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Detecting crystallographic Lattice 
chirality using Resonant inelastic 
X-ray Scattering
Sean Mongan1, Zengye Huang2, trinanjan Datta  1,2, takuji nomura3 & Dao-Xin Yao  2

The control and detection of crystallographic chirality is an important and challenging scientific 
problem. chirality has wide ranging implications from medical physics to cosmology including an 
intimate but subtle connection in magnetic systems, for example Mn1−xfexSi. X-ray diffraction 
techniques with resonant or polarized variations of the experimental setup are currently utilized to 
characterize lattice chirality. We demonstrate using theoretical calculations the feasibility of indirect K 
–edge bimagnon resonant inelastic X-ray scattering (RiXS) spectrum as a viable experimental technique 
to distinguish crystallographic handedness. We apply spin wave theory to the recently discovered 
√5 × √5 vacancy ordered chalcogenide Rb0.89fe1.58Se2 for realistic X-ray experimental set up 
parameters (incoming energy, polarization, Bragg angle, and experimental resolution) to show that the 
computed RiXS spectrum is sensitive to the underlying handedness (right or left) of the lattice. A flack 
parameter definition that incorporates the right- and left- chiral lattice RIXS response is introduced. It 
is shown that the RiXS response of the multiband magnon system RbfeSe arises both from inter- and 
intra- band scattering processes. the extinction or survival of these RiXS peaks are sensitive to the 
underlying chiral lattice orientation. This in turn allows for the identification of the two chiral lattice 
orientations.

Chirality (right- or left- handedness) can arise in molecules and crystal structures both naturally and through 
synthesis1. Characterization and separation of enantiomorhpic (pair of chiral) crystals is a practical issue of 
utmost scientific importance. Examples of recent scientific studies where chirality was a crucial conceptual ingre-
dient include the synthesis of chiral magnetic crystals Mn1−xFexSi relevant to the study of skyrmion (topological 
defects in spin texture) physics2,3, nanotechnology applications of virus capsids4, pharmacological action of syn-
thetic drugs5, and astrobiology6. The effect of chirality is also the root cause behind magneto-chiral dichroism7. 
Thus, an appropriate experimental technique to accurately determine the racemic conglomerate (an equimolar 
mixture of chiral pairs) composition can have wide ranging scientifc impact.

Experimental techniques in chemistry have focused on asymmetric synthesis and its applications for both 
organic and inorganic molecules1,8,9. Controlling growth processes to ensure the synthesis of crystallographically 
chiral inorganic molecules can be difficult3,10. To develop methods of chirality control one needs an accurate 
tool to detect chirality composition. Some of the techniques to quantify racemic conglomerate composition or 
to determine the absolute structure include the chiroptical method11, the Bijvoet method12, anisotropic tensor 
susceptibility approach of Dmitrienko13,14, and resonant circularly-polarized hard X-ray diffraction technique of 
Kousaka et al.15,16.

The intensities of the Bijvoet pairs arising from reflections of Friedel opposites at (h, k, l) and h k l( , , ) are 
inequivalent in a non-centrosymmetric chiral system. The current state-of-the-art equipment is capable of distin-
guishing intensity differences from Friedel opposites15. In this context, it is customary to define a Flack parameter 
which assists with the crystal structure analysis of a noncentrosymmetric crystal arrangement from its inverse 
when the dominant scattering is anomalous17. However, crystal absorption effects typically limit the size of the 
sample that can be studied. A solution to this practical bottleneck (proposed by Dmitrienko) utilizes the aniso-
tropic tensor susceptibility response to Bragg reflection difference between right-handed circularly polarized and 
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left-handed circularly polarized X-ray beams13,14. The experimental feasibility of this concept has been demon-
strated by Tanaka et al.18. Improving on this Kousaka et al. showed that crystallographic chirality of CsCuCl3 can 
be probed by resonant circularly polarized hard X-ray diffraction15.

The study of skyrmion physics initiated the synthesis of chiral MnSi crystals. Surprisingly, synthesis of these 
crystals displayed a total chiral symmetry breaking2. Cyrstals of only one type of handedness (left), having P213 
symmetry, were observed even when grown from different seeds. This finding was unexpected since the related 
magnetic system Fe1−xCoxSi with Dzyaloshinskii-Moriya interaction is known to exist in both its left- and right- 
handed configurations. The relationship between crystalline chirality and magnetic structure in Mn1−xFexSi is 
thus subtle. The correlation between crystalline chirality and magnetic helicity is also different between the two 
compounds. In Fe1−xCoxSi a right-handed magnetic helix coexists with a left-handed chiral lattice and vice versa. 
But, Grigoreiv et al.3 has experimentally shown that in MnSi the left (right)-handed lattice chirality exists with a 
left (right)-handed magnetic structure.

In the recently identified iron based superconductors chalcogenides form a category in which lattice chirality 
can be shown to exist in a right- and a left- handed form. The iron based superconductors (FeSC) belong to vari-
ous families, with a classification scheme that includes five different families, namely - the 1111 system (RFeAsO, 
R = Lanthanide), the 122 system (AFe2Se2, A = Ba, Sr, Ca, K), the 111 system (AFeAs, A = Li, Na), the 11 sys-
tem (Fe1+yTe1−xSex), and the alkali iron selenides (AxFe2−ySe2, A = K, Rb, Cs, Tl, …). The last category includes 
the insulating vacancy ordered compound A2Fe4Se5 (245 class) which is of interest for our calculation purpose 
due to its crystallographic chiral nature19–24. The general consensus is that magnetic order in most of the parent 
compounds of FeSC are described by a bad metal description along with some variant (collinear, bicollinear-, 
block-, and block with √5 × √5 vacancy) of antiferromagnetic (AFM) ordering25. It has been experimentally val-
idated that the chalcogenide Rb0.89Fe1.58Se2, hereafter referred to as RbFeSe, is a vacancy ordered insulator in the 
undoped limt exhibiting a block-AFM structure with vacancy (BