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Influence of upscaling on 
identification of reservoir fluid 
properties using seismic-scale 
elastic constants
Shengjie Li1, Daxing Wang2,3 & Mengbo Zhang2,3

Elastic constants derived from seismic-scale measurements are often used to infer subsurface 
petrophysical properties based on rock-physics relationships established from either theoretic model 
or core-scale measurements. However, the spatial heterogeneity of rock physical properties at the 
local scale has a significant impact on this relation. To understand this problem, we built a scaled 
physical model comprised of artificial porous layers with different pore fluids. After conducting a two-
dimensional marine seismic survey over the physical model, the physical modeling data ware then 
used to retrieve the elastic constants of the layered package. The seismic-scale results reveal that the 
identification of reservoir fluid properties is improved using elastic constants that is more sensitive 
to pore fluid properties. The results of numerical simulations show that Lamé moduli provide more 
insight into rock properties and pore-fluid contents than P-wave impedances, and that the relationship 
between the upscaled elastic constants and the effective fluid bulk moduli at the seismic scale is 
usually not perfectly preserved at the reservoir scale. To interpret seismic-scale elastic constants for 
petrophysical properties, the rock physics relationship need to be carefully calibrated. The findings 
will help us understand the upscaling of rock-physics transform, which will improve the accuracy of 
geological property predictions from seismic-scale elastic constants.

Seismic methods are among the principle tools used in oil and gas exploration, CO2 sequestration monitoring, 
mineral exploration and other areas. Seismic signatures are important sources of information on the physical 
properties of subsurface and commonly used to infer reservoir fluid properties, based on the relationship between 
undrained elastic constants and pore-fluid bulk modulus established at local scale. However, one issue with this is 
that the relationship between undrained elastic constants and pore-fluid bulk modulus established in the labora-
tory or well can be different and may not be directly used in interpreting seismic data whose spatial scale is much 
coarser. The commonly used theory describing wave propagation in fluid-saturated media is Biot’s equation of 
poroelasticity1, which forms the basis for relating poroelastic constants with the fluid bulk modulus for homo-
geneous media. The prediction of Biot and Gassmann’s equations2 have been confirmed by both laboratory and 
field experiments3–5; however, this theory has been limited by the explicit assumptions of homogeneous fluids and 
solid phases, and it is often used to establish the relationship between undrained poroelastic constants and the 
pore-fluid bulk modulus for centimeter-scale rocks or porous layers (such as reservoirs). Laboratory measure-
ments have shown that the Biot-Gassmann equation may have different behavior for heterogeneous systems4,6. 
Determining the valid relationship between poroelastic constants and the effective fluid bulk modulus of hetero-
geneous systems at seismic scale remains challenging.

Stratified poroelastic materials are typical heterogeneous composites. Much effect has been devoted to esti-
mating the effective properties of heterogeneous composites in the geophysical literatures7–14. Multiple meth-
ods exist for the upscaling of elastic properties from finer-scale measurements. Gelinsky & Shapiro9 derived 
the analytical expressions for effective stiffness tensors of a layered porous package at no-flow and quasi-static 
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conditions. Berryman12 deduced the compliance form expression for stratified porous media under the same 
assumptions used in Gassmann’s equations. Wollner & Dvorkin15 discussed a method for estimating the effec-
tive solid bulk modulus and fluid bulk modulus of a layered poroelastic package from fine-scale measurements. 
Recently, authors have been investigating the rock physics transform at different scales15,16. For example, Moysey 
& Knight17 show that the field-scale rock physics relationships may not be consistent with those established on 
core-scale measurements. Berryman12 shows that Biot’s equation is not the correct equation at the macro-scale, 
when there is significant heterogeneity in the medium’s fluid permeability. Dvorkin & Wollner18 show how to 
deal with the issue of upscaling rock-physics laws by using synthetic examples and conclude that the rock-physics 
transform between the elastic constants and the petrophysical properties established on the borehole-scale data 
approximately holds at the seismic scale under certain conditions. Wollner & Dvorkin19 explore the seismic-scale 
dependence of the effective fluid bulk modulus upon water saturation and find that this relation trends toward 
an arithmetic average of the individual bulk moduli of the pore-fluid phases. However, the fluid-dependence of 
poroelastic constants at the seismic scale is poorly understood. This is due to the fact that the direct measurement 
of seismic-scale relationship between undrained elastic constants and effective fluid bulk moduli is a hard task if 
possible, and it is very difficult to verify this relationship at the seismic scale with elastic constants deduced from 
field-scale data. In addition, there are few literatures about laboratory experiments to study seismic-scale relation-
ship between undrained elastic constants and effective fluid bulk moduli for heterogeneous media.

