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the central role of peripheral nodes 
in directed network dynamics
edgar A. p. Wright 1, Sooyeon Yoon  1, António L. ferreira1, José f. f. Mendes  1 & 
Alexander V. Goltsev1,2

Many social, technological, and biological systems with asymmetric interactions display a variety 
of collective phenomena, such as opinion formation and synchronization. this has motivated much 
research on the dynamical impact of local and mesoscopic structure in directed networks. However, the 
unique constraints imposed by the global organization of directed networks remain largely undiscussed. 
Here, we control the global organization of directed Erdős–Rényi networks, and study its impact on 
the emergence of synchronization and ferromagnetic ordering, using Kuramoto and ising dynamics. in 
doing so, we demonstrate that source nodes – peripheral nodes without incoming links – can disrupt or 
entirely suppress the emergence of collective states in directed networks. This effect is imposed by the 
bow-tie organization of directed networks, where a large connected core does not uniquely ensure the 
emergence of collective states, as it does for undirected networks.

A general strategy for characterizing the global organization of directed networks was first applied to the WWW, 
as it existed in 19981, revealing the bow-tie architecture schematically depicted in Fig. 1. The core of this architec-
ture is the network’s largest strongly connected component, and all remaining components – the periphery – are 
hierarchically defined in relation to the core. As a consequence of this organization, the overall connectivity of 
the periphery is feedforward, directed from nodes without incoming links – sources – to nodes without outgoing 
links – sinks. Here, we study how these unique structural features of bow-tie architectures constrain collective 
behavior in the Kuramoto and Ising models on directed ER networks, and discuss the implications of our findings 
for systems with such features.

Early theoretical work provided tools for determining the structural features of uncorrelated random complex 
networks with arbitrary degree distributions2, and analytical calculations of the relative sizes of bow-tie compo-
nents were reported shortly thereafter3. Since then, applied work has further unravelled the relationship between 
the bow-tie architecture of directed networks and the functioning of systems abstracted onto them. Financial net-
works have been employed to study flows of ownership4, debt5 and risk6 between financial actors, revealing their 
topologically-determined roles. Similarly, the infectious potential of individual nodes in animal trade networks 
has been determined by their classification within the bow-tie topology of these networks7,8. This architecture is 
also common in biological networks9, and has been reported in gene regulatory networks10, metabolic networks11, 
and neuronal networks12,13.

Motivated by the existing interdisciplinary body of knowledge on bow-tie architectures, the present work 
seeks to understand the dynamical impact of their unique structural features. Existing investigations of directed 
networks have largely focused on local and mesoscale structural features such as the fraction of reciprocal links, 
correlations between in-degree and out-degree, and clustering/community structure14–16, among other heteroge-
neities. While the interplay between local/mesoscale structure and collective phenomena has been demonstrated 
in technological, biological, and social directed networks17–19, the role of the global organization of directed net-
works in collective phenomena remains largely undiscussed. Here, we consider a simple toy model based on 
directed Erdős–Rényi (ER) networks, which are both free of potentially confounding structural heterogeneities 
– since each link is present with the same probability – and their bow-tie structure can be controlled with a single 
parameter – the mean number of incoming links – as discussed in the following section.

The features captured by our toy model are generally present in real directed networks. Consider the follow-
ing hand-picked examples: (i) a 2010 snapshot of the Twitter follow network20, (ii) the visual motion detection 
circuit of the common fruit fly21, and (iii) the chemical connectome of the C. elegans roundworm22. Our analysis 
of the bow-tie-architecture of networks (i), (ii), and (iii) reveals that 14%, 32%, and 2% of their nodes are sources, 
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respectively, compared to the 80%, 44%, and 91% of nodes in the corresponding strongly connected cores. Given 
the feedforward nature of bow-tie architectures (cf. Fig. 1), it follows that sources can in principle influence core 
dynamics, provided the dynamics of the system are local and pairwise (along links). In fact, if sources make up the 
entire IN component, they will act as a field on some subset of CORE nodes, with dynamics differing in the choice 
of dynamical parameters, link properties, and initial conditions. This relatively broad class of dynamics23 applies 
to the C. elegans connectome, where sources are almost entirely sensory neurons, synaptic strength is weighted, 
and the entire connectome is optimized to minimize wiring cost12. In general, source nodes may also have distinct 
internal dynamics, potentially capturing specific functional behavior, such as the tweet-sharing activity of notable 
source nodes in the Twitter follow network, e.g. the Dalai Lama and Eminem (at the time of writing), who have 
millions more followers than the average user20 and may, for example, be more selective about the content they 
share, or indeed have a different impact depending on the emotional and cognitive content of their tweets.

