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Diffusion Tensor Imaging of the 
Kidney: Design and Evaluation of a 
Reliable Processing Pipeline
Pasquale Borrelli  1, Carlo Cavaliere1, Luca Basso1, Andrea Soricelli1,2, Marco Salvatore  1 & 
Marco Aiello  1

Diffusion tensor imaging (DTI) is particularly suitable for kidney studies due to tubules, collector 
ducts and blood vessels in the medulla that produce spatially restricted diffusion of water molecules, 
thus reflecting the high grade of anisotropy detectable by DTI. Kidney DTI is still a challenging 
technique where the off-resonance susceptibility artefacts and subject motion can severely affect the 
reproducibility of results. The aim of this study is to design a reliable processing pipeline by assessing 
different image processing approaches in terms of reproducibility and image artefacts correction. The 
results of four different processing pipelines (eddy: correction of eddy-currents and motion between 
DTI volume; eddy-s2v: eddy and within DTI volume motion correction; topup: eddy and geometric 
distortion correction; topup-s2v: topup and within DTI volume motion correction) are compared in terms 
of reproducibility by test-retest analysis in 14 healthy subjects. Within-subject coefficient of variation 
(wsCV) and intra-class correlation coefficient (ICC) are measured to assess the reproducibility and Dice 
similarity index is evaluated for the spatial alignment between DTI and anatomical images. Topup-s2v 
pipeline provides highest reproducibility (wsCV = 0.053, ICC = 0.814) and best correction of image 
distortion (Dice = 0.83). This study definitely provides a recipe for data processing, enabling for a clinical 
suitability of kidney DTI.

Magnetic resonance (MR) diffusion tensor imaging (DTI) is a powerful technique that allows in vivo estimation 
of the water random movement. It is based on diffusion weighted imaging (DWI), a non-invasive technique that 
provides useful information on tissue diffusion properties as well as microstructural changes in different patholo-
gies1–3. In addition to the diffusion estimation revealed by DWI, DTI allows the analysis of anisotropic properties 
of the tissues by returning the preferential water diffusion directions, quantitatively represented by the fractional 
anisotropy (FA). Due to the restricted water molecular mobility in organized tissue structures, DTI has been used 
to provide information on tissue organization as well as microstructural integrity4,5.

Mainly used in neuroimaging studies for the characterization of brain white matter tracts6, DTI has been 
recently applied to different intra-abdominal organs7 including prostate8–10, liver11,12 and kidney13,14. DTI is par-
ticularly suitable for kidney studies due to well-defined structural organization. Indeed, tubules, collector ducts 
and blood vessels in the medulla produce spatially restricted diffusion of water molecules, thus reflecting the high 
grade of anisotropy detectable with DTI. Since the first DTI analysis of the kidney described by Ries et al.13 in 
which the anisotropy differences revealed by DTI in the medulla with respect to the cortex were proven, further 
studies demonstrated that FA values of the medulla in healthy kidneys are higher compared to that of the cor-
tex14–16. Moreover, since DTI does not require any contrast agent administration, it is suitable for the imaging of 
subjects with kidney dysfunction, for which the use of contrast agents is highly contraindicated. In this scenario, 
recent studies demonstrated the ability of DTI to detect renal damage in chronic kidney diseases, glomerulo-
nephritis and renal lesions17–20. DTI was also applied in subjects after renal allograft to study the differences of 
diffusion parameters between transplanted and healthy kidney and the correlation with clinical parameters as the 
estimated glomerular filtration rate21,22.

DTI is typically obtained by acquiring a set of spin echo echo-planar imaging (EPI) sequences with different 
diffusion directions and b-values. Due to the rapid switching of diffusion encoding gradients and the low band-
width in phase encoding direction, it is well known that DTI images obtained with EPI suffer from off-resonance 
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induced distortions as eddy-currents and susceptibility-induced geometric distortions23. Moreover, the need to 
obtain DTI images with adequate spatial and angular resolution results in prolonged scan time, thus producing 
increased subject movement both between and within DTI volumes during the acquisition. Therefore, in this 
context ad hoc image processing methodologies able to correct or mitigate image artefacts are recommended.

Recent advances in brain DTI processing methods demonstrated robust results by reducing the effects of 
image artefacts. In particular, different strategies were developed to deal with eddy-currents distortions as well as 
subject movement24,25. Moreover, several methods have been proposed to correct susceptibility-induced geomet-
ric distortion by using an additional DTI image acquired with reversed phase encoding direction26,27 or by ret-
rospective deformable registration procedures28,29. More recently, a novel methodology correcting the motion 
occurring both between (volume-to-volume) and within (slice-to-volume) each DTI volume was proposed30. 
However, as the aforementioned image processing methods have mainly been developed for processing brain 
DTI, their use was poorly or never investigated in kidney DTI where the image mis-registration due to subject 
motion and the geometric distortion artefacts are extremely detrimental. In this scenario, in order to assess the 
clinical utility of kidney DTI, the reliability of the results derived from DTI could be demonstrated by the stand-
ardization of both acquisition protocols and image processing pipelines31.

In this study, different image processing steps are evaluated to provide an optimal image processing protocol 
for kidney DTI. In this setting, in order to address the aforementioned image artefacts affecting kidney DTI, dif-
ferent strategies, both in acquisition and processing step, which tackle the eddy-currents, susceptibility-induced 
distortion and motion both between and within DTI volumes, are applied. Moreover, a test-retest reproducibility 
analysis is conducted for each tested processing pipeline in order to assess the reproducibility of the results. In 
literature several studies were based on reliability and repeatability analysis in both renal DWI and DTI14,32–34 of 
healthy subjects, thus demonstrating the repeatability of DTI parametric maps with a typical processing pipeline. 
However, to the best of our knowledge, this is the first study aimed to assess the effects of different processing 
pipelines to the reproducibility of the kidney DTI. Moreover, this is the first study where the slice-to-volume 
motion correction is included as preprocessing step in kidney DTI.

Methods
The study was approved by Local Ethics Committee (IRCCS Pascale) with protocol number 17/17. Written 
informed consent was obtained for all participants and all the procedures adopted in this study were performed 
in accordance with the approved guidelines and regulations. Between May and September 2018, 14 healthy vol-
unteers (age range: 22–37 years, mean ± standard deviation: 28 ± 4 years, median: 27 years, 4 women) with no 
history of kidney pathologies, vascular diseases, diabetes, hypertension and no contraindications for MR exam 
were enrolled in this study.

MR examination. MR exam was performed for all participants using a 3T scanner (Biograph mMR; 
Siemens, Erlangen, Germany) with a 4-channel phased-array body coil. Since it was already demonstrated that 
the DTI parametric map values are not influenced by subject fasting or hydration status32,35, the MR exam was 
performed without any specific subject preparation. Anatomical image, within a field of view comprising both left 
and right kidneys, was acquired in breath-hold using an oblique-coronal T2-weighted half-Fourier acquisition 
single-shot turbo spin echo (HASTE) with following parameters: TR/TE, 1400/91 ms; slice thickness 5 mm; field 
of view, 380 × 380 mm2; matrix, 320 × 320; pixel size, 1.188 × 1.188 mm2; slices, 36; parallel imaging accelerator 
factor, 2. DTI images were acquired with a respiratory-triggered oblique-coronal fat-saturated twice-refocused 
EPI sequence with the following parameters: b-values, 0 and 500 s/mm2; number of images at b = 0 s/mm2, 6; dif-
fusion directions, 6; TR/TE, 1800/74 ms; averages, 3; slices, 23; slice thickness, 3 mm; field of view, 319 × 319 mm2; 
matrix, 152 × 152; pixel size, 2.1 × 2.1 mm2; parallel imaging acceleration factor, 2. Depending on the individ-
ual respiratory cycle, acquisition time varied from 5 to 6 min. Two sets of DTI data were acquired with the 
phase-encoding direction reversed (left to right and right to left) to enable the geometric distortion correction 
resulting from EPI acquisition26. In order to quantify the reproducibility of kidney DTI, the DTI sequence was 
repeated in the same MR session without moving the subject into the scanner, thus obtaining two sets of DTI 
images for each participant.

Image processing. The image quality for each participant was visually checked by an expert radiologist 
with more than 5 years of experience in abdominal imaging. Moreover, as additional quality check, an automated 
image quality control36 was applied to the DTI images. In particular, the mean absolute (i.e. with a reference vol-
ume) and relative (i.e. with the previous volume) motion between different volumes of each acquired DTI were 
calculated by means of averaging translation and rotation parameters across all voxels.

Before the evaluation of the parametric maps derived from DTI, four different data processing pipelines (sum-
marized in Supplementary Table S1) were designed:

•	 correction of eddy-currents and volume-to-volume movement (indicated as eddy);
•	 correction of eddy-currents, volume-to-volume and slice-to-volume movement (indicated as eddy-s2v);
•	 correction of eddy-currents, volume-to-volume movement and susceptibility-induced distortion correction 

(indicated as topup);
•	 correction of eddy-currents, volume-to-volume and slice-to-volume movement and susceptibility-induced 

distortion correction (indicated as topup-s2v).

All the processing pipelines were applied by using FMRIB-FSL (v. 6.0.0) library37. In particular, eddy-currents 
distortions and volume-to-volume movement were corrected with FSL eddy function24. Moreover, the 
susceptibility-induced geometric distortions were corrected by using the additional DTI with reversed 
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phase-encoding direction26. Finally, the slice-to-volume movement was corrected by the registration method 
presented in Andersson et al.30.

For each processing pipelines, FA, mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) 
parametric maps were evaluated from the eigenvalues of the diffusion tensor by means of MRtrix3 software tool-
box38,39 (available at http://www.mrtrix.org). Moreover, a tensor-based deterministic approach40 was used to 
whole-kidney tractography reconstruction with the following parameter: FA threshold of 0.1 and angle threshold 
of 60°. Tractography reconstructions were visually inspected for both anatomical and color-coding consistency.

Both parametric maps and tractography were evaluated also from DTI data without any image processing 
procedure, thus obtaining a total of five different sets of images for each participant. Finally, the mean between the 
b = 0 s/mm2 images, indicated as b0-image, was evaluated for each processing pipeline.

Test-retest reproducibility. Regions of interest (ROIs) were annotated with the open source software 
ITK-SNAP v3.6.041. A coronal slice in the central kidney section closest to the renal hilum was selected for the 
segmentation procedure. Three kidney sections corresponding to upper, middle and inferior pole were selected 
for ROI analysis. For each section, two circular ROIs of 58 mm2 were manually drawn in the renal cortex and 
medulla for both kidneys thus obtaining a total of twelve ROIs. The combination of b0-image and FA map was 
used to accurately define cortex and medulla and to avoid renal pelvis, vessels and calyces (see Supplementary 
Fig. S1). The ROI placement was performed on the test set and each ROI was copied to the corresponding retest 
dataset. Due to spatial misalignment between images obtained with different processing protocols, the ROI analy-
sis was separately performed for every tested processing pipelines. For each set of parametric maps (FA, MD, RD, 
and AD), the segmented ROIs were overlaid on the DTI maps and mean and standard deviation were evaluated 
for both cortical and medullary regions. Moreover, mean and standard deviation of cortical and medullary values 
were separately extracted from left and right kidney.

A paired t-test was performed in order to assess the statistical differences between cortical and medullary 
ROI mean values. Moreover, a paired t-test was also used to statistically estimate the difference between values 
from left and right kidney. The statistical significance was assumed as p < 0.05. The test-retest reliability was 
quantitatively assessed both for cortical and medullary ROI mean values via within-subject coefficient of varia-
tion42 (wsCV) and intra-class correlation coefficient43 (ICC). The wsCV was evaluated by the ratio between the 
within-subject standard deviation and the mean value of the entire population. Values of wsCV < 0.1 reflected 
low variability between measurements, >0.1 and <0.2 represented moderate variability and >0.2 were consid-
ered for highly variable measurements44. ICC (two-ways random effect model, absolute agreement) was evaluated 
as:

=
−

+ −
ICC BMS WMS

BMS k WMS( 1)
,

(1)

where BMS and WMS respectively are the between- and within-subject mean squares and k represents the 
number of repeated measurements. For the ICC parameter, a value >0.7 was considered for highly reliable 
measurements44.

Geometric distortion correction assessment. Both kidneys were manually segmented on the HASTE 
image. The segmentation procedure consisted in generating 2D mask for each slice containing the kidney paren-
chima in the coronal plane thus composing a 3D binary mask. Border pixels isointense respect to the kidney 
parenchima were included during the segmentation process to avoid bias due to partial volume effects. In order 
to evaluate the results of geometric distortion correction routine, the same segmentation procedure was applied 
to the b0-image obtained from both DTI without processing and with topup-s2v pipeline. The binary kidney 3D 
masks obtained from b0-image were then resliced to the HASTE space in order to quantitatively compare the 
spatial overlap.

Dice similarity coefficient45 was used to quantitatively compare the 3D masks obtained from HASTE and 
b0-images. In particular, the Dice index was calculated as:

∩=
| |

| | + | |
Dice A B

A B
2 ( )

( )
,

(2)

where A and B correspond to the mask from HASTE and b0-image, respectively.

Results
All participants in this study completed the MR exam and no images were discarded after the preliminary visual 
inspection. The image quality is also confirmed with the control report (Supplementary Fig. S2) where both abso-
lute and relative subject movement was always <1.5 mm. An example of HASTE and DTI-derived parametric 
maps is shown in Fig. 1. Moreover, an example of the tractography reconstructions from DTI without processing 
and from topup-s2v pipeline is reported in Fig. 2.

Test-retest reproducibility. In Fig. 3 the average values of the parametric map from cortical and medullary 
regions evaluated from each processing pipeline and for both test and retest datasets are summarized. Moreover, 
the Fig. 4 shows the cortical and medullary left and right kidney difference in DTI parametric maps for each pro-
cessing pipeline and for both test and retest datasets. Values of wsCV and ICC are summarized in Table 1. Mean 
wsCVs are 0.083, 0.074, 0.070, 0.055 and 0.053 for parametric maps without any image processing procedure and 
derived from eddy, eddy-s2v, topup and topup-s2v pipeline, respectively. Moreover, mean ICC values are 0.598, 

https://doi.org/10.1038/s41598-019-49170-5
http://www.mrtrix.org


4Scientific RepoRtS |         (2019) 9:12789  | https://doi.org/10.1038/s41598-019-49170-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

0.680, 0.668, 0.796, 0.814 for parametric maps without processing and derived from eddy, eddy-s2v, topup and 
topup-s2v, respectively.

Spatial overlap. Geometric distortion correction was successfully performed for all participants. The Dice 
similarity index obtained with b0-image without processing range from 0.59 and 0.70 (mean ± standard devi-
ation: 0.63 ± 0.03) and from 0.76 and 0.87 (mean ± standard deviation: 0.83 ± 0.03) when topup-s2v pipeline 

Figure 1. Acquired and processed images of a 28-year-old female volunteer. (a) HASTE image; (b–f) b0-image, 
an enlargement of b0-image and parametric maps (from left to right: FA, MD) obtained with different image 
processing pipelines ((b) without processing; (c) eddy; (d) eddy-s2v; (e) topup; (f) topup-s2v). A kidney region 
(corresponding to the red box in b0-image) was zoomed to highlight the differences of the results between the 
processing pipelines.
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was applied. In Fig. 5 the spatial overlap results in terms of Dice index are shown for each subject in this study. 
Moreover, in Fig. 6 an example of the kidney segmentation masks overlaid on HASTE image is displayed.

Discussion
In this work, we show that the choice of the optimal processing pipeline in kidney DTI is critical for both stand-
ardization and reproducibility of the results. To date, a high heterogeneity of processing pipelines was found in 
literature31 and no consensus was reached on the optimal processing protocol in kidney DTI. To the best of our 
knowledge, this is the first study where the comparison between different processing pipelines is achieved and a 
reliable processing protocol in kidney DTI is proposed. In this study, five different processing pipelines are tested 
in order to compare the results in terms of reproducibility of DTI parametric map values.

The acquisition protocol of the presented study is designed to make the DTI data comparable with those 
present the literature. The coronal slice orientation of DTI images is chosen since whole kidneys can be imaged 
with reduced number of slices and, consequently, reduced scan time respect to axial or sagittal image acquisition 
strategies. However, the coronal acquisition is mainly prone to respiratory movement artefacts and it can be 
considered as an increased difficulty to deal with. Moreover, the respiratory triggering is adopted during the DTI 
acquisition since it was demonstrated the feasibility of kidney DTI with excellent cortico–medullary differenti-
ation17. Therefore, we select a b-value of 500 s/mm2 since it can be considered as a good compromise between 
image quality and pure diffusion measurement14,46. In addition, considering that less restrictive structures require 
lower b-value to be revealed by diffusion imaging47, the choice of optimal b-value depends on water diffusion 
constrained by the underlying anatomical components that, in the case of the healthy kidneys are less restricitive 
structures (i.e. collector ducts and tubules). In this setting, we select the optimal b-value by considering the MD 
values of kidneys reported in literature32,34.

The obtained parametric map values are consistent with those presented in kidney DTI studies of healthy 
volunteers for similar acquisition protocols and age range14,21,32,48–50. Moreover, as pointed out in Fig. 3, FA and 
AD values are considerably higher in medulla respect to cortex and, conversely, MD and RD values are higher 
in cortex respect to medulla. The obtained results, confirmed for all processing pipelines, are in line with those 

Figure 2. HASTE image (upper) and tractography reconstructions from DTI without processing (bottom left) 
and with topup-s2v pipeline (bottom right) of a 25-year-old female volunteer. A region of the tractography was 
zoomed to highlight the differences of the results between the processing pipelines.
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presented in literature15,16,33. The radial orientation of tubules in the renal medulla produces more restricted 
movement of the water molecules respect to cortex and, as a consequence, FA and AD (the preferential diffusion 
direction and the diffusivities perpendicular to the principal diffusion direction, respectively) maps result in 
higher values in the medulla than the cortex. Conversely, since MD and RD parametric maps represent the mean 
diffusivity and the diffusivity parallel to the principal diffusion direction respectively, it is expected to observe 
higher values of such diffusivity parameters in the cortex respect to medulla51. According to the results found in 
literature32,34,50, the overall paired t-test results from right and left kidney in terms of parametric map values show 
no consistent difference. However, as shown in Fig. 4, medullary AD values carried out both without processing 
and with eddy-s2v considerably differ between right and left kidney. The unwanted results might be explained by 
the influence of an improper processing pipeline. The influence of the different processing pipelines is also vis-
ually confirmed in Fig. 1 where the image artefacts related to eddy-currents and susceptibility-induced distortions 
are mitigated in both topup (Fig. 1e) and topup-s2v (Fig. 1f) processing approaches.

Test-retest analysis shows a good reproducibility of the results in terms of both wsCV and ICC values (Table 1). 
In particular, topup-s2v processing pipeline demonstrates to reach best reproducibility. Topup-s2v also achieves 
best tractography results by providing both pronounced differentiation of renal pyramids and proper anatomical 
delineation of renal border (Fig. 2). In terms of spatial overlap between HASTE and DTI images, Dice index are 
increased by 0.2 on average when topup-s2v pipeline is applied respect to DTI images without processing, thus 
confirming the proper correction of susceptibility-induced geometric distortion. Moreover, the Dice indices are 
almost constant between the subjects of this study (Fig. 5) thus reflecting the high reproducibility of the geometric 
distortion correction results.

Our study has several limitations. First, the sample size is small thus reflecting a low power of the statistical 
analysis. The small size of our dataset is mainly due to the experimental nature of this study in which we had to 
ask healthy volunteers to undergo, twice, long scanning procedures without receiving a direct clinical benefit. 
With the assessment of a reliable processing pipeline, we are confident that shorter acquisitions, suitable for 
adequate sample size of patients, can be deployed for DTI-based biomarker discovery. Second, the participants 
are young healthy volunteers and further studies must be conducted to confirm the presented results on a sample 
with broader age range. Finally, the tractography reconstructions are qualitatively evaluated and a quantitative 
assessment of the tractography reproducibility must be provided with further studies.