Physical modeling has been a useful tool to better understand the relationship between seismic responses and 
scaled porous layers in laboratory analogs of field reservoirs. The reflection amplitude variation with increas-
ing offset acquired by physical modeling experiments can be used to retrieve elastic constants, which useful for 
discriminating lithology types and identifying pore fluids20,21. In this study, physical modeling and numerical 
simulations are used to explore the effect of upscaling on the fluid dependence of undrained elastic constants at 
the seismic scale. The present work is restricted to heterogeneous layered systems arising from the layering of 
homogeneous porous materials. We define the seismic scale (>tens of meters,) and the reservoir scale (several 
centimeters to tens of meters) as two distinct scales of interest. It is well known that mesoscopic heterogeneities 
can cause dispersion and attenuation of seismic waves due to sub-wavelength scale wave-induced fluid flow22–26. 
To emphasize the poroelastic behavior of layered porous media, our focus here is on the seismic-scale dependence 
of poroelastic constants upon the effective fluid bulk moduli of heterogeneous systems at no-flow limits. Our 
approach to the derivation of rock-physic relationships at the seismic scale involves two-dimensional physical 
modeling and numerically forward simulation using one-dimensional earth models. First, physical modeling, 
which is believed the best way to mimic real wave propagation in fluid-saturated porous media, is used to produce 
real reflection data, which are then inverted to the seismic-scale elastic constants. Next, the physical properties 
of each layer in the physical model, such as porosity, bulk moduli of pore-fluid, drained and undrained rocks, 
are upscaled using different upscaling methods. Finally, the seismically inverted elastic constants are compared 
with those obtained from numerical simulations. The results of this study can potentially improve the quality of 
interpretation of seismic-scale elastic constants for rock physics properties.

Results
Physical model.  To obtain closer to field seismic signals, a scaled physical model with dimensions of 
1000 × 600 × 500 mm was constructed. Figure 1(a) shows a schematic diagram of our physical model, which 
simulates a real-world onshore lithostratigraphic hydrocarbon reservoir. Such a setup may be relevant to deposi-
tional settings such as fan delta front regions, where high quality hydrocarbon reservoirs are surrounded by tight 
rocks. The physical model consists of 19 layers; there are 10 tight layers simulating mudstone formations and 9 
simulated sand layers sandwiched between the mudstone layers. These layers are composed of the mixtures of 
epoxy resin and silicone rubbers (except for the seventh and eighth sand layers, hereafter refer to as T7 and T8), as 
is typical for such physical models. Hence, these layers can be treated individually as an isotropic homogeneous 
medium. The T7 and T8 layers are made up of synthetic, consolidated porous materials composed of the mixtures 
of quartz grains and resin (Supplementary Fig S3). The physical properties of all layers were precisely measured 

Figure 1.  (a) A schematic three-dimensional model used for physical modeling. (b) The collected CMP gather 
with major reflected events calibrated by the stratigraphic section (c), and the amplitude spectrum of the target.
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using ultrasonic transmitting techniques (Supplementary Information). The measured properties for all solid 
layers (Supplementary Table S2) are used as inputs for the numerical experiments. T7 layer was made up of two 
porous sandstone bodies; one filled with air, and one filled with water. The T8 layer was made up of four sandstone 
bodies: two air-filled sandstones and two water-filled sandstones were arranged alternately along the layer. An 
impermeable thin-resin layer between the air-filled and water-filled bodies is used for separating the fluid-satu-
rated bodies. These fluid-saturated layers are the targets of current study.

Common midpoint (CMP) gathers.  Physical modeling is an effective technique for simulating a real 
seismic survey in the laboratory and to obtain seismic-scale elastic parameters. The reflection experiment was 
performed over the physical model. In the present study, the scaling factor for our modeling is 5,000; as a result, 
experimental units of 1 mm and 1 s represent field units of 5 m and 5 ms, respectively. During seismic data acqui-
sition, the scaled physical model was submerged in the water tank, far from the walls of the tank, so as to avoid 
interference from the reflected waves related side wall to the primary seismic signal. The source and receiver 
transducers were immersed in water and positioned slightly 2.0 mm beneath the water surface to mitigate the 
influence of ghost on primary reflections, the interference caused by ghost waves affects the amplitude informa-
tion required for seismic inversion and therefore should be avoided. The source transducer produces a wavelet 
with a center frequency of approximately 260 kHz, and the receiver transducers collect the reflected seismic sig-
nals. A common midpoint (CMP) shooting arrangement was employed for data acquisition. The minimum offset 
(defined as the distance between a source and receiver) was 16 mm, the maximum offset was 328 mm. Source 
and receivers were moved apart at increments of 16 mm in opposite directions. A total of 241 CMP gathers were 
recorded along the seismic line located in the middle of the physical model (Fig. 1(a)).