Among all relevant dynamics, we focus our attention on the Kuramoto model of synchronization. The 
dynamics of this seemingly simple model have been studied extensively on directed networks24,25, under the 
influence of external fields26,27, and subsequently applied to model and study synchronization in real biological 
networks, including the effects of jet lag on the suprachiamastic nucleus28, and the dynamical states of waking- 
and sleeping-state functional brain networks29. Despite its success, the Kuramoto model has yet to be analyzed in 
the context of bow-tie architectures. In addition, the ferromagnetic Ising model – a stochastic spin model with the 
same critical exponent as the Kuramoto model – has also been investigated in directed ER networks30, including 
the effects of interfacial noise31. Interestingly, the authors of30 revealed that the ferromagnetic phase transition 
occurs above the percolation transition (emergence of the CORE) as a function of increasing mean out-degree 
(mean number of out-links). By contrast, the results obtained for the Ising model on undirected networks show 
that the zero-temperature ferromagnetic phase transition and the network’s percolation transition occur at the 
same critical mean degree32. In light of this discrepancy, we also investigate how bow-tie architectures impact 
ordering in the ferromagnetic Ising model, compared to synchronization in the Kuramoto model. In this way, 
the present work aims to bridge existing gaps in the literature, and highlight the unique structural constraints 
imposed on the emergence of collective phenomena in directed complex networks with bow-tie architectures.

Results
Structure. While the global organization of directed networks (cf. Fig. 1) is characteristically feedforward 
(from sources to sinks), the overall connectivity of the core is feedback. On the one hand, CORE nodes can both 
dynamically adjust to and influence the state of their neighbors (through local pair-wise interactions), but on the 
other, they are subject to the influence of sources. Here, we study how the number of SOURCE and CORE nodes, 
and the inter-connectivity of the IN and CORE components affect the balance between the core’s ability to sup-
port collective dynamics (through feedback) and the influence of sources. To this end, we consider a simple toy 
model based on directed Erdős–Rényi (ER) networks, where the structural features of interest are determined by 
the mean in-degree 〈 〉qin

3 (i.e. the mean number of incoming links), starting with the emergence of the core in the 
network at 〈 〉 =q 1in  (percolation point).

When determining how sources influence the collective dynamics of the core, we must consider how CORE 
nodes connect to each other, the number of SOURCE nodes relative to that of CORE nodes, and how the former 
connect to the latter. Connections from SOURCE to CORE nodes may be direct (through direct links) or indirect 
(through paths to other IN nodes that are themselves directly connected to CORE nodes). For any directed net-
work where the IN component is entirely composed of SOURCE nodes, the dynamics of the SOURCE nodes are 
formally equivalent to external fields, which act directly on any number of CORE nodes. In the presence of indi-
rect connections from SOURCE nodes to CORE nodes, the above-mentioned equivalence may no longer apply, 
depending both on the intra-connectivity of the IN component and the dynamical rules themselves. Here, we 
simply focus on the fraction of SOURCE nodes – NSOURCE/N – relative to the fraction of CORE nodes – NCORE/N 
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Figure 1. Bow-tie architecture of a directed network, composed of a core and its periphery. The CORE is the 
largest strongly connected component (largest set of nodes reachable from each other through a sequence 
of directed links). The periphery comprises the IN and OUT components – the sets of nodes in sequences of 
directed links leading into and out of the CORE respectively1–3,43 – and a hierarchy of tendrils (such as those 
connecting into and out of the OUT and IN components, respectively) and tubes (directly connecting the 
IN and OUT components)36. As indicated by the arrowheads, the overall connectivity of this architecture is 
feedforward, from SOURCE nodes (IN nodes without in-links) to SINK nodes (OUT nodes without out-links).
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– and on the number of links between the IN and CORE components – LIN–CORE/L – in ER networks with N nodes 
and = 〈 〉L N qin  links.

Above the percolation point – 〈 〉 =q 1in  – the fraction of CORE nodes – NCORE/N – increases monotonically 
with 〈 〉qin , as shown in Fig. 2(a), and eventually comprises the majority of the network’s nodes. However, the frac-
tion of SOURCE nodes – NSOURCE/N – remains of the same order of magnitude as the fraction of CORE nodes – 
NCORE/N – for ≤ 〈 〉 ≤q1 2in , as confirmed both through simulations and analytic calculations, and shown in 
Fig. 2(a). The influence of this finite fraction of SOURCE nodes is ultimately exerted through a fraction of 
IN-CORE links – LIN–CORE/L – which is also of the same order of magnitude as the fraction of CORE-CORE links 
– LCORE–CORE/L – i.e. non-vanishingly small, as shown in Fig. 2(b). Individual CORE nodes adjust their state both 
through links from other CORE nodes, and from IN nodes, so that their dynamics are partly determined by the 
balance between their external in-degree qin

ext (the number of in-links from IN nodes) and their internal in-degree 
qin

int (the number of in-links from other CORE nodes), where = +q q qin in in
ext int. For a typical (average) CORE 

node, we may consider the ratio between the average external and internal in-degree as a measure of the node’s 
susceptibility to the influence of the IN component. This is equivalent to analyzing the density of the 
inter-connectivity between IN and CORE components, relative to the density of the CORE’s own connectivity. 
Symbolically,

〈 〉

〈 〉
= –

–

q
q

L
L

,
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in

in
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IN CORE

CORE CORE

where LIN–CORE is the total number of IN-CORE links (external links), and LCORE–CORE the total number of 
CORE-CORE links (internal links).