In the present study the assessment of both test-retest analysis and geometric distortion correction is per-
formed by means of manual annotation procedures. Automated segmentation routines52 can overcome the 
limitations related to the manual tracing thus increasing the reproducibility of results. In this setting, future 
investigations should be provided to by using an automated segmentation approach.

Figure 3. Comparison of cortical and medullary DTI parametric map values (FA: fractional anisotropy; MD: 
mean diffusivity; RD: radial diffusivity; AD: axial diffusivity) for each processing pipeline (without processing, 
eddy, eddy-s2v, topup, topup-s2v), for both test and retest data. MD, RD and AD values are expressed in 10−3 
mm2/s. Red bars represent the median and green boxes include from 25th to 75th percentile of the samples. 
Asterisk symbol indicates statistically significant difference.
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In addition, the proposed study evaluates the reproducibility of DTI parametric maps and further investiga-
tions can be useful to assess the results of different processing pipelines also in case of more complex diffusion 
models as intravoxel incoherent motion (IVIM) imaging53. In this context, the prolonged scan time due to the 
large amount of acquisitions with different diffusion weightings can result in noticeable movement artefacts and 
the choice of the optimal processing pipeline is non-trivial.

Figure 4. Cortical and medullary left and right kidney values in DTI parameters (FA: fractional anisotropy; 
MD: mean diffusivity; RD: radial diffusivity; AD: axial diffusivity) for each processing pipeline (without 
processing, eddy, eddy-s2v, topup, topup-s2v), for both test and retest data. MD, RD and AD values are expressed 
in 10−3 mm2/s. Red bars represent the median and green boxes include from 25th to 75th percentile of the 
samples. Asterisk symbol indicates statistically significant difference.
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In conclusion, the processing procedure can dramatically affect the reliability of kidney DTI. We pro-
pose a robust processing pipeline that, including off-resonance induced geometric distortion and both 
volume-to-volume and slice-to-volume motion correction, ensures highly reproducible results.

Medulla Cortex

FA MD RD AD FA MD RD AD

wsCV

Without processing 0.097 0.056 0.042 0.094 0.273 0.020 0.050 0.031

eddy 0.099 0.036 0.046 0.064 0.253 0.014 0.049 0.029

eddy-s2v 0.114 0.033 0.050 0.057 0.218 0.019 0.033 0.030

topup 0.088 0.013 0.026 0.040 0.229 0.011 0.031 0.027

topup-s2v 0.076 0.013 0.030 0.028 0.215 0.011 0.027 0.023

ICC

Without processing 0.415 0.479 0.693 0.335 0.319 0.880 0.802 0.858

eddy 0.372 0.721 0.759 0.519 0.410 0.951 0.755 0.952

eddy-s2v 0.337 0.734 0.706 0.596 0.432 0.876 0.840 0.822

topup 0.672 0.947 0.940 0.816 0.208 0.944 0.928 0.916

topup-s2v 0.734 0.953 0.931 0.885 0.254 0.952 0.878 0.922

Table 1. Medullary and cortical within-subject coefficient of variation (wsCV) and intra-class correlation 
coefficient (ICC) for each processing pipelines. FA indicates fractional anisotropy; MD, mean diffusivity, RD, 
radial diffusivity, AD, axial diffusivity. Highest values are highlighted in bold text format. Please refer to the text 
for the details of the processing pipelines.

Figure 5. Geometric distortion correction assessment. For each participant in this study, the plot shows the 
Dice similarity index evaluated between the segmented kidney masks from HASTE and the b0-image without 
processing (dashed line) and obtained with topup-s2v pipeline (solid line).

Figure 6. Comparison of kidney segmentation results obtained from the b0-image without processing (left) 
and with topup-s2v pipeline (right) overlaid on HASTE image. Green and red pixels correspond to the mask 
obtained from HASTE and b0-image, respectively. Pixels in yellow colour represent the overlap between masks 
from HASTE and b0-image.
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Data Availability
MR data can be made available under request to the corresponding author (pending the approval of the Research 
Ethics Board).
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