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Efficient partition of integer 
optimization problems with one-
hot encoding
Shuntaro Okada1,2, Masayuki Ohzeki2,3,4 & Shinichiro Taguchi1

Quantum annealing is a heuristic algorithm for solving combinatorial optimization problems, and 
hardware for implementing this algorithm has been developed by D-Wave Systems Inc. The current 
version of the D-Wave quantum annealer can solve unconstrained binary optimization problems 
with a limited number of binary variables. However, the cost functions of several practical problems 
are defined by a large number of integer variables. To solve these problems using the quantum 
annealer, integer variables are generally binarized with one-hot encoding, and the binarized problem 
is partitioned into small subproblems. However, the entire search space of the binarized problem is 
considerably larger than that of the original integer problem and is dominated by infeasible solutions. 
Therefore, to efficiently solve large optimization problems with one-hot encoding, partitioning 
methods that extract subproblems with as many feasible solutions as possible are required. In this 
study, we propose two partitioning methods and demonstrate that they result in improved solutions.

The combinatorial optimization problems aim to minimize cost functions defined by discrete variables, and these 
problems often have significant real-world applications. In general, the cost function of a combinatorial optimi-
zation problem can be expressed as the Hamiltonian of a classical Ising model1. Therefore, many algorithms for 
solving combinatorial optimization problems have been inspired by physics. Simulated annealing (SA)2 is one of 
the most famous algorithms, employing thermal fluctuations to escape local minima. In contrast to SA, quantum 
annealing (QA)3 is a method that exploits quantum fluctuations and the resulting tunneling effect. A popular 
research topic involves evaluating whether it is more advantageous to employ quantum effects than thermal fluc-
tuations, and numerous studies have been conducted on this topic4–9. In addition, the recent development of a 
commercial quantum annealer by D-Wave Systems Inc10. has attracted many companies and researchers. The per-
formance of QA has been experimentally studied using the quantum annealer and compared with that of SA11–13, 
and several companies have demonstrated the applicability of the annealer to practical problems14–30.

The time-dependent Hamiltonian of QA is given as follows

ˆ ˆ ˆ= +H t A t H B t H( ) ( ) ( ) , (1)q 0

where H0
ˆ  is the target Hamiltonian representing the cost function, and Hq

ˆ  denotes the quantum fluctuation term 
for which the ground state is trivial. The initial values of the coefficients are set to A(0) = 1 and B(0) = 0, and the 
system is prepared in the trivial ground state determined by Ĥq. Then, the strength of the quantum fluctuation is 
reduced toward zero, and the coefficients are set to A(τ) = 0 and B(τ) = 1 at the end of QA, where τ is the anneal-
ing time. The dynamics of the system is described by the Schrödinger equation:

ˆψ ψ=i d
dt

t H t t( ) ( ) ( ), (2)

where ψ(t) is the state vector of the system, and ℏ is set to 1 for simplicity. Given that the coefficients change suf-
ficiently slowly, the adiabatic theorem31 ensures that the system remains close to the instantaneous ground state 
of the time-dependent Hamiltonian. Thus, by setting the annealing time τ to be sufficiently large, the ground 
states of the target Hamiltonian H0

ˆ  can be obtained with high probability.
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The current version of the D-Wave quantum annealer (D-Wave 2000Q) implements transverse-magnetic-field 
QA, for which the quantum fluctuation is given as follows:

ˆ ˆH ,
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where Nq denotes the number of qubits. The quantum annealer can handle a cost function as follows:
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where the interactions between qubits are restricted to the Chimera graph32, which is a 16 × 16 grid of com-
plete bipartite graphs K4,4 in D-Wave 2000Q. It should be noted that the number of operable qubits is less than 
Nq = 2,048 due to defects in the qubits and connectivities.