Looking at the data in Fig. 2(b), we see that although LIN–CORE varies non-monotonically with 〈 〉qin , LCORE–CORE 
increases monotonically, causing the ratio in equation (1) to decrease monotonically, and suggesting that the 
average CORE node becomes less susceptible to the influence of the IN component with 〈 〉 >q 1in . The CORE 
becomes larger as it becomes more densely connected, while the IN component shrinks and becomes less densely 
connected to the CORE, decreasing the susceptibility of CORE nodes to the influence of SOURCE nodes (direct 
or indirect). However, while the susceptibility of a typical CORE node to the influence of SOURCE node dynam-
ics decreases with 〈 〉qin , both the number of SOURCE nodes and the number of IN-CORE links are non-negligible 
for ≤ 〈 〉 ≤q1 2in , and may therefore significantly impact the collective dynamics of the CORE given specific 
dynamical rules and parameters. In addition, the brief survey of directed networks presented in Table 1 below 
suggests that these structural features are equally significant (non-vanishingly small) in a broad range of directed 
networks.

Dynamics. Next, we investigated how the above-discussed structural features impact the emergence of syn-
chronization and magnetization in the Kuramoto and Ising models, by controlling the corresponding dynamical 
parameters – the coupling strength K and the temperature T – along with the structural control parameter – the 
mean in-degree 〈 〉qin .

Kuramoto Model. The Kuramoto model is a phenomenological model of synchronization between coupled 
phase oscillators25,33–35. On a directed network with N nodes, the instantaneous change in the phase θn of oscilla-
tor n is governed by:

NCORE
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LCORE-CORE

LIN-IN

LIN-CORE

Figure 2. Structural features of directed ER networks as a function of the mean in-degree 〈 〉qin : (a) The number 
of nodes NX in set X, one of SOURCE (up triangles), IN (squares), and CORE (circles), normalized to the total 
number of nodes N in the network. (b) The total number of links between IN nodes LIN–IN (hexagons), from IN 
to CORE nodes LIN–CORE (down triangles), and between CORE nodes LCORE–CORE (diamonds), normalized to the 
total number of links L in the network. (c) The ratio LIN–CORE/LCORE–CORE (see equation (1) and the 
accompanying text for further detail). The solid lines in (a) and (b) represent theoretically calculated quantities. 
See the Methods section for additional information.
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where ωn is the oscillator’s natural frequency, K is the coupling strength, and Amn is the network’s adjacency matrix 
element, which is 1 if node m has an out-link to node n, and 0 otherwise. The state of the system is described by 
the complex order parameter

∑= =ψ θ
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N
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where ψ t( ) is the average phase. For sufficiently large K, the system becomes partially synchronized: a small finite  
fraction of oscillators lock at frequency Ω, such that their individual phases θ = Ω +t cn n for any phase shift 
ψ π ψ π− < < +/2 c /2n . The phases of unlocked oscillators simply drift, i.e. they are time-wise uncorrelated 
with the average phase. The extent of synchronization (ordering) in the system is conventionally described by the 
amplitude of the complex order parameter, the order parameter

∑ θ ψ= − = + .
=

r
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By definition, the order parameter in equation (4) is an average over all N nodes in the network, so it is easily 
redefined over a subset X with NX nodes (e.g. the CORE), and interpreted as the extent of synchronization over 
the subset, denoted rX. In the interest of consistency, this notation will be used throughout the present work for 
all quantities of interest.