A sample CMP gather from the physical model is shown in Fig. 1(b) (all units are displayed at field scale). The 
frequency band of acquired data ranges from 2 to 70 Hz (Fig. 1(d)). Events corresponding to the reflection from 
each main reflector are visible (Fig. 1(b)). Seismic reflections are calibrated by the physical model (Fig. 1(c)). 
Event 1 is the P-wave reflection from the top of the physical model. Event 9 is the reflection from the base of the 
physical model. The most notable event is event 4, which resulted from the larger impedance contrast between 
the low-velocity layer T5 and its surrounding mudstone layers. These strong reflections prevent the transmission 
of the propagating wave energy, resulting in reduced reflection amplitudes from the lower formation. Event 8 is a 
P-wave reflection from the top of the low-velocity layer T9. Events 5 and 9 can be considered as markers used to 
calibrate the relationship between other events and the corresponding formations. The events corresponding to 
the reflection from the top of the T7 and T8 porous layers occur at approximately 1100 ms and 1145 ms, respec-
tively. The reflections from the bases of these layers are not visible because the layer thickness is much smaller 
than the scaled seismic wavelength. The P-wave multiples and converted wave events are visible on the section, 
especially on the part above event 4. The data also contain other coherent events near the T7 and T8 layers. While 
the primary reflections from the target are consistent among the different CMP gathers, the coherent noises sig-
nals are not. These multiple coverage data can be used to reduce the influence of non-primary reflections on the 
seismic amplitudes.

Reflection amplitude compensations.  To obtain seismic-scale poroelastic constants from the physical 
modeling data, the reflection amplitudes of the CMP gathers should first be corrected to compensate for various 
effects that can distort the amplitude versus offset correlations. For the physical modeling data, we corrected the 
amplitude of the CMP gathers for geometric spreading, emergence angles, and source-receiver directivity. In 
physical modeling, transducers produce a wavefield in which amplitudes are directionally biased because they 
have a certain diameter that is comparable with the dominant wavelength27. The directional behavior of trans-
ducers makes the amplitude with different offsets undesirable variations, and should be compensated prior to any 
seismic amplitude analysis. Following the work of Duren28 and Mahmoudian et al.29, directivity can be corrected 
by dividing measured amplitudes by the cosine of the angle between the wave propagation direction and the 
vertical direction. The propagation direction at the location of a transducer is called the emergence angle21. In the 
reflection amplitude correction, a ray-tracing algorithm was used to determine the primary’s raypath (Fig. 2(a)). 
Accurate ray tracings were obtained with the known velocities and densities of the layers in our physical model 
(Supplementary Table S2). By combining these results with the reflectivity calculated using Zoeppritz’s equa-
tions30, the compensation operator for geometric spreading can be estimated and applied accurately for the target 
reflector. Emergence angles for a given offset and the target depth was calculated by ray tracing through all the 
layers using the final angle at a receiver; the inverse of the cosine of the emergence angle can then be applied to 
the reflection amplitudes.

To compensate the physically modeled data, the reflection amplitudes from the top of the synthetic porous 
layer T7 were picked from the primary event on the raw data and corrected for the effects of transducer directivity, 
geometric spreading, and emergence angle. Figure 2(b) shows a sample reflection amplitude correction process 
from a CMP gather. To validate the corrected amplitude, the plane-wave Zoeppritz’s equation30 and the spher-
ical wave equation31 were used to computer the theoretical reflection coefficients based on the model parame-
ters across the interface and shown in Fig. 2(b). It was clearly shown that, after each correction, an incremental 
improvements was observed, demonstrating the effectiveness of each correction in improving the reflection 
amplitude quality.

Seismic-scale elastic constants extractions.  The offset-dependent reflection amplitude is the seis-
mic response of elastic contrast across an interface. It provides information on the elastic constants and even 
pore-fluid properties of layers. Elastic constants, such as the P-wave impedance (Ip), bulk modulus (K), and the 
first Lamé modulus (λ, or Lamé for short) of saturated rocks, are highly correlated with pore-fluid properties. 
For our synthetic porous layers, the air-filled layers have lower λ value than those of the water-filled layers. The 
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second Lamé modulus (the shear modulus, μ) of the saturated layers is not affected by pore-fluid properties. The 
ratio of the Lamé modulus to the shear modulus, λ/μ, has advantages in discriminating pore-fluid properties. 
These elastic constants of the physical model can be retrieved using seismic inversion techniques, which are 
routinely used in seismic exploration. A deterministic model-based pre-stacked inversion scheme32,33 was used 
in this study because the physical modeling data are of high quality and almost free of noise. It is an ideal dataset 
with known stratum structures and known elastic parameters of each layer. The inversion uses a generalized 
linear inversion algorithm34 and assumes that a seismic trace is the result of the convolution of angle-dependent 
wavelets with reflectivity. This inversion was done iteratively by conjugate gradient methods, where the initial 
low-frequency models were modified until the resulting synthetic seismographs matches the seismic trace within 
some acceptable bounds. The result is a broadband model of λ, μ, and ρ; the resulting λ/μ is shown in Fig. 3(c). In 
addition, conventional seismic inversion for P-wave impedance was also carried out; the inversion result is shown 
in Fig. 3(b) for comparison. We show the seismic data in Fig. 3(a), as a reference.