Due to the limited number of available qubits, large optimization problems cannot be solved directly using the 
D-Wave quantum annealer. In real settings, large problems are partitioned into subproblems that can be handled 
by the quantum annealer. The subproblems are iteratively optimized by the quantum annealer, and the optimi-
zation result is used to improve the current solution33–35. A cluster of spins in the subproblem is simultaneously 
updated in this scheme; this iterative method is a type of large-neighborhood local search algorithm36. Although 
these algorithms can be performed using classical computers, subproblems are fundamentally restricted to tree 
structures that are solvable in polynomial time by belief propagation or dynamic programming37–40. Therefore, 
using the quantum annealer is advantageous if it can solve subproblems with many closed loops more efficiently 
than classical algorithms. Furthermore, solving subproblems that are as large as possible is essential for improving 
solution accuracy41. The size of subproblems that can be embedded into the quantum annealer strongly depends 
on the quality of the minor embedding, in particular for problems with few interactions. Because subproblems 
must be iteratively embedded, fast algorithms for embedding larger subproblems are required for exploiting the 
potential of the quantum annealer. Although complete-graph embedding42–44 can be used for problems with 
dense interactions, a subproblem-embedding algorithm, that was developed in a previous study41, may be effec-
tive in improving the solution accuracy of sparse problems.

In addition, the quantum annealer requires the cost function to be represented in the form of a quadratic 
unconstrained binary optimization (QUBO) problem or Ising model; however, many cost functions in practical 
problems are defined by integer variables. The binarization of integer variables is generally achieved using one-hot 
encoding1. For example, suppose that we wish to solve the following integer optimization problem with N integer 
variables {Si}i = 1,2,...,N:

∑ δ
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where Si ∈ (1, 2, ..., Q), Q is the number of components, Ji,i+1 is an interaction between Si and Si+1, and δ is the 
Kronecker delta function. The integer variables {Si}i = 1,2,...,N can be binarized by one-hot encoding as follows:
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where ∈x (0, 1)i
q( )  is a binary variable that is assigned to component q of Si, and x 1i

q( ) =  indicates that compo-
nent q is selected for Si. In addition, feasible solutions are constrained to configurations in which exactly one 
component is selected for each Si. Subsequently, a penalty term is introduced to obtain the following uncon-
strained form:

H J x x x 1 ,
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where the second term formulates the penalty term which is introduced to extract feasible solutions satisfying the 
constraint ∑ == x 1q

Q
i

q
1

( ) , which we call the one-hot constraint, and parameter λ controls the strength of the pen-
alty term. By setting parameter λ to a sufficiently large value, the ground states of the original integer optimization 
problem (Eq. (5)) are correctly encoded. However, the performance of the D-Wave quantum annealer is signifi-
cantly affected by noise and intrinsic control errors when λ is larger than necessary. Therefore, to obtain highly 
accurate solutions, we must explore an appropriate value of λ, which is a tedious task for optimization under the 
one-hot constraint. In addition, the entire search space of the binarized optimization problem (Eq. (7)) is domi-
nated by infeasible solutions. Figure 1(a) presents the problem graph of Eq. (7). In this figure, vertices and edges 
represent binary variables and the interactions between them, respectively. Q binary variables = ...x{ }i

q
q Q

( )
1,2, ,  are 

assigned to each Si, and the total number of binary variables is NQ. Although the number of configurations of the 
binary variables is 2NQ, the number of feasible solutions is only QN. Therefore, to efficiently solve large optimiza-
tion problems under the one-hot constraint using the quantum annealer, partitioning methods are required for 
extracting subproblems with as many feasible solutions as possible. A simple example of an undesirable partition 
is depicted in Fig. 1(b). Here, suppose that we wish to improve the current solution presented in Fig. 1(b) and that 
the three binary variables enclosed by the green rectangle are extracted as the subproblem. In this case, superior 
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feasible solutions cannot be explored by optimizing the subproblem because only the current solution in the sub-
problem satisfies the one-hot constraint. To the best of our knowledge, the partitioning method proposed by 
Nishimura et al.30 is the first to focus on the one-hot constraint. This method is applicable to the 
double-constrained problems ∑ =x 1q i

q( )  and ∑ =x 1i i
q( ) , such as the assignment problem and the traveling sales-

man problem. However, the extracted subproblems still contain infeasible solutions for which parameter λ must 
be adjusted. In this study, we propose two partitioning methods applicable to problems whose cost function 
involves a single one-hot constraint, as illustrated in Eq. (7). The first method is similar to the partition proposed 
by Nishimura et al., while the second method extracts subproblems comprising only feasible solutions and does 
not require adjusting parameter λ. The performance of the proposed methods is assessed for several Potts models, 
which are generalized Ising models whose cost function is defined by integer variables45. We demonstrate that the 
proposed methods efficiently obtain superior solutions.