The large-time average of equation (4) is presented in Fig. 3(a) for different ER networks (as a function of 
increasing 〈 〉qin ) and their IN, OUT, and CORE components. Networks with 〈 〉 .q 1 5in  are unsynchronized, 
despite the emergence of the CORE at 〈 〉 =q 1in , whereas networks with 〈 〉 .q 1 5in  are partially synchronized, 
and synchronization increases with 〈 〉qin . The effect of coupling strength K on synchronization in different ER 

Network N 〈qin〉 NSOURCE/N NCORE/N LCORE–CORE/L LIN–CORE/LCORE–CORE

Gene Regulatory Network44 2.9 × 103 2.94 0.06 0.10 0.23 0.13

Twitter Follow Network20 41.7 × 106 17.6 0.14 0.80 0.95 0.04

Optic Medulla Circuit21 1.8 × 103 9.44 0.32 0.44 0.12 0.17

Erdős–Rényi Network 1 × 105 1.50 0.13 0.34 0.34 0.42

Table 1. Structural features of real and synthetic directed networks with N nodes, mean in-degree 〈 〉qin , and 
= 〈 〉L N qin  links: NSOURCE is the number of SOURCE nodes, NCORE the number of CORE nodes, LIN–CORE the 

number of IN-CORE links, and LCORE–CORE the number of intra-CORE links.

rCORE
rOUT

r
rIN

Figure 3. (a) Order parameter rX as a function of the mean in-degree 〈 〉qin , where X is the set of nodes 
corresponding to the entire network (up triangles) or its IN (circles), CORE (squares) and OUT (dots) 
components, for K = 10 (note the extensive overlap between rCORE and rOUT). (b) Order parameter r for ER 
networks with mean in-degree 〈 〉qin  equal to 1.5 (down triangles), 1.7 (hexagons) and 1.9 (diamonds) as a 
function of the coupling strength K. For details on the calculation methods see the Methods section.
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networks is presented in Fig. 3(b), where it is shown that the extent of synchronization is limited by the topology 
of the network when K 1.

The data in Fig. 3(a) show that synchronization emerges simultaneously in the network, the CORE, and the OUT 
component at 〈 〉 .q 1 5in . This suggests that synchronization is supported by the CORE, as expected from the latter’s 
feedback connectivity, and is further substantiated by the increase in synchronization with 〈 〉 > .q 1 5in , as the CORE 
spans an increasingly larger fraction of the network, and becomes more densely connected. In addition, Fig. 3(a) 
shows that the IN component is unsynchronized at all values of 〈 〉qin , in the limit of large coupling ( K 1). In this 
limit, the extent of synchronization in the network is determined by 〈 〉qin , as shown in Fig. 3(b). Thus, the overall 
feedforward connectivity of the network, the absence of synchronization in the IN component, and the increase in 
synchronization among CORE nodes with 〈 〉 > .q 1 5in  – as the IN component becomes less densely connected to the 
CORE – suggest that the IN component may disrupt synchronization in the CORE, and by extension, completely 
suppress synchronization in the CORE for ≤ 〈 〉 < .q1 1 5in . Below 〈 〉 =q 1in , the network does not have a CORE, 
and synchronization between a finite fraction of the network’s nodes is therefore impossible.

Ising Model. The Ising model describes ferromagnetism through the interaction of spins sn and sm at sites n and 
m. Here, we analyze the time evolution of the dynamics of a spin system in contact with a heat bath at temperature 
T30. Each spin sn experiences the effect of its neighboring spins as a local field

∑=
=

h A s ,
(5)n

m

N

mn m
1

and is in a spin up state ( =s 1n ) with probability

=
+ −

p
h T

1
1 exp( 2 / )

,
(6)n

n

or in a spin down state ( = −s 1n ) with probability − p1 n. The extent of magnetization (ordering) in the system is 
given by the magnetization per spin site

∑= .
=

m
N

s1
(7)n

N

n
1

Similarly to what is reported here for the Kuramoto model, the authors of30 reported a delayed onset of ordering 
in the zero-temperature ferromagnetic Ising model at 〈 〉 .q 1 9in . Given the role of the CORE in supporting order-
ing, and of the IN component in disrupting it (as suggested by the data in Fig. 3), we investigated how magnetization 
is affected by temperature in directed ER networks, with and without their corresponding IN components. In the 
absence of the IN component, the CORE of any network with 〈 〉 >q 1in  is magnetized at any temperature <T TC, as 
shown in Fig. 4(a). In fact, TC increases monotonically with the CORE’s link density, and is therefore characteristic 
of the internal connectivity of the CORE. The more densely connected the CORE, the larger the range of tempera-
tures for which it can support magnetization, which is maximal in the limit when →T 0, independently of the 
CORE’s connectivity, as shown in Fig. 4(b). In the presence of the IN component, the TC of the CORE is significantly 
different, and magnetization is disrupted/suppressed, as shown in Fig. 4(a,c), respectively. Although spins in the IN 
component are at the same temperature as the CORE, they can reduce the range of temperatures at which the CORE 
supports magnetization, or indeed suppress magnetization altogether, even in the limit where →T 0.

The feedforward organization of the IN component, and the latter’s impact on ordering among CORE nodes 
with Kuramoto and Ising dynamics hint at the role of SOURCE nodes in limiting the emergence of ordering in 
the CORE, as does the data in Fig. 4(b,d). Given the overall feedforward connectivity of the bow-tie architecture, 
we could expect the OUT component to be fully ordered in the absence of the IN component, driven by core 
dynamics. However, a comparison of Fig. 4(b,d) shows this is not the case. At 〈 〉 = .q 1 1in , magnetization is signif-
icantly lower in the OUT component than in the CORE. The size of the CORE decreases approaching the net-
work’s percolation point (〈 〉 =q 1in ), while the number of tendrils increases36, including those that connect 
SOURCE nodes to OUT nodes (cf. Fig. 1), potentially explaining the above-mentioned discrepancy.

Pair-correlation functions: measuring the dynamical influence of SOURCE nodes. Whether direct or indirect, the 
influence of SOURCE nodes is experienced by individual CORE nodes as an external field through links from 
IN nodes. Any strategy to control both of these structural features is heavily dependent on the intra-connectivity 
of the IN component. For example, removing a SOURCE node may simply create one or more in its place, and 
removing any number of IN-CORE links does not control for the number of existing SOURCE nodes. Here, we 
indirectly control these features by simply removing fractions of IN nodes (fIN) uniformly at random, and calcu-
late the CORE’s response to these structural changes. In the Kuramoto model, this response can be calculated in 
the rotating frame (at group velocity Ω), using the pair-correlation function

∑ θ θ θ θ= 〈 〉 − 〈 〉 〈 〉

= 〈 〉 − 〈 〉

=
C

N

N r r

1 [ cos( )cos( ) cos( ) cos( ) ]

[ ], (8)

i j

N

i j t i t j t

t t

, 1
2 2
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introduced in37, where ∫〈 〉 =
τ

τQ t dt Q t( ) ( )t
1

0
 for some observation time τ  1, for any time-dependent observ-

able Q(t). In the Ising model, the pair-correlation function is similarly defined

∑χ = 〈 〉 − 〈 〉 〈 〉

= 〈 〉 − 〈 〉 .
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s s s s
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The dependence of the synchronization order parameter rCORE and CCORE on fIN is presented in Fig. 5(a,b) for 
unsynchronized networks, and in Fig. 5(c) for a partially synchronized network, i.e. for networks with 〈 〉 < .q 1 5in  
and 〈 〉 > .q 1 5in , respectively. Likewise, mCORE is also calculated as function of fIN, and χCORE is used as a measure 
of the CORE’s response to the influence of the remaining IN component, as shown in Fig. 5(d,e) for unmagnet-
ized networks, and Fig. 5(f) for a partially magnetized network.

In networks with 〈 〉 < .q 1 5in , synchronization appears only after the removal of a critical fraction f C
IN of ran-

domly selected IN nodes, as shown in Fig. 5(a,b). Once the CORE is partially synchronized, the removal of fur-
ther IN nodes enhances synchronization, similarly to the removal of any fraction of IN nodes from networks with 
〈 〉 > .q 1 5in , where synchronization is linearly enhanced by the removal of randomly selected IN nodes, as shown 
in Fig. 5(c). The absence of any peaks in CCORE for partially synchronized networks and its decaying behavior with 
fIN further suggest that the observed enhancement in synchronization results from more CORE nodes being 
drawn into the existing synchronized group. In unsynchronized networks, the emergence of synchronization at 
f C

IN is accompanied by a clear peak in CCORE, signaling the emergence of long-range order that is characteristic of 
a second order phase transition, in this case from an unsynchronized phase to a synchronized phase, and con-
firming that synchronization is supported by the CORE and disrupted by the IN component. For networks where 
〈 〉 < .q 1 9in , the removal of a critical fraction of random IN nodes f C

IN causes a magnetized phase to emerge in the 
CORE, as shown in Fig. 5(d,e) by the corresponding peaks in χCORE. As further IN nodes are removed, magneti-
zation in the CORE is enhanced, becoming maximal upon the complete removal of the IN component. Similarly, 
magnetization in the CORE of networks with 〈 〉 > .q 1 9in  is maximized by removing the entire IN component, as 
shown in Fig. 5(f), and enhanced by the removal of any fraction of IN nodes. These findings are in agreement with 
those for synchronization, confirming that the IN component can suppress the emergence of ordered states in the 
CORE of directed networks, for phenomena as distinct as magnetization and synchronization.

Discussion
The results presented in the preceding sections show that the global organization of directed networks constrains 
the emergence of collective phenomena. Specifically, it was shown that the emergence of ordered states in the 
Kuramoto and Ising models is supported by the CORE and disrupted by the IN component. Here, we discuss 
how the uncorrelated dynamics of SOURCE nodes are responsible for this effect. By definition, SOURCE nodes 
do not have in-links, and are therefore unaffected by feedback (cf. Fig. 1), so that SOURCE nodes with randomly 
distributed initial states remain uncorrelated for all time, acting as a source of noise or fluctuations.

The exact output of the IN component is determined not only by the dynamics of SOURCE nodes, but also by 
its internal connectivity, which is beyond the scope of this discussion. Nonetheless, it is clear that the number of 

NIN = 0

NIN > 0

NIN = 0

NIN > 0
NIN = 0

Figure 4. (a) Critical temperature TC in the CORE of directed ER networks with different mean in-degrees 
〈 〉qin , with (diamonds) and without (triangles) their corresponding IN components. The solid black line was 
calculated using the mean-field equations reported in30. For networks with 〈 〉 = .q 1 1in  (circles) and 〈 〉 = .q 2 0in  
(squares), with – (c) – and without – (b,d) – the corresponding IN components: (b,c) the magnetization in the 
CORE (mCORE), and (d) the magnetization in the OUT component (mOUT) as a function of the temperature T. 
For details on the calculation methods please refer to the Methods section.
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direct links from SOURCE nodes to the CORE increases with 〈 〉qin  (cf. Fig. 2). Additionally, it has been recently 
shown that, in directed uncorrelated random complex networks, the number of nodes s in the finite in-component 
of any node scales as − − ⁎

s e s s3/2 / , where s* is a characteristic parameter that depends on 〈 〉qin
38. This means that 

only a small number of IN nodes can be reached by traveling backwards from any other IN node, and at least one 
of these must be a SOURCE node. Above the network’s percolation threshold, the number of SOURCE nodes is 
always of the same order as the total number of IN nodes. Given the effective absence of reciprocal links and 
structural correlations that characterize directed ER networks, the above information suggests that paths from 
individual SOURCE nodes to the CORE are largely disjoint, even when the links to the CORE are not direct.

Let us now consider the specific case of the Ising model. According to equation (5), each SOURCE node i 
experiences a null local field =h 0i  as a consequence of not having in-links. From equation (6), it then follows 
that SOURCE nodes are independently and identically found in spin up states ( =s 1i ) and spin down states 
( = −s 1i ) with probability 1/2, acting as a source of fluctuations that will affect all downstream nodes, at any 
temperature T. In Fig. 5, the CORE is shown to fully magnetize in the absence of the IN component, when →T 0, 
so that all CORE nodes are in the same spin state. Upon restoring the IN component, and with it qin

ext links to a 
given CORE node j, the latter will experience fluctuations in its local field hj. If the number of links from CORE 
nodes ≤q qin

int
in
ext, the fluctuations will inevitably lead to a configuration of spins where =h 0j  or <h 0j . Both 

outcomes will frustrate the dynamics of CORE node j, which will change its spin state. While the exact probability 
of such an event is outside the scope of this discussion, in Fig. 6, we consider a simplified picture, where a single 
SOURCE node i is directly linked to a CORE node j, and = =q q 1in

int
in
ext , a frequent configuration in directed ER 

networks with ≤ 〈 〉 ≤q1 2in .
In the above simplified picture, the dynamics of node j are frustrated with probability 1/2, as depicted in 

Fig. 6(a,b). When node j is frustrated, it may then frustrate another CORE node k in a similar manner, as depicted 
in Fig. 6(c). Clearly, the fraction of CORE nodes which can be frustrated in this manner is dictated by the inter-
nal connectivity of the CORE, the number of links from IN nodes to individual CORE nodes, and the number 
of SOURCE nodes themselves. Given the similar dependence of magnetization on the above-mentioned struc-
tural features identified in the preceding section, frustration presents itself as the putative mechanism behind 
this dependence, driven by the intrinsic dynamics of SOURCE nodes. When a critical fraction of CORE nodes 
becomes frustrated, long-range order is broken, suppressing magnetization altogether.
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Figure 5. Synchronization rCORE (circles) and magnetization mCORE (squares) in the Kuramoto – (a–c) – and 
Ising – (d–f) – models, with the corresponding pair correlation functions CCORE (up triangles) and χCORE (down 
triangles), in the CORE of directed Erdős–Rényi networks with mean in-degree 〈 〉qin , as a function of the 
fraction of randomly removed IN nodes fIN. The values of 〈 〉qin  are 1.1 in (a and d), 1.4 in (b and e), 1.7 in (c), 
and 2.0 in (f). Dashed vertical lines indicate peaks in CCORE or χCORE. For details on the calculation methods see 
the Methods section.
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In the Kuramoto model, SOURCE nodes with randomly-distributed natural frequencies act as a source of 
incoherence: each SOURCE node i rotates steadily at its own natural frequency ωi, as a consequence of not having 
in-links, with a phase shift determined by its initial phase (cf. equation (2)). If the coupling strength K is suffi-
ciently larger than the width of the frequency distribution ωg( ), any downstream node j with a single in-link from 
node i will be driven at frequency ωi. A simple stability analysis of equation (2) also shows that node j is driven at 
frequency ωi if the number of in-neighbors rotating at ωi exceeds the magnitude of the remaining in-neighbor’s 
combined angular velocity. On the one hand, this is demonstrative of the difficulty in predicting the exact output 
of the IN component to the CORE, other than when the IN component is composed of linear disjoint chains or 
trees with distinct SOURCE nodes at their root. On the other hand, it reveals that a CORE node j can be pre-
vented from joining a group of locked CORE nodes simply by receiving an appropriate number of links from IN 
nodes. The data presented in Fig. 5 show that the CORE fully synchronizes in the absence of the IN component, 
and by averaging equation (2) over the CORE it follows that its nodes are rotating at the mean natural frequency 
ω〈 〉. So, upon restoring the IN component, a single SOURCE node i rotating at a frequency other than ω〈 〉 can 