From the comparison, we can see that the inverted elastic constants significantly improve the identification of 
the stratigraphy within the physical model. While the stacked seismic data outline the major stratigraphic bound-
aries along the seismic profile, it is difficult to distinguish the reflections of the air-filled layers from those of the 
water-filled layers in the section (marked 7 and 8 on the sections in Fig. 3). This is probably due to interference 
from seismic wavelets near the porous layers. The dominant frequency of the wavelet is about 45 Hz, and the aver-
age velocity of our target is about 2600 m/s. The average thickness of the synthetic porous layers is about 14.24 m, 
which is close to the limiting resolution, under the assumption of a one-quarter Rayleigh wavelength criterion35.

The inversion results indicate that the inversion removes the wavelets and efficiently improves the vertical 
resolution in our target zone (at times of 1060–1280 ms). However, the inverted impedance values are less use-
ful when it comes to identify the lateral boundaries of different fluid-filled rocks in a layer. By comparing the 
known stratigraphy of the physical model (Fig. 3(a)), it is clear that the lateral resolving power of the inverted 
Ip (Fig. 3(b)) is less than that of the inverted λ/μ (Fig. 3(c)). In the inverted λ/μ profile, the events correspond-
ing to the water-filled sandstone-body of the T7 layer are obvious, and exhibit lateral continuity at the west 
end of the section (at CMPs less than 125) at times of 1148–1240 ms; the event corresponding to the air-filled 
sandstone-body of the T7 layer is displayed in warmer-colors at the east end of the section (at CMPs greater than 
127) at times of 1068–1140 ms. There are four fluid-filled sandstone-bodies within the T8 layer. The first event 
corresponding to air-filled body1 is sharp, and exhibits lateral continuity at the west end of the profile (at CMPs 
less than 46) at times of 1250–1280 ms; the second event corresponding to water-filled body1 is identifiable in 
the middle of the section (CMPs 47–93) at times of 1216–1248 ms. The third event corresponding to air-filled 

Figure 2.  (a) The results of the ray-tracing calculation for determining the correction parameters. (b) 
Reflection amplitudes from the top of synthetic T7 layer, the raw amplitudes (grey line) were corrected by 
directivity of transducers, spreading, emergence angle, and compared with the plane-wave Zoeppritz solution 
(dashed line) and the spherical-wave solution (Black line).
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body 2 is clearly visible in the middle of the section (CMPs 95–128) at times of 1180–1210 ms; the fourth event, 
corresponding to water-filled body 2, is identifiable at the east end of the section (at CMPs greater than 120) at 
time of 1050–1178 ms. All air-filled layers are clearly visible and can be distinguished from the water-filled layers. 
However, these features are not as clearly resolved in the impedance results shown in Fig. 3(b); it is hard to distin-
guish water-filled body1 (second event) of the T8 layer from air-filled bodies 1 and 2 (first and third events) at the 
west end of the inverted Ip section. This may have been due to the fact that quartz is characterized by a low λ value 
(∼8.1 GPa) and a moderate μ value (44.4 GPa)36. For quartz-rich sandstones, the presence of water in the pore 
spaces may cause a significant increase in λ; gas-bearing rocks have lower λ. Goodway37 proposed that λ contains 
more useful information about the resistance to pressure-induced changes in volume. Hence, λ is more helpful 
than seismic impedance when it comes to determining pore-fluid properties. On the other hand, the relationship 
between the displacement and the stress of media in seismic wave propagation is determined by wave equations, 
which directly involve the ratio of density and modulus, not the seismic impedances. Consequently, λ and μ 
provide more insight into the rock properties and fluid content. The inversion results demonstrate that improved 
identification of reservoir boundaries is possible using elastic constant that is more sensitive to pore fluid proper-
ties. Therefore, it is important to understand the fluid dependence of elastic constants at the seismic scale.