Results
In this section, we propose efficient partitioning methods for solving large integer optimization problems under 
the one-hot constraint. In addition, we assess the performance of the proposed methods for several Potts models.

Proposed methods. We propose two partitioning methods: a multivalued partition and a binary partition. 
These methods are summarized in Fig. 2. Both methods extract a subproblem that involves binary variables 
assigned to the tentatively selected components for each Si. The resulting subproblems include feasible solutions 
other than the current solution.

The multivalued partition extracts a subproblem with two or more components for each Si, as illustrated in 
Fig. 2(a). In addition to the tentatively selected component, the multivalued partition randomly selects one or 
more components for each Si, and then extracts a subproblem that comprises the binary variables assigned to 
the selected components. The extracted subproblem involves feasible solutions other than the current solution, 
and the randomly selected components are explored for each Si by optimizing the subproblem. However, the 
extracted subproblem still contains infeasible solutions, and the penalty term remains in the cost function of 
the subproblem. This partitioning method is similar to the partition proposed by Nishimura et al. Although 
subproblems are embedded using complete-graph embedding in the study by Nishimura et al.30, we employed 

Figure 1. (a) Problem graph of Eq. (7). Vertices and edges represent binary variables xi
q( ) and the interactions 

between them, respectively. Although the penalty term generates fully connected vertical interactions between 
xi

q( ) and xi
q( )′ , these are not shown for simplicity. Q binary variables = ...x{ }i

q
q Q

( )
1,2, ,  are assigned to each Si, and the 

total number of binary variables is NQ. Although there exist 2NQ configurations of the binary variables, only QN 
configurations satisfy the one-hot constraint. (b) Example of an undesirable partition, where binary variables 
enclosed by the green rectangle are extracted as a subproblem. The binary variables colored blue represent the 
tentatively selected components in the current solution. Superior feasible solutions cannot be explored by 
optimizing the extracted subproblem.

Figure 2. Proposed methods for finding superior solutions to large optimization problems under the one-hot 
constraint.
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the subproblem-embedding algorithm developed in our previous paper41. Details of achieving a multivalued 
partition using the subproblem-embedding algorithm are provided in the Methods section.

The binary partition is summarized in Fig. 2(b). In addition to a tentatively selected component, the binary 
partition randomly selects exactly one component for each Si. Subsequently, new binary variables {yi}i = 1,2,...,N that 
represent “stay in the tentatively selected component (yi = 0)” or “transit to the randomly selected component 
(yi = 1)” are introduced for each Si, and a binary subproblem is constructed whose cost function is defined by 
{yi}i = 1,2,...,N. The cost function of the binary subproblem is derived in the Methods section. Thereafter, a subprob-
lem of the binary subproblem is embedded into the D-Wave quantum annealer by the subproblem-embedding 
algorithm41. Here, the cost function of the binary subproblem does not involve the penalty term because all solu-
tions in the binary subproblem are feasible. Therefore, the binary partition does not require adjusting parameter 
λ. In addition, a larger number of binary variables can be embedded into the D-Wave quantum annealer because 
the penalty term, which generates fully connected interactions between xi

q( ) and ′xi
q( ), is not involved. 

Consequently, the number of feasible solutions involved in the embedded subproblem is significantly increased 
using the binary partition. The binary subproblem can be regarded as one of the simplest cases of optimization 
under the half-hot constraint46. The penalty term of the half-hot constraint is given by
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and Q/2 components are extracted. The half-hot constraint is proposed to avoid the difficulty caused by the lon-
gitudinal magnetic field in the penalty term of the one-hot constraint. This difficulty is avoidable using the binary 
partition, which may contribute to improving solution accuracy. A disadvantage of the binary partition is that 
only two components are considered for each integer variable. As demonstrated in the following subsection, this 
leads to poor performance for the ferromagnetic Potts model.

