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Optofluidic lens based on 
electrowetting liquid piston
Lin-Yang Li1, Rong-Ying Yuan1, Jin-Hui Wang1, Lei Li1 & Qiong-Hua Wang2

The conventional electrowetting lens usually has one tunable liquid-liquid (L-L) interface. The shape of 
L-L interface is deformed to get variable focal length due to electrowetting effect. However, contact 
angle saturation of the L-L interface is an unavoidable problem which prevents focal length from 
further changing. Here, we demonstrate an optofluidic lens based on electrowetting liquid piston. The 
proposed lens has two connected chambers, the piston chamber and the lens chamber to form a closed-
loop fluidic system. The electrowetting liquid piston can generate clockwise and counter-clockwise 
liquid flows, which can make the L-L interface convex and concave. To prove the concept, we fabricate 
an optofluidic device whose shortest negative and positive focal lengths are ~−17.9 mm and ~18 mm 
with 5 mm aperture, respectively. The proposed optofluidic lens has large tunable focal length range. 
Widespread application of such an adaptive lens is foreseeable.

Adaptive lenses are considered as an emerging technology due to its unique merits, such as tunable focal length, 
compact structure, and no mechanical moving parts. Usually it deforms its interface between two phases to 
change the optical power. In the past decades, many driving mechanisms of the adaptive lenses have been pro-
posed. Among them, electrowetting effect is one of the most mature methods1–6. A voltage is used to drive the 
adaptive lens. Therefore, it not only has low power consumption, but also is easy to integrate into electronic prod-
ucts. However, due to the contact angle saturation, the focal length tuning range of electrowetting lens is usually 
limited4. In recent years, many methods have been proposed to increase the focal length tuning range. For exam-
ple, The PDMS (Polydimethylsiloxane) membrane lens can obtain a wide range of changes7–12. However, when the 
lens is placed vertically, the PDMS membrane interface may distort due to gravity effect, which reduces the image 
quality of the lens. In order to increase optical power, an annular folded electrowetting liquid lens is proposed, 
which reflects incident light three times by the reflective film6. However, the light loss is serious due to the circular 
reflection film. The liquid lens system, which uses two or more interfaces, is also a solution to get high power13. 
But the structure of the lens system is usually bulky. In addition, an adaptive lens based on mechanical-wetting is 
proposed to increase the tuning range of focal length14. It adjusts the volume ratio of the two chambers mechani-
cally, resulting in the change in the shape of the liquid-liquid (L-L) interface at the junction of the two chambers. 
Obviously, it is not easy to integrate into electronic products, which limits its application in imaging system. 
Therefore, new methods to increase the focal length tuning range of adaptive lenses are still worth studying.

In this paper, we propose an optofluidic lens based on electrowetting liquid piston. The proposed lens has 
two connected chambers, the piston chamber and the lens chamber, to form a closed-loop fluidic system. In the 
piston chamber, conductive liquid is surrounded by the immiscible insulating liquid. The conductive liquid can 
be moved up and down like a piston due to electrowetting effect, which generates clockwise or inverse hour liquid 
flows. Thus, the shape of the L-L interface at the annular slice is deformed in the lens chamber. The proposed lens 
combines the advantages of electrowetting lens and mechanical-wetting lens. Therefore, it can provide a large 
focal length tuning range with good image quality by voltage. We fabricate a prototype, and the measured focal 
length tuning range is from ~−17.9 mm to infinity and from infinity to ~18 mm with 5 mm aperture. Driven by 
the voltage, it can change the focal length towards both positive and negative directions to increase the range of 
focal length.
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Schematic and Principle
Figure 1(a) shows a schematic cross section of our proposed optofluidic lens. It consists of a lens chamber and a 
piston chamber. The two chambers are connected by two tubes to form a closed-loop fluid system. The lens cham-
ber is composed of two cylindrical tubes. In the middle of the lens chamber, there is an annular slice, where the 
L-L interface is formed. The piston chamber is composed of an upper cylindrical tube, a lower cylindrical tube, 
two insulating rings and a middle cylindrical tube. The upper cylindrical tube, lower cylindrical tube and middle 
cylindrical tube serve as three electrodes. In the lens chamber, Liquid 1 and Liquid 2 with the same density are 
filled to form an L-L interface. In the piston chamber, Liquid 2 is surrounded by Liquid 1 to form an “O” shaped 
liquid piston. In initial state, the liquid piston is located in the middle part of the piston chamber, as shown in 
Fig. 1(b). When a voltage is applied to the upper cylindrical tube, the contact angle of the Liquid 2 is changed due 
to electrowetting effect, which in turn alters the capillary pressure. And the capillary pressure pulls the Liquid 2 
upward, which generates inverse hour liquid flow and pushes the Liquid 1 down in the lens chamber. Thus, the 
L-L interface is deformed at the aperture, as shown in Fig. 1(c). When a voltage is applied to the lower cylindrical 
tube, the liquid piston moves downward, thus, the generated clockwise liquid flow pushes the Liquid 2 in the lens 
chamber upward at the aperture, which results in a focal length change as shown in Fig. 1(d). The refractive index 
of the Liquid 1 is greater than Liquid 2, thus a positive lens or a negative lens can be formed when a voltage is 
applied to the upper or lower electrodes. As a result, the focal length of the lens varies by a voltage.