Effect of upscaling on undrained elastic constants.  Numerical simulations were conducted to deter-
mine the relationship between the seismic-scale elastic constants and the effective pore fluid properties so that 
we could quantitatively interpret the seismically inverted elastic constants. The inverted elastic moduli, such as 
the Lamé or the shear modulus, represent the elastic responses of the layered package at the seismic scale in the 
vertical direction. Hence, it is reasonable to assume that these inverted elastic moduli can also be predicted by a 
one-dimension upscaling method with the known elastic parameters of each layer. Because our synthetic porous 
layers are placed in between two impermeable resin layers, the poroelastic Backus averaging at the no-flow limit 
proposed by Gelinsky & Shapiro9 was used to estimate the seismic-scale poroelastic response of these porous 
layers. Poroelastic Backus averaging produces an anisotropic effective medium, where the vertical components of 
the upscaled poroelastic stiffnesses C33 and C44 can be converted to upscaled impedances or Lamé moduli, which 
can be directly compared to the seismically inverted variables. In addition, we compute the upscaled porosity and 
density using the volumetrically weighted average; we also compute the arithmetically volume-averaged bulk 
modulus of the pore fluid, which is used for reference. A representative model was designed based on the physical 

Figure 3.  (a) The original stacked seismic data. (b) The inverted conventional P-wave impedances and (c) the 
inverted λ/μ ratio sections. The inverted results significantly improve the identification of the stratigraphy.
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model (as shown in Fig. 4(a) in solid lines). The parameters used to define the earth model were listed in Table 1., 
and the velocity of the dry synthetic materials were measured and converted to their bulk and shear modulus of 
4.6 and 2.02 GPa, respectively, and the converted undrained bulk modulus is 5.63 GPa, the average porosity and 
dry density are 0.24 and 1.8 g/cm3.

For the porous layer, two cases of the earth model were run. In one run, the porous layer is fully filled with air 
(the red solid curve shown in third and fourth tracks); in the other, the porous layer is fully filled with water (the 
blue solid curve shown in the third and fourth tracks). To calculate the elastic properties of the earth models at a 
coarser scale, the physical properties of each layer in the earth model were upscaled using two running windows, 

Figure 4.  (a) The numerical earth model, where a 14.24 m thick porous layer located between two impermeable 
mudstone layers. From left to right: Porosity, fluid bulk modulus, P-wave impedance, and λ/μ ratio for air-filled 
and water-filled model. (b) The comparison of numerically upscaled P-wave impedance and λ/μ ratio (the 
curves) with seismically inverted ones (the scatters) for air-filled and water-filled layers.

Elastic Properties of the Materials

Porous layer Background Water Air

Bulk modulus (GPa) 7.25 6.2 2.2 0.012

Shear modulus (GPa) 7.37 2.4 0.0 0.0

Density (g cm−3) 1.6 1.25 1.02 0.014

Table 1.  Input Parameters for the Simulation in Figs 4 and 5.
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where the first window size was equal to the length of the scaled seismic wavelength used in our physical mod-
eling (referred to here as the seismic-scale window), and the second was equal to the thickness of the porous 
layer (referred to here as the reservoir-scale window), where the latter is approximately a quarter of the length of 
the former. The poroelastic Backus averaging results with the seismic-scale window are displayed in Fig. 4(a) as 
dashed lines, and those quantities upscaled using the reservoir-scale window are displayed as short dotted lines.

As expected, the results produced by different upscaling methods vary. For instance, with the seismic-scale 
window, the arithmetically upscaled porosity (the green dashed line on the first track in Fig. 4(a)) is reduced by 
69.5% compared with the original porosity of the porous layer. The reduction of the upscaled fluid bulk mod-
ulus (the cyan dashed line on the second track in Fig. 4(a)) is almost the same as that of the upscaled poros-
ity. However, the average reduction of the upscaled P-wave impedances or the λ/μ ratio of the air-filled porous 
layer is approximately 21.2% compared with their original reservoir counterparts. At the seismic scale, the rela-
tive difference between the upscaled elastic constants and the original values of the air-filled reservoirs is larger 
than it is for the water-filled reservoirs, with an average difference of 4%. This is likely due to the difference in 
the elastic contrast between the porous layer and backgrounds. The upscaled values in the center of the porous 
layer, determined using the reservoir-scale window, are closest to the original values for the reservoirs (Fig. 4(a)); 
the upscaled values are smaller than the original reservoir values when the running window is larger than the 
reservoir-scale window. It is interesting to note that the sensitivity of the upscaled elastic constants to pore fluid 

Figure 5.  (a) The comparison of inverted fluid bulk modulus with the forward-upscaled fluid bulk moduli. (b) 
The relative difference in Kf, Kud, λ/μ ratio, and Ip versus the ratio of wavelength to the thickness of the porous 
layer. (c) The comparison of the relative variation of the upscaled λ/μ ratio and Ip with the seismic inverted 
results.
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properties is different. Based on the values of the upscaled variables for air-filled reservoirs at the seismic-scale, 
the value of the upscaled impedance for water-filled layer increased by 3.99%, and the value of the upscaled λ/μ 
ratio increased by 9.58%. This means that the upscaled λ/μ ratio is more sensitive to changes in fluid properties 
than the upscaled impedances.