Performance assessment. The performance of the proposed methods is evaluated for the follow-
ing four types of Potts models on a cubic lattice with 10 × 10 × 10 integer variables: the ferromagnetic, 
anti-ferromagnetic, Potts glass47 and Potts gauge glass48,49 models. While the ground states of the ferromagnetic 
and anti-ferromagnetic Potts models are trivial, it is generally difficult to obtain the ground states of the Potts glass 
and Potts gauge glass models due to competing interactions.

The cost function is given by

∑ δ= + Δ
< >

H J S S( , ),
(9)i j

ij i j ij0
,

where Q is set to 4, Si ∈ (1, 2, 3, 4), Δij ∈ (0, ±1), δ is the Kronecker delta function, and Jij represents the interaction 
between the nearest neighbors on the cubic lattice with the periodic boundary condition. The cost function is 
represented in QUBO form using the one-hot constraint as follows:
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Parameters Jij, Δij, and λ in each model are presented in Table 1. Δij ≠ 0 generates interactions between differ-
ent components in the Potts gauge glass model, and Fig. 3 illustrates the local interactions generated by the first 
term of Eq. (10). Although it is generally difficult to determine an appropriate value of λ a priori, we can derive 
the lower bound of λ to correctly encode the original optimal solutions for the ferromagnetic and 
anti-ferromagnetic Potts models. The lower bound strongly depends on whether there exist infeasible solutions 
that set the first term of Eq. (10) to a smaller value than that of the original optimal solutions. λ > 0 is sufficient if 
such infeasible solutions do not exist; however, a sufficiently large value of λ is necessary if such infeasible solu-
tions exist. For the ferromagnetic Potts model, the first term of Eq. (10) for an infeasible solution with 

= = =≥x x x1, 0i i i
q(1) (2) ( 3)  is lower than that of the original optimal solution (e.g., x x1, 0i i

q(1) ( 2)= =≥ ) by 3N. 
Because the second term in Eq. (10) increases by Nλ in this infeasible solution, λ > 3 is required. In this study, we 
set λ = 3.3 because an unnecessarily large value is not preferable, as mentioned in the Introduction section. While 
for the anti-ferromagnetic Potts model, the original optimal solutions minimize the first term of Eq. (10). 
Therefore, λ > 0 is sufficient, and we set λ = 1.0, which is the same value as Jij in the first term. However, for the 
Potts glass and Potts gauge glass models, the lower bound cannot be derived because the original optimal solu-
tions are not trivial. At least, by setting λ > 3, we can restrict energy changes caused by a single-spin flip from the 
optimal solutions to be a positive value, and λ is set to 3.3 in this study.

Model Jij Δij λ

Ferromagnetic Potts model −1 0 3.3

Anti-ferromagnetic Potts model +1 0 1.0

Potts glass model +1 (50%) or −1 (50%) 0 3.3

Potts gauge glass model −1 0 (50%) or +1 (25%) or −1 (25%) 3.3

Table 1. Parameter settings of cost function Eq. (10).
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The optimization process demonstrated in this study is illustrated in Fig. 4. The original large problem is parti-
tioned using three partitioning methods: random, multivalued, and binary partitions. The random partition does 
not address whether an extracted subproblem contains feasible solutions for each Si. A subproblem-embedding 
algorithm proposed in the literature41 is used for embedding a subproblem into the D-Wave quantum annealer 
with defects in qubits and the interactions between them (details on embeddings are provided in the Methods 
section). After optimizing the embedded subproblem by the D-Wave quantum annealer under the parameter 
settings provided in Table 2, the variables in the subproblem are replaced by the best solution among the 1,000 
solutions obtained using the quantum annealer. Subsequently, a greedy algorithm is executed by a conventional 
digital computer to recover the one-hot constraint and obtain an exact (local) minimum. In this algorithm, if 
there exist integer variables violating the one-hot constraint, the constraint is first recovered by extracting the 
integer variables and selecting exactly one component that minimizes the local energy for each integer variable. 
Then, an integer variable is randomly selected, and the tentatively selected component is replaced with one that 
minimizes the local energy. Refining the current solution is completed when all local energies are minimized. 
Finally, the best solution obtained in the procedure is updated, and the above processes are iterated. We then 
compare the solution accuracy for the three partitioning methods.

(i) In the case of ij = 0 (ii) In the case of ij = +1 (iii) In the case of ij = -1
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Figure 3. Local interactions generated by the first term of Eq. (10). Δij ≠ 0 causes interactions between different 
components.

Quantum annealing

( ) ( ) 0q ˆˆˆ HtBHtAH +=

0Ĥ
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Figure 4. Optimization process demonstrated in this study. The solution accuracy is evaluated for the three 
partitioning methods.
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Figure 5 represents the energies obtained by the three partitioning methods. The average, maximum, and min-
imum energies for 16 trials are plotted, and the same 16 initial states are used for each partitioning method. The 
horizontal axis represents the number of iterations, which is the number of subproblem optimizations performed 
by the D-Wave quantum annealer. The plot for the multivalued partition is shifted slightly to the left to avoid over-
lap with other plots. Figure 5(a,b) illustrate the energies obtained for the ferromagnetic and anti-ferromagnetic 
Potts models, respectively. The ground states of these models are trivial, and the minimum energy is −3 and 0 
for the ferromagnetic and anti-ferromagnetic Potts models, respectively. Although the multivalued partition is 
expected to solve large optimization problems more efficiently than the random partition, the performances 
of the random and multivalued partitions are almost identical. The performance of the binary partition differs 
from the other methods, however; it is the lowest for the ferromagnetic Potts model, and the highest for the 
anti-ferromagnetic Potts model. Figure 5(c,d) present the energies obtained for the Potts glass and Potts gauge 
glass models, respectively. As expected, superior solutions are obtained with a smaller number of iterations using 
the multivalued partition rather than the random partition, in particular for the Potts gauge glass model. Of the 
three partitioning methods, the binary partition shows the highest performance for both the Potts glass and Potts 
gauge glass models.

Discussion
In this section, we discuss the differences between the three partitioning methods. The following three questions 
arise from the results presented in the previous section.

•	 Why is the multivalued partition not superior to the random partition for the ferromagnetic and anti-ferro-
magnetic Potts models?

•	 Why is the performance of the binary partition the lowest for the ferromagnetic Potts model?

Parameter Value

solver D-Wave 2000Q_2

annealing time 20[μs]

Num_reads 1,000

auto_scale True

postprocess none

Table 2. Parameter settings of D-Wave quantum annealer.
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Figure 5. Energies obtained using the three partitioning methods. The average, maximum, and minimum 
energies for 16 trials are plotted. (a) Ferromagnetic Potts model. (b) Anti-ferromagnetic Potts model. (c) Potts 
glass model. (d) Potts gauge glass model.
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•	 Why does the binary partition exhibit the highest performance for all models except for the ferromagnetic 
Potts model?

A possible answer to the first question is that, for the ferromagnetic and anti-ferromagnetic Potts models, 
improved feasible solutions can be obtained through infeasible solutions because there likely exist infeasible solu-
tions whose energy is lower than that of a current feasible solution in a neighbor. Figure 6(a) presents a simple 
example for the one-dimensional ferromagnetic Potts model. We assume that the binary variable enclosed by 
the green rectangle is extracted as a one-variable subproblem, which is one of the simplest cases of the random 
partition. The energy change caused by flipping the extracted binary variable is −2J + λ because two interactions 
are simultaneously recovered (−2J) and the one-hot constraint is violated (+λ). If λ < 2J, flipping the binary 
variable decreases the energy despite violating the constraint. It should be noted that λ > J is sufficient to cor-
rectly encode the ground states of the one-dimensional ferromagnetic Potts model. This is because the energy of 
the lowest-energy infeasible states, in which two components are commonly selected for each Si, is −2NJ + Nλ 
and must be larger than that of the ground states (−NJ). Consequently, if λ is appropriately tuned (J < λ < 2J), 
the current solution is updated to the infeasible solution by optimizing the subproblem, and superior feasible 
solutions are obtained via the infeasible solution. Whether energy changes become negative or not in spite of 
violating the one-hot constraint strongly depends on the number of simultaneously recovered interactions. For 
the ferromagnetic and anti-ferromagnetic Potts models without competing interactions, many interactions can 
be simultaneously recovered by violating the one-hot constraint. As a result, the multivalued partition is not 
effective in improving the solution accuracy for these models. In contrast, for the Potts glass and Potts gauge 
glass models with competing interactions, the performance of the multivalued partition is superior to that of the 
random partition.