The focal length of the proposed optofluidic lens is changed by driving the liquid piston. The liquid piston is 
driven based on electrowetting effect. According to the Young–Lippmann equation2, the relationship of the con-
tact angle θ and the applied voltage U can be described as follows: 
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where γLL is the surface tension of Liquid 1/Liquid 2, θ is the contact angle, γ1 and γ2 are the interfacial tensions of 
the hydrophobic layer/Liquid 1 and hydrophobic layer/Liquid 2, respectively. ε0 is dielectric constant in vacuum, 
εr is the relative dielectric constant of the insulating layer, d represents the thickness of the insulating layer. From 
Eq. 1, we can see that contact angle θ decreases as voltage U increases.

The lens chamber and the piston chamber are connected by two tubes to form a closed-loop system. In an 
equilibrium state, there is a balance between the surface tension of the four L-L interfaces, as shown in Fig. 1(b). 
According to the Young-Laplace equation15, the balance can be expressed as:

Figure 1. Schematic cross-sectional structure and the principle of changing the focal length: (a) Cell structure. 
(b) Initial equilibrium state. (c) The equilibrium state when an extra voltage (U1) is applied to form a positive 
lens. (d) The equilibrium state when an extra voltage (U2) is applied to form a negative lens.
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where R is the mean curvature radius of the L-L interface at the annular slice. b is the radius of the driving cham-
ber. Δp is the pressure difference near the L-L interface in the connecting tube, and it is a constant. In the initial 
state, θ1 is equal to θ2, and R is approximately infinite. Therefore, the value of Δp is small enough to be negligible. 
Combining the relationship between focal length f and curvature radius R, the Eqs (1) and (2) we get:
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When forming a positive lens, we take a positive sign. When forming a negative lens, we take a negative sign. 
From Eq. (3), we can see that the focal length f can be changed in both positive and negative directions by apply-
ing a voltage U1 on the upper electrode or applying a voltage U2 on the lower electrode, respectively. Thus the 
tuning range of the focal length is increased.

Operating process. To visually demonstrate the operating process, we first fabricate the device using trans-
parent materials, as shown in Fig. 2. For the piston chamber, we use four transparent conductive glass sheets 
(Indium-Tin-Oxide, ITO) to form a cubic chamber, and the conductive area of each piece of glass sheet is 
engraved into three parts, and two parts are coated with a 3 um Parylene - C + Teflon(AF-1600, Dupont) film as 
the hydrophobic insulating layer. Then three PMMA (Polymethyl methacrylate) plates and two glass sheets are 
combined with the piston chamber to form a lens chamber. The annular slice is made of the polytetrafluoroeth-
ylene (PTFE) with ~5 mm aperture. Liquid 1 is silicone oil (Phenylmethylsilicone fluid, Dow Corning), and its 
density is ~1.09 g/cm3. Liquid 2 is NaCl solutions, and its density is ~1.09 g/cm3. In order to observe the working 
mechanism of the liquid piston clearly, in the piston chamber, the NaCl solution is dyed brown by edible color-
ant. A CCD camera which is used to record the deformation of the L-L interface during actuation, is placed on 
the lateral side of the device. In the initial state, the L-L interface is approximately planar. When the DC voltage 
(U1) is applied to the upper electrode in the piston chamber, as shown in Fig. 2(a), the L-L interface is deformed 
downwards. As the driving voltage increases, the deformation (H1) of the L-L interface becomes larger. When 
the voltage increased to 160 V, the deformation (H1) becomes ~1.4 mm. When further increasing the voltage, the 
deformation (H1) remains the same because the contact angle of the Liquid 2 in the piston chamber is saturated, 
as shown in Fig. 2(c). In the same way, when the DC voltage (U2) is applied, the L-L interface becomes convex 
upward to form a negative lens as shown in Fig. 2(b). The largest change in the deformation (H2) is ~1.5 mm. The 
variation trend of L-L interface deformation with voltage is similar when applied voltage to the upper or lower 
electrodes. A dynamic response video of the principle demonstration is also included (Video 1). We also find 
that, the L-L interface is good in the lens chamber, while the L-L interface in the piston chamber is deviated from 
our simple model, especially when the voltage is increased to 160 V, as shown in Fig. 2. It mainly results from the 
fabrication issues. The thickness of the coated hydrophobic insulating layer in different area is not identical. Thus, 
the L-L interface is distorted in the piston chamber. From above analysis, we can conclude that the shape of the 
L-L interface can be deformed by driving the liquid piston.