To interpret the seismically inverted data, the inverted P-wave impedance and the λ/μ ratio of the synthetic 
layers were picked and compared with the corresponding quantities of the numerically upscaled results (Fig. 4(b)). 
The dashed line in Fig. 4(b) represents the result of poroelastic Backus averaging using the seismic-scale window 
(the same as the result displayed in Fig. 4(a)), the scatters represent the seismically inverted data. It is evident 
that the upscaled elastic constants are comparable with the seismically inverted data; P-wave impedance errors 
between the upscaled parameters and the inverted data for either air-filled layers or water-filled layers is less than 
3%, while the upscaled λ/μ ratios error is less than 2.6%. If we assume that the synthetic porous layers in the phys-
ical model have the same dry-frame properties, and that the elastic properties of the air-filled layer are approx-
imately identical to those of the dry porous layer, compared to the elastic constants inverted from the air-filled 
layers, the inverted P-wave impedances increased by 6.19% for the water-filled layer and the inverted λ/μ ratio 
increased by approximately 7.22%.

The results of the physical modeling data and the numerical simulations indicate that poroelastic Backus aver-
aging can be used to quantitatively analyze the effect of pore fluid properties on the upscaled P-wave impedances 
or the λ/μ ratio at the seismic-scale, and that the maximum error between the seismically inverted results and the 
numerically upscaled parameters is approximately 3.1%. The seismic-scale elastic constants are affected not only 
by the ratio of the wavelength to the thickness of a layer, but also by the elastic contrast between adjacent layers. 
For the poroelastic media, such as hydrocarbon-bearing reservoirs, the pore fluid properties is an important fac-
tor that affects the magnitude of the seismic-scale poroelastic constants. An important point inferred from both 
the laboratory and numerical simulations is that the relationship between the poroelastic constants and the pore 
fluid bulk modulus at the reservoir scale, as dictated by Biot-Gassmann equations, is not necessarily applicable 
at the seismic scale. To accurately infer the petrophysical properties of a layer from the seismic-scale effective 
elastic constants, the rock physics relationship at the seismic scale needs to be carefully calibrated with the aid of 
numerical simulations.

Discussions
Gassmann’s equation is valid for a medium with homogeneous fluids and monomineralic solid phases. However, 
poroelastic Backus averaging replaces a layered medium with an effective, homogeneous anisotropic body at a 
coarse scale. When the Thomsen anisotropic parameter δ of the effective body is weak (in our case, this parameter 
is less than 0.02), Gassmann’s isotropic fluid substitution operation is approximately accurate18,38. Thus, an effec-
tive pore-fluid bulk modulus exists that will yield the undrained poroelastic response of the effective medium. To 
understand the seismic-scale dependence of poroelastic constants on the fluid bulk modulus, we first compared 
the forward-upscaled pore-fluid bulk moduli with the inverted pore-fluid modulus in an effort to analyze the 
magnitude of the pore-fluid bulk modulus predicted by the upscaling process. The seismically inverted elastic 
constants and numerical experiment results then were used to quantitatively study the fluid dependence of elastic 
constants at the seismic scale.

To evaluate the magnitude of the upscaled fluid bulk modulus, the inverted fluid bulk modulus Kf
∼  was 

obtained from the numerical simulation results by back-calculation using the inverse of Gassmann’s equation 
with different sizes of running windows. In addition, the effective fluid bulk moduli were upscaled from the 
reservoir-scale Kf using the arithmetic average (AR), the harmonic average (HR), and the mean (i.e. Hill’s aver-
ages) (ARHR). The inverted fluid bulk moduli from the numerical experiments were plotted against the 
forward-upscaled fluid bulk moduli in Fig. 5(a), where the three upscaled fluid bulk moduli are denoted as AR, 
HR, and ARHR. Clearly, the arithmetic average Kf

∼  is identical to the inverted Kf
∼  and the original value of the 

pore-fluid bulk modulus of the saturated layer when the running window is equal to or smaller than the thickness 
of the porous layer. All upscaled Kf

∼  values will be smaller than the original value of the fluid bulk modulus as the 
size of the running window increases. The arithmetic average ∼Kf  is much closer to the inverted ∼Kf  than the other 
two curves. This implies that, when interpreting the seismically inverted elastic constants, we cannot arrive at the 
harmonic upscaled Kf

∼ , but rather at an arithmetic or Hill’s average ∼Kf . In general, an arithmetic average ∼Kf  is often 
associated with a patch saturation medium, in which patches are fully dry or fully saturated18. Hence, the inverted ∼Kf  is much closer to what we would expect for a patch saturation pattern. This is consistent with the vertical 
arrangement of the saturated porous layers and impermeable layers in our numerical earth model.

Based on Gassmann’s equation2, the difference between the undrained and drained bulk moduli 
= −K K Kud u d, of a saturated medium is a direct measure of pore-fluid change if the only variable is related to 

pore-fluid properties. Accordingly, the differences between the undrained elastic constants (e.g., Ku, Ip, and λ/μ) 
and the drained elastic constants were calculated using Gassmann’s equation at the reservoir scale. Similarly, the 
differences between the upscaled undrained and the drained elastic constants were also estimated using poroelas-
tic Backus average at a coarse scale. We used a relative difference, defined by the ratio of the difference between 
the upscaled quantities (e.g., Kud) and those deduced from corresponding reservoir-scale ones, to show the 
behavior of upscaled elastic constants with different upscaling windows; these relative differences are plotted 
versus the ratio of the wavelength to the thickness of a layer (R) in Fig. 5(b).

As shown in Fig. 4(a), the physical properties of the porous layer, such as Kf , Ip, and λ/μ, remain unchanged at 
the center of the layer when they are upscaled using a running window that is equal to or less than the thickness 
of the layer. These elastic constants decreased in values as the running window size increases. Hence, the reduc-
tion of the relative difference reflects the lessened sensitivity of the elastic constants to fluid properties. Also in 
Fig. 5b, the normalized pore-fluid bulk modulus was calculated from Kf

∼  divided by the fluid bulk modulus of the 
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porous layer and used for reference in our analysis. As expected, the normalized fluid bulk modulus (shown in red 
in Fig. 5(b)) decreases nonlinearly as the running widow size increases. At the seismic scale (R≈3.6), the normal-
ized fluid bulk modulus decreased by 69% relative to that at the reservoir scale (R ≤ 1). The upscaled Kud obtained 
at reservoir scale (R ≤ 1) is equal to that of the water-filled porous layer, and 64% smaller at seismic scale than it is 
at the reservoir scale. The relative differences in Ip are smaller than those in Kud, but the relative differences in λ/μ 
are larger than those in the Kud when the running widow is larger than the thickness of the porous layer. In our 
case, the relative differences of the elastic constants obey the same trend of the normalized fluid bulk modulus.

The difference between the undrained and drained elastic constants quantitatively represents the extent of 
variation in the elastic constants induced by pore-fluid changes. Therefore, the differences between upscaled 
undrained elastic constants and drained ones were calculated from our numerical experiments at a coarse scale. 
These differences then were divided by the corresponding drained constants (to determine the relative variation) 
and plotted those variations against the ratio of the wavelength to the thickness of a layer (Fig. 5(c)). Similarly, the 
values of the seismically inverted Ip and λ/μ of the air-filled and water-filled layers were picked, respectively. The 
mean and variance of the inverted Ip values are 3.17 ± 0.026 km/s g/cm3 for the air-filled layer and 
3.34 ± 0.026 km/s g/cm3 for the water-filled layers. The mean and variance of the inverted λ/μ values are 
1.82 ± 0.012 GPa for the air-filled layers and 1.97 ± 0.015 GPa the for water-filled layers. The average differences 
between the inverted Ip and λ/μ and the corresponding drained quantities were calculated respectively, to reduce 
the uncertainty caused by the lack of precise correspondence between the undrained and drained elastic con-
stants. The relative variation of inverted Ip and λ/μ were plotted in Fig. 5(c) (solid symbols) for qualitatively cali-
brating the numerical simulation results. It is clear that the relative Kud variation decreases nonlinearly with 
increasing running window size, meaning that the sensitivity of the undrained bulk moduli to the pore-fluid 
properties is lessened. The undrained bulk modulus increased by 22.3% relative to the drained bulk modulus at 
the reservoir scale (R ≤ 1) due to the presence of water in the pore spaces of the porous layer. However, due to 
upscaling differences, the undrained bulk modulus only increased by 6.7% at the seismic scale (R≈3.6). Moreover, 
in our numerical examples, the sensitivity of the relative variation of λ/μ is relatively large, whereas that of Ip is 
small. For instance, the incremental increase of the undrained λ/μ values approached 9.2% relative to the drained 
one, but the increase in the undrained Ip values is approximately 4.2% at the seismic scale (R≈3.6).

This comparison shows that the poroelastic Backus upscaled curves are very close to the inverted Ip and λ/μ 
values. The relative variation of inverted Ip is greater than that of the upscaled Ip, and the relative variation of 
inverted λ/μ is smaller than the variation of the upscaled values. These inverted quantities derived from physical 
modeling data are highly reliable because these relative variations or differences are relative values deduced simul-
taneously from the seismic dataset with the same quality. There are some discrepancies between the seismically 
inverted quantities and the numerically upscaled ones, suggesting that the poroelastic Backus average weakens 
the effect of pore-fluid on Ip and enhances the pore-fluid effects on λ/μ. We note that both the seismically inverted 
and numerically upscaled λ/μ values are more sensitive to the pore-fluid properties than Ip is at the seismic scale. 
As a result, we conclude that it is the fluid-sensitivity that enables us to distinguish the air-filled zones from the 
water-filled zones in the seismically inverted λ/μ profile. At the same time, the lateral boundaries of these air-filled 
and water-filled zones are less well resolved in the inverted Ip section.

Conclusions
In this study, we collected seismic data from a scaled physical model with porous layers saturated different 
pore-fluids, to retrieve elastic constants variations with fluid saturated layers at the seismic scale. The results 
of seismically inverted elastic constants revealed that λ/μ is more sensitive to reservoir pore-fluid properties 
and is more helpful than the inverted Ip when it comes to identify fluid distribution, even for sub-resolution 
fluid-saturated reservoirs. This observation suggests that different elastic parameters have different sensitivities 
to reservoir pore fluid properties at the seismic scale, and that knowledge of the upscaling for elastic constants is 
essential to fully understand the fluid dependence of elastic constants at a coarse scale. Results of numerical simu-
lation by poroelastic Backus averaging demonstrated that the fluid dependence of the elastic parameters of layers 
at the reservoir scale is well defined by Gassmann’s equation. However, the dependence of the undrained elastic 
constants, such as the bulk moduli, the Lamé moduli, and the impedances, on pore-fluid properties is different at 
the seismic scale, due to the difference in the methods used to calculate the effective fluid bulk modulus and the 
effective elastic moduli. For a saturated stratified medium, the effective fluid bulk modulus depends linearly on 
the local fluid properties whereas the relationship between the local and effective elastic constants is most likely 
nonlinear. Hence, upscaling affects the sensitivity of the elastic constants to the pore-fluid properties. λ/μ is more 
fluid-sensitive than Ip at various scales. It is this reason that the seismically inverted λ/μ data can actually deter-
mine the sub-resolution lateral variation of pore fluid properties within a reservoir. Generally, the relationship 
between the upscaled elastic constants and the effective fluid bulk modulus at the seismic scale is not the same 
as the relationship as that of the reservoir scale. However, the seismic-scale dependence of the undrained elastic 
constants on the pore-fluid properties of heterogeneous composites can be quantified using a Gassmann-type 
relation with the specific fluid bulk modulus that accounts for the pore fluid properties, the spatial arrangement 
of saturated patches, and the amount of upscaling.

The seismic-scale dependence of poroelastic constants upon the effective fluid bulk modulus is revealed by 
both physical modeling and numerical simulation experiments. A deeper understanding of this relationship will 
allow us to improve the estimates of petrophysical properties using the seismic-scale elastic constants.
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Methods
Physical modeling.  The physical modeling system used in this study mainly consists of the transducers 
(the transmitting and receiving instruments), the main control computer (signal generation and acquisition), the 
position controlling unit, and a large water tank (Supplementary Fig. S1). The piezoelectric transducers operating 
as the sources and receivers are homemade probes, with a length of 10 cm, a diameter of 2.5 mm, and a frequency 
range of 100−600 kHz. The gantry system can adjust the position of transmitting and receiver transducers in 
three dimensions, and has a positioning precision of 0.05 mm. Movement of transducers is controlled by high pre-
cision stepping motors. A data acquisition program written for signal control and acquisition runs on the desktop 
control computer and enables flexibility with respect to the source-receiver configuration. In the experiment, the 
positions of the centers of the source and receiver transducers are manually set to the origin of the physical model. 
These positions are stored in the acquisition program, which directs all subsequent positioning of the source and 
receiver. To conduct physical modeling experiments, a seismic wavelet is produced by a source transducer and 
the P-wave reflected signal is collected by receiving transducers and stored in computers, like in a conventional 
seismic recording. The physical modeling data can then be processed and inverted into the seismic-scale elastic 
variables.
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