In answer to the second question, subproblems that can eliminate domain walls are rarely extracted by the 
binary partition. Figure 6(b) presents one of first excited states, which is commonly observed in the optimization 
of the ferromagnetic Potts model. The 10 variables in Fig. 6(b) are divided into two domains: five variables S1, ..., 
S5 are aligned to q = 1 in one domain, while the remaining five variables S6, ..., S10 are aligned to q = 2 in the other 
domain. The boundary between the domains is referred to as the domain wall. To improve the current solution, 
an extracted subproblem must contain one of the ground states because the current solution is the first excited 
state. For example, to align all integer variables {Si}i = 1,2,...,10 to q = 1, component q = 1 must be selected for integer 
variables S6, ..., S10. The probability of component q = 1 being selected for S6, ..., S10 is (1/3)5 = 1/243 because, in 
addition to the tentatively selected component, the binary partition randomly selects one component for each Si. 
This probability exponentially decreases with respect to the number of variables, and the extraction of only two 
components is not suitable for the ferromagnetic Potts model. We further conjecture that the binary partition 
exhibits poor performance for optimization problems containing ferromagnetically ordered domains, and that 
the concomitant use of the binary and multivalued partitions may be preferable for such problems.

The answer to the third question is that there exist several binary subproblems that can improve the current 
solution. Figure 6(c) illustrates the local interactions in the anti-ferromagnetic Potts model. The current solution 
is one of the first excited states in which the local energy with respect to S1 and S4 is not minimized, which we say 
“the interaction between S1 and S4 is broken” in this paper. Assuming that the integer variable S4 is updated to 
improve the current solution, there are two binary subproblems that can improve the current solution. Therefore, 
the disadvantage of the binary partition, which is that only two components are considered for each integer varia-
ble, is mitigated for the optimization of the anti-ferromagnetic Potts model. We can thus exploit the advantages of 
the binary partition, which are that the extracted subproblems contain a larger number of feasible solutions and 
that the adjustment of parameter λ is not required. This is also the case for the Potts glass and Potts gauge glass 
models, in which competing interactions generate several binary subproblems that improve the current solution. 
Figure 6(d) presents a simple example for the Potts gauge glass model. One of the ground states and first excited 
states are illustrated at the top of Fig. 6(d), where the interaction depicted by a dashed line represents the broken 
interaction. There exist no configurations that minimize all of the local energies due to the competing interaction 
between different components, and one interaction is broken even in the ground state. Suppose that we update 
integer variable S4 to improve the current solution in the first excited state, then there are two binary subproblems 
that can improve the current solution, as illustrated at the bottom of Fig. 6(d). One subproblem recovers the inter-
action between S1 and S4, while the other subproblem recovers the interaction between S3 and S4. The competing 
interactions generate two binary subproblems that improve the current solution, and each subproblem recovers 
different interactions. Thus, the disadvantage of the binary partition is mitigated as long as Q is not very large. 
It should be noted that although the number of binary subproblems that improve the current solution increases 
as Q is increased for the anti-ferromagnetic Potts model, this number does not increase for the Potts gauge glass 
model.

Conclusion
In this study, we proposed two partitioning methods to efficiently solve large optimization problems under the 
one-hot constraint using the D-Wave quantum annealer. The performance of the proposed methods was assessed 
for the ferromagnetic, anti-ferromagnetic, Potts glass, and Potts gauge glass models. Of the three partitioning 
methods, the binary partition showed the highest performance for all models except for the ferromagnetic Potts 
model. The advantages of the binary partition are that it enables embedding a larger number of binary variables 
and does not require adjusting parameter λ. However, its disadvantage is that only two components are con-
sidered for each integer variable. Although this disadvantage leads to poor performance for the ferromagnetic 
Potts model, the effect is mitigated for optimization problems that have many binary subproblems improving 
the current solution, such as the anti-ferromagnetic Potts model, and for optimization problems with competing 
interactions. Although the multivalued partition exhibits a better performance than the random partition for 
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Potts glass and Potts gauge glass models, we did not identify problems for which the multivalued partition is most 
suitable. Future studies should focus on constructing algorithms that can efficiently solve the ferromagnetic Potts 
model using the binary partition. In addition, the performance of the proposed methods should be assessed for 
various optimization problems, such as the graph coloring problem whose cost function is represented as the 
Hamiltonian of the anti-ferromagnetic Potts model.