prevent a CORE node j from joining the synchronized group. Moreover, as ωi is narrowly distributed about ω〈 〉, 
the desynchronizing influence directly experienced by different CORE nodes will also vary, which may com-
pound the desynchronizing effect.

Regardless of the exact output of the IN component, it is clear that SOURCE nodes can directly or indirectly 
impact the collective dynamics of the CORE. SOURCE nodes are a characteristic feature of the global organiza-
tion of directed networks, and in this work it was shown that, at least for directed ER networks, when the dynam-
ics of SOURCE nodes are uncorrelated, magnetization and synchronization can be suppressed. This represents an 
additional constraint when compared to undirected networks, where these ordered states emerge at the network’s 
percolation threshold, as summarized in Fig. 7.

Given the evident importance of SOURCE nodes in determining the state of the CORE, these findings rein-
force their importance for the controllability and resilience of systems abstracted onto directed networks. For 
example, a synchronized brain network may be desynchronized through the random destruction of synapses, 
e.g. in Alzheimer’s disease, as the random destruction of links alters the global organization of the network38. 
Similarly, a targeted attack on low in-degree centrality nodes may allow an attacker to exert considerable influ-
ence on a network, by controlling the dynamics of newly-created SOURCE nodes. In general, local pairwise 
dynamics on bow-tie architectures, which may include intrinsic (node-specific), external (field), and stochastic 
contributions23, are mapped to CORE dynamics under the direct or indirect action of the effective field created 
by SOURCE nodes.

Despite the broad class of dynamics that are susceptible to the influence of SOURCE nodes, the body of 
work demonstrating bow-tie organization in real systems, and the applications of dynamical models under the 
action of external fields, any generalizations regarding the dynamics of real systems must be made with care. 
Firstly, the existence of heterogeneities in the CORE of real networks, such as hubs (scale-free networks) and 
reciprocal connections, may modify the nature of critical transitions and the values of the critical parameters 
themselves32. However, for particular phase transitions, e.g. percolation, one can also note that structural features 
such as degree-degree correlations and clustering can change the critical point and critical exponents, but not the 
nature of the transition39,40. Secondly, there are dynamics, e.g. social dynamics, which are more aptly described 
by agent-based models19,41,42. Thirdly, there are further relevant theoretical aspects to consider, such as bound-
ary conditions, the nature of the interactions themselves, and the existence of external driving fields, which are 
common in real-world systems. In some sense, sources and sinks are a boundary in bow-tie architectures, and 
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Figure 6. Schematic depiction of how the spin state of an IN node can frustrate the dynamics of a CORE node, 
at the boundary between IN and CORE components (dashed line). White (hollow) nodes represent spin down 
states and black (full) nodes represent spin up states. In box (a), SOURCE node i is linked to a CORE node j 
with a single in-link from another CORE node. As its neighbors i and l are in opposite spin states, node j 
experiences a local field = + =h s s 0j i l , and is now equally likely to be in a spin up or down state, cf. equation 
(6). Box (b) represents the latter outcome, and box (c) a further step with a similar outcome, where node j 
frustrates another CORE node k.
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the boundary conditions are therefore automatically defined by the dynamics of sources and sinks (regardless of 
whether these are internally or externally driven). Changing these boundary conditions may produce significantly 
different collective behavior. For example, if all SOURCE oscillators are assigned the same natural frequency, they 
may drive synchronization in the CORE at the same frequency, or even cause the emergence of other macroscopic 
dynamics, analogously to what happens in the Kuramoto model driven by an external field26,27. Likewise, different 
types of interaction can produce different behavior on the same network structure e.g. the antiferromagnetic Ising 
model displays spin-glass like behavior caused by long loops (cycles)32.

