabetes HDL, blood 
pressure and TG14. The FDRSM is primarily based on the data obtained from Framingham heart study. Technical 

AROC
Std. 
Errora

Asymptotic 
Sig.b

Asymptotic 95% 
Confidence Interval

Lower 
Bound Upper Bound

Over the derived study dataset 0.869 0.054 0.000 0.763 0.975

Over the derived dataset, excluding age 0.828 0.60 0.000 0.710 0.946

Table 5. Summary of Area Under Receiver Operating Characteristic Curve (AROC) in our derived research 
dataset. The test result variable(s): cal has at least one tie between the positive actual state group and the negative 
actual state group. Statistics may be biased. Under the non parametric assumption. Null hypothesis: true 
area = 0.5.

Proposed HMM based 
risk model

Framingham simple 
Clinical model

Validation study of FDRSM in 
Canadian population

AROC, % 86.9 85.0 78.6

<3, % 42.2 63.8 70.1

3 to 10, % 44.4 (between 3 to 9) 20.7 16.3

>10, % 13.3 (equal to 10) 15.6 13.6

Table 6. The comparative analysis of AROCs and 8-year risk for developing diabetes among our research 
sample, the Framingham research sample (simple clinical model) and FDRSM validation study in Canadian 
population. AROC; Area Under receiver Operating Characteristic Curve.

https://doi.org/10.1038/s41598-019-49563-6
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details about the FDRSM and interactive risk calculator can be found on the Framingham heart study website 
(https://www.framinghamheartstudy.org).

The Framingham Heart Study is the first, most comprehensively characterized multigenerational and ongoing 
study of its kind. It continues to provide an effective platform for the primary prevention of chronic diseases. It 
has contributed to a paradigm shift in the history of medicine through its community-based approach. Despite 
of major contributions, this observational study is consuming a lot of resources and time. In such scenarios, 
special-purpose techniques are required. In line with the suggestion of the original paper, the Framingham off-
spring study, the FDRSM risk scoring model should be tested in various populations in order to ensure its valid-
ity in local population, Mashayekhi et al.15 proposed a study to validate the performance of the FDRSM in a 
Canadian population. The reported AROC was 78.6%, which is fair, given that parental history of diabetes was 
omitted because it was not available in the CPCSSN database. However, in the present study an effort has been 
made (1) to develop a HMM based diagnostic predictive model for leveraging EMRs data by utilizing temporal 
evolution of diabetes progression captured in repeated clinical measurements obtained from a longitudinal sam-
ple of patients (2) to validate the performance of the FDRSM as well as avoid some of the above mentioned limi-
tations in order to assist health care professionals/physicians in investigating the 8-year risk of developing T2DM 
in an individual with the objective to control and manage the downstream consequences of diabetes. Unlike tra-
ditional machine learning techniques, the proposed HMM model has the ability to provide explicit information 
about prognosis, while utilizing the inherent temporal dependencies present in the data, and which is required to 
characterize disease risk and progression over time.

Our comparative analysis using a dataset with and without age, demonstrates that age does exhibit a signifi-
cant association with diabetes risk, as slight under performance does occur when age is excluded from the dataset.

Unfortunately, this finding does not provide much guidance for T2DM prevention as age, along with sex, 
are non-modifiable risk factors. The remaining risk factors included in risk stratification are meaningful for 
the implementation of preventive and interventional measures in order to decrease the incidence of diabetes. 
Existing literature also highlights that modifiable risk factors contribute significantly to reduced risk of develop-
ing T2DM34. The Framingham study determined odds ratios of 1.00 and 1.15 for triglycerides and fasting blood 
sugar for predicting the 8-year risk of developing T2DM. The results of our study are consistent with the results of 
the Framingham study with respect to triglycerides (odds ratio 1.076 [95% CI, 0.862–1.343], p < 0.005). However, 
in our study sample fasting blood sugar demonstrated an overly strong association with diabetes onset (9.936 
[95% CI, 7.638–12.925], p < 0.005). All other risk factors included in this study were also significantly associated 
with the incidence of diabetes. Comparative analysis of the percentage of people with low HDL levels in the 
Framingham research sample in Table 4 implies that the cut-off values for HDL should be revisited.

Validation of a risk-score model often involves plotting observed cases verses estimated probability35. We 
found an overlap between observed incidence and estimated probability in our analysis. Thus, estimated risk has a 
certain accuracy, however discrimination is the ability of the model to differentiate between individuals who have 
the disease from those who do not. We included the AROC analysis to evaluate the discriminatory capability of 
our proposed model to identify the 8-year risk of developing T2DM. The reported AROC for the proposed study 
is 86.9%, which is comparatively good, given that diabetic parental history is omitted due to its unavailability in 
the dataset. Experimental results also demonstrated that our proposed model has the potential to effectively pre-
dict the 8-year risk of developing T2DM in an individual.

These results are significant because in addition to identifying a-priori T2DM risk, this is the first study to 
evaluate the performance of the Framingham diabetes risk scoring model using a state of the art HMM. We 
believe this will motivate future investigations to apply ML methods to EMR data to assist in identifying the risk 
of developing various other diseases. The proposed method can be used easily by healthcare providers to identify 
high risk patients who may benefit from intensified prevention and intervention measures and as a result, halt 
or delay the onset of diabetes with reduced healthcare expenditure and improved healthcare services delivery.

It is estimated that people with diabetes are 2.6 times more likely to be hospitalized in the past year than people 
without diabetes (21% vs. 8%)36,37. The approximate healthcare expenditure for an individual with diabetes in the 

Figure 2. The receiver operating characteristic curve (AROC) of our proposed model over derived study 
sample excluding age as one of the contributing risk factor.
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US is ∼$16,750 per year, of which ∼$9,600 is the direct cost of diabetes38. Economic costs and social burden of 
diabetes estimated by the American Diabetes Association demonstrates that the costs of diabetes increased by 
approximately 200% from 2002 to 201238. Given the newly predicted high risk individuals, a substantial fraction 
of healthcare cost and individual disease burden in our baseline dataset could be saved if clinicians and healthcare 
providers manage those high risk individuals promptly.

Despite the promising results, our study has several limitations. First, parental history of diabetes is missing in 
our model. This affects the internal validity of our proposed model. In addition, as our study sample only contains 
information related to those risk factors that were addressed by the FDRSM14,39,40, other risk factors incorporated 
in various risk scoring models are ignored (like, diet, physical activity, smoking, alcohol consumption and ethnic-
ity). Second, the dataset used in this research is mainly obtained from a Canadian population; caution is required 
when generalizing these findings to other populations.

conclusion
T2DM imposes inexorable and significant burdens on society in term of lost productivity, premature mortality, 
and intangible costs in the form of poor quality of life. Risk stratification is central to identifying and managing 
individuals at increased risk for developing diabetes. The major contribution of this research consists in devel-
oping an HMM to extract predictive information from temporal sequences of clinical measurement in order 
to determine a-prior 8-year risk of developing T2DM in comparison to the standard FDRSM. Compared to an 
established risk scoring model, the results of this study demonstrated that HMM, a machine learning technique, 
significantly improves the accuracy of T2DM risk prediction by exploiting complex interactions between risk fac-
tors. The proposed technique has the potential to be used in healthcare settings to identify potentially vulnerable 
individuals who could most likely benefit from preventive treatment, while avoiding unnecessary treatment for 
those who are at low risk.
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