Methods
Details on partitioning and embedding are provided in this section.

Subproblem-embedding algorithm. In this subsection, we briefly explain the subproblem-embedding 
algorithm developed in a previous study41. This algorithm aims to quickly find minor embeddings of subproblems 
to efficiently implement large-neighborhood local searches using the D-Wave quantum annealer.

Figure 6. Discussion on results. Vertices and edges represent binary variables x{ }i
q( )  and the interactions 

between them, respectively. Binary variables colored blue are tentatively selected components, and binary 
variables enclosed by green rectangles are the extracted subproblem. (a) Simple example of the random 
partition that can reduce the energy despite violating the one-hot constraint. (b) One of the first excited states 
commonly observed in the optimization of the ferromagnetic Potts model. To align all integer variables 
{Si}i = 1,2,...,10 to q = 1, component q = 1 must be selected for variables S6, ..., S10. (c) Local interactions in the anti-
ferromagnetic Potts model. The two binary subproblems can improve the current solution. (d) Simple example 
of the Potts gauge glass model. One interaction is broken in the ground state due to competing interactions 
between different components. Two binary subproblems can improve the first excited state. Broken interactions 
are represented by dashed lines, while interactions recovered by optimizing the binary subproblem are 
represented by red lines.

https://doi.org/10.1038/s41598-019-49539-6


9Scientific RepoRtS |         (2019) 9:13036  | https://doi.org/10.1038/s41598-019-49539-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Given a large optimization problem whose cost function is represented in QUBO form, this algorithm embeds 
binary variables one by one into the Chimera graph. After a randomly selected binary variable is embedded into 
the Chimera graph first, this algorithm embeds a binary variable interacting with the already embedded binary 
variables into the graph. The latter procedure is iterated until all qubits in the Chimera graph are used. It is gen-
erally necessary to assign several qubits to one binary variable and extend a chain to correctly represent interac-
tions between binary variables on the Chimera graph. This algorithm implements Dijkstra’s algorithm to greedily 
determine how to extend chains. Although chains often cannot be extended by only unused qubits, this difficulty 
can be avoided in the embedding of subproblems because it is not necessary to embed all binary variables. In 
this case, the algorithm stops attempting to embed the binary variable and attempts to embed other binary varia-
bles that can be easily embedded. Thus, extracting and embedding a subproblem is simultaneously implemented 
in this algorithm, and the resulting subproblem comprises only binary variables that can be easily embedded. 
Therefore, the computational time is significantly lower than in Cai’s algorithm50. In addition, this algorithm can 
easily deal with hardware defects by implementing Dijkstra’s algorithm on a Chimera graph with defects.

It is the random partition to directly apply this algorithm to extract and embed a subproblem of integer opti-
mization problems because this algorithm does not address whether an extracted subproblem contains feasible 
solutions for each Si or not. To combine the multivalued partition with this algorithm, the order of the binary vari-
ables embedded into the Chimera graph must be appropriately specified, as described in the following subsection.

Multivalued partition. The multivalued partition requires that the binary variable assigned to the ten-
tatively selected component must be embedded into the Chimera graph. In addition, more than two binary 
variables should be embedded for each integer variable to distinguish the multivalued and binary partitions. 
On the other hand, the subproblem-embedding algorithm extracts and embeds a subproblem comprising 
binary variables that can be easily embedded. Therefore, in order to combine the multivalued partition and the 
subproblem-embedding algorithm, it is needed to appropriately specify the order of the binary variables embed-
ded into the Chimera graph.

First, an integer variable is randomly selected, and binary variables assigned to the selected integer variable 
are embedded into the Chimera graph. Then, to determine binary variables to be additionally embedded into the 
Chimera graph, we select an integer variable as follows:

 1. An already embedded binary variable xembedded is selected in the order of being embedded into the Chimera 
graph.

 2. An integer variable Sctr to which xembedded is assigned is selected.
 3. Integer variables {Si} that interact with Sctr in the problem graph are extracted.
 4. An integer variable Si is selected in a random order from {Si}.
 5. The binary variables = ...x{ }i

q
q Q

( )
1,2, ,  assigned to Si are attempted to be embedded.