In conclusion, we considered a toy model based on directed Erdős–Rényi networks, where the global 
organization of the network is determined by the mean in-degree 〈 〉qin . Considering both Ising and 
Kuramoto dynamics, we found that the global organization of directed networks constrains the emergence 
of magnetized and synchronized phases. Unlike in undirected Erdős–Rényi networks, where these collective 
phenomena emerge at the network’s percolation point, in directed Erdős–Rényi networks, SOURCE nodes 
with uncorrelated dynamics act to disrupt the collective dynamics of the CORE, delaying the onset of 
ordered states above the network’s percolation point, where 〈 〉 =q 1in . Magnetization was confirmed to 
emerge for 〈 〉 .q 1 9in , and synchronization found to emerge for 〈 〉 .q 1 5in . The clear impact of SOURCE 
nodes, a topological feature only found in directed networks, highlights the need to consider the global 
organization of directed networks when considering their dynamics, robustness, and controllability. Based 
on the discussion in the preceding paragraph, we believe that source nodes will produce similar effects in 
strongly heterogeneous, degree-degree correlated, and clustered networks with a bow-tie architecture, but 
further investigations are required.

Methods
The ER toy-model is based on ensembles of 50 directed ER networks with mean in-degree 〈 〉qin . Each network is 
generated from its undirected counterpart by first assigning a direction to all links ( →i j, where <i j) and then 
reversing it with probability 1/2. The undirected ER networks were generated by creating links between all possi-
ble labeled pairs of =N 105 nodes with probability 〈 〉 −q N2 /( 1)in . Note that in this kind of ER network, two 
nodes are connected by a single directed link, and reciprocal links are absent by construction. Directed ER net-
works can also be built by forming any possible directed link with probability ~1/N. However, this will lead to the 
same network structure as above in the limit where N 1, since the probability of forming reciprocal links 
becomes vanishingly small (~1/N2). For an example of how bow-tie architectures can also be built with finite 
fractions of both reciprocal and single unidrectional links see43.

All structural and dynamical quantities presented are averaged over the above-mentioned ensemble. The time 
evolution of the Kuramoto and Ising models layered on each network were simulated from random initial condi-
tions: the phase of each node θn was drawn uniformly at random between −π and π (Kuramoto model), and the 
spin sn of each node was drawn binomially at random with probability =p 1/2 (Ising model). All time-averaged 
quantities were calculated over a time window in the steady state. The natural frequencies ω in the Kuramoto 
model were drawn normally at random, with mean ω〈 〉 = 0 and standard deviation σ = 1.

The results of analytical calculations presented in Fig. 2 were obtained following standard methods (see38 and 
the references therein for further details.) In particular, for any directed uncorrelated random network with N 
nodes, and an in-degree (qin) out-degree (qout) distribution P q q( , )in out , the fraction of SOURCE nodes NSOURCE/N 
can be calculated from the probability of randomly selecting a SOURCE node. For any node with out-degree qout, 
this is equal to the probability of selecting a node with =q 0in , given by =P q q( 0, )in out , and that at least one of its 
out-links leads to the CORE, given by − y1 c

qout, where yc is the probability that an out-link leads to a finite com-
ponent. Taking into account all possible degrees,

D
ire

ct
ed

Network percolation threshold 

Order

Dynamical threshold 

Disorder

U
nd

ire
ct

ed

Order

Figure 7. Comparison of the topological restrictions on the emergence of ordered states in the Ising (IM) and 
Kuramoto (KM) models, in undirected and directed Erdős–Rényi networks, as parameterized by their mean 
degree 〈 〉q  and mean in-degree 〈 〉qin , respectively. The solid vertical line indicates the network’s percolation 
threshold, and the dashed vertical line the delayed onset of magnetization (IM) and synchronization (KM) 
relative to the percolation threshold of directed ER networks.
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∑= = −
N

N
P q q y( 0, ) (1 ),

(10)q
in out c

qSOURCE

out

out

where yc can be determined self-consistently38. The average number of IN-CORE links can also be calculated 
using this formalism, considering a node randomly selected with probability P q q( , )in out , and the probability 

− −C x x(1 )m
q

c
m

c
q min in  that it receives m in-links from nodes in finite components, given its in-degree, the probabil-

ity that an in-link comes from a finite component xc
38, and the probability that at least one out-link leads to a 

CORE node − y1 c
qout. To ensure that such a node belongs to the CORE, it is sufficient to ensure its m in-links from 

the IN component account at most for qi − 1 of its total in-links, i.e. that at least one of its in-links is from another 
CORE node. The average number of links 〈 〉m  may then be explicitly calculated, and the number of IN-CORE 
links = 〈 〉–L N mIN CORE . Summing over m (with some in-between simplifications),

∑= − − −
–L N q x P q q y x( , ) (1 )(1 ),

(11)q q
in c in out c

q
c
q

IN CORE
,

1

in out

out in

where xc, like yc, is also determined self-consistently.
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