Figure 2. Operating process of the proposed lens. (a) The equilibrium state when an extra voltage (U1) is 
applied to the upper electrode. (b) The equilibrium state when an extra voltage (U2) is applied to the lower 
electrode. (c) Deformation of L-L interface with different voltages (Video 1).
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Fabrication and assembly. To evaluate the performance more accurately, we fabricate a prototype of the 
proposed lens by precision machining, as shown in Fig. 3(a). Upper/Lower cylindrical tube and middle cylin-
drical tube are made of aluminum which serves as the electrode of the device. The wall of the cylindrical alumi-
num tube is coated with Parylene-C and Teflon (AF-1600, Dupont) as the hydrophobic and insulating layer. The 
thickness of the coated Parylene-C + Teflon is ~3 μm. The material of insulation ring is nylon and the annular 
slice is made of PTFE. The thickness of the annular slice is 0.5 mm, and the diameter of the circular hole is 5 mm. 
The material of the top and bottom glass sheets is BK7 in glass data of SHOTT16. And all the elements are stuck 
together to form the prototype by using UV 331 glue. The diameter of the glass sheets are ~8 mm and the height 
of the entire lens is ~32 mm, as shown in Fig. 3(b). The physical properties of the NaCl solutions and silicone oil 
are shown in Table 1.

Experiment. We fabricate a prototype to test the imaging quality and zooming ability. The target “S” is placed 
under the proposed lens. The object distance is 25 mm. A CCD camera is placed behind the proposed lens to col-
lect the image of the target. In the initial state, no voltage is applied, the L-L interface is approximately horizontal, 
and the size of the image is very close to the object. When a voltage U1 is applied on the upper electrode, a positive 
lens is formed. When the voltage increases, the image is magnified, as shown in Fig. 4(a). When the voltage (U1) 
reaches ~160 V, the magnification of the image reaches the maximum. When the voltage is removed, the L-L 
interface returns to the initial state. The negative lens is formed when we apply a voltage U2 on the lower electrode 
and the image becomes smaller as the voltage increases, as shown in Fig. 4(b). The image does not change until 
the voltage increases to ~160 V. Compared the image in Fig. 4(a) with the image in Fig. 4(b), the largest magnifi-
cation is ~2.5×. In the process of applying voltage, no obvious aberrations were observed. When each voltage is 
applied to the liquid lens, the CCD camera needs to be refocused to get a clear image. Video 2 shows the image 
captured by the proposed lens when applying 160 V voltage. The defocusing phenomenon is just the demonstra-
tion of the strong zoom ability of our liquid lens. Nevertheless, the proposed lens has only one L-L interface and 
the spherical aberration is unavoidable. Therefore, the aberration can be corrected by combining several lenses. 
From the experiment, we conclude that the proposed lens can achieve a large positive and negative turning range 
of focal length by voltages.

To measure the focal length of the proposed lens, we set up a system to test focal length. The system consists 
of a collimator, a beam splitter (BS), a glass lens, a CCD camera and the proposed lens. The setup is shown in 
Fig. 5(a). For positive state, a collimated beam passes the BS and the proposed lens, as shown in Fig. 5(b). We 
adjust the back focal distance to find the focal point. Then the distance between the center of the lens and the 

Figure 3. Fabricated prototype of optofluidic lens based on electrowetting piston. (a) All the elements of the 
device. (b) Assembled prototype.

Property Refractive index Abbe number Density (g/cm3)

NaCl solutions 1.35 59 1.09

Silicone oil 1.50 38 1.09

Table 1. The physical parameters of the NaCl solutions and silicone oil.
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image plane is the focal length. For negative lens, as shown in Fig. 5(c), a glass lens is used to collect the incident 
light. The distance between the glass lens and the proposed lens is 34 mm. The focal length of the glass lens is 
20 mm. We first measure the focal length of the lens system. Then, the focal length of the negative lens is calcu-
lated as follows17:

′ = ′ − × ′ ′ − ′f f d f f f( ) /( ) (4)1 0 1 0

f′ is the focal length of the negative lens, f′1 represents the focal length of the glass lens, f′0 is the focal length of the 
lens system, d is the distance between optofluidic lens and glass lens.

The measured results were presented in Fig. 6. The shortest positive focal length is measured to be ~18.0 mm at 
~160 V, and the negative focal length is measured to be ~−17.9 mm at ~160 V. The range of F number varies from 
3.6 to infinity. The liquid piston moves up and down in operation. Correspondingly, the focal length changes in 
both positive and negative directions, which can help enlarge the tuning range of focal length. And it is possible 
to find a set of Liquid 1 and Liquid 2 with a larger difference of refractive indices to further increase the tuning 
range of focal length. In addition, there is a big gap between theoretical and measured values of focal length of the 
proposed lens in the lower voltage region because of the threshold voltage. The theoretical value and the measured 
value coincide well when the voltage is larger than 90 V as shown in Fig. 6.

In the proposed lens, the two liquids are immiscible and the L-L surface will not be distorted by gravity effect 
because the two liquid are density-matched. Therefore, the optofluidic lens has good stability. However, com-
pared with solid lens, both refractive indices of liquids are sensitive to temperature. The refractive index of liquid 
decreases gradually when the temperature rises. From Eq. 3, we can see that the change of refractive indices of 
two liquids has little effect on the focal length of optofluidic lens. In optical systems, dispersion usually can cause 

Figure 4. The focal length of the optofluidic lens changes at different voltages. (a) Changes in focal length when 
different voltages are applied to the upper electrode. (b) Changes in focal length when different voltages are 
applied to the lower electrode (Video 2).

Figure 5. Focal length measurement of the optofluidic lens. (a) Schematic diagram of experimental device. 
(b) An experimental device for measuring positive lenses. (c) An experimental device for measuring negative 
lenses.
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serious chromatic aberrations. Fortunately, the proposed optical fluidic lens has a structure similar to that of a 
doublet and can eliminate chromatic aberrations in a simpler way by mixing or dissolving selected substances.

Conclusions
We have demonstrated an optofluidic lens based on electrowetting liquid piston. The proposed lens has two con-
nected chambers, the piston chamber and the lens chamber, to form a closed-loop fluidic system. The electrowet-
ting liquid piston can generate clockwise and counter-clockwise liquid flows, which can make the L-L interface 
convex and concave. To prove the concept, we fabricate an optofluidic device whose shortest negative and positive 
focal lengths are ~−17.9 mm and ~18 mm with 5 mm aperture, respectively. The proposed optofluidic lens has 
large tunable focal length range. Widespread application of such an adaptive lens is foreseeable.
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Figure 6. Variation of focal length with voltage. (a) Positive focal length changes with the voltage. (b) Negative 
focal length changes with the voltage.

https://doi.org/10.1038/s41598-019-49560-9
http://www.schott.com/optocs_devices/english/download/
https://doi.org/10.1038/s41598-019-49560-9


7Scientific RepoRtS |         (2019) 9:13062  | https://doi.org/10.1038/s41598-019-49560-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-49560-9
http://creativecommons.org/licenses/by/4.0/

	Optofluidic lens based on electrowetting liquid piston
	Schematic and Principle
	Operating process. 
	Fabrication and assembly. 
	Experiment. 

	Conclusions
	Acknowledgements
	Figure 1 Schematic cross-sectional structure and the principle of changing the focal length: (a) Cell structure.
	Figure 2 Operating process of the proposed lens.
	Figure 3 Fabricated prototype of optofluidic lens based on electrowetting piston.
	Figure 4 The focal length of the optofluidic lens changes at different voltages.
	Figure 5 Focal length measurement of the optofluidic lens.
	Figure 6 Variation of focal length with voltage.
	Table 1 The physical parameters of the NaCl solutions and silicone oil.