Then, the order of the binary variables x{ }i
q

q Q
( )

1,2, ,= ...  embedded into the Chimera graph is determined using 
the following two criteria:

 1. The binary variable adjacent to the binary variables that are already embedded.
 2. The binary variable assigned to the tentatively selected component.

For the binary variable that is embedded first among x{ }i
q

q Q
( )

1,2, ,= ... , criterion 1 is important than criterion 2 to 
avoid embedding independent integer variables. For the reminder of the binary variables assigned to Si, we prior-
itize criterion 2 to achieve the multivalued partition. It should be noted that the number of components embed-
ded into the Chimera graph is not uniform for each integer variable because the subproblem-embedding 
algorithm embeds only binary variables that can be easily embedded. If only one component can be embedded, 
the integer variable is excluded from the subproblem.

Table 3 represents the average number NS(Qembed) of embedded integer variables with Qembed components 
per subproblem. The performance is assessed for embedding the Potts gauge glass model on the cubic lattice 
into D-Wave 2000Q_2 with defects and is averaged over 1,000 trials. 65.7(=14.5 + 8.0 + 43.2) integer variables 
are embedded into the Chimera graph on average, and the average number of embedded binary variables is as 
follows:

Q N Q( ) 2 14 5 3 8 0 4 43 2 225 8
(11)Q

S
1

4

embed embed
embed

∑ = × . + × . + × . = . .
=

It should be noted that, to distinguish the multivalued and binary partitions, Qembed > 2 is required for most 
integer variables. All four components are embedded for 65.8% of the integer variables in the subproblem, indi-
cating that we can embed the multivalued subproblem that is distinct from the binary subproblem.

Binary partition. To solve large optimization problems using the binary partition, the cost function of the 
binary subproblem must be derived from the cost function of the original large problem. The general form of the 
local energy between Si and Sj is given by
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where Qij
qq( )′  represents the interaction between xi

q( ) and ′xj
q( ). The binary partition extracts a binary subproblem 

by randomly selecting one component in addition to the tentatively selected component for each integer variable. 
The local energy of the binary subproblem in QUBO form is given as follows:

H R yy R y R y , (13)ij ij i j ii i jj j
(Binary) = + +

= − − +α α α β β α β βR Q Q Q Q , (14)ij ij ij ij ij
( ) ( ) ( ) ( )i j i j i j i j

R Q Q Q Q( ) ,
(15)ii

k i
ik ik ii ii
( ) ( ) ( ) ( )i k i k i i i i∑= − − +β α α α α α β β

≠

∑= − − +α β α α α α β β

≠
R Q Q Q Q( ) ,

(16)
jj

k j
kj kj jj jj
( ) ( ) ( ) ( )k j k j j j j j

where yi ∈ {0, 1}, αi and βi denote the tentatively selected component and randomly selected component for Si, 
respectively, and yi = 0(yi = 1) indicates “stay in the tentatively selected component αi” “(“transit to the other 
component βi”)” It should be noted that the cost function of the binary subproblem does not contain the penalty 
term because all solutions in the binary subproblem satisfy the one-hot constraint.

The problem graph of the binary subproblem extracted from the three-dimensional Potts model is a cubic 
lattice with bond dilutions. The density of the interactions in the binary subproblem is lower than that in the 
multivalued subproblem because the cost function of the binary subproblem does not contain the penalty term, 
which generates partially fully connected interactions between xi

q( ) and ′xi
q( ). The average number of embedded 

binary variables is 408 when the binary partition is used, and only 225 when the multivalued partition is used. 
Furthermore, all configurations in the binary subproblem satisfy the one-hot constraint, while the configurations 
in the multivalued subproblem do not. Therefore, the average number Nfeasible of feasible solutions involved in the 
embedded subproblem is considerably increased using the binary partition. Table 4 illustrates log10Nfeasible in a 
subproblem embedded by the multivalued and binary partitions combined with the complete graph embedding44 
and subproblem-embedding algorithm41 for the Potts gauge glass model on the cubic lattice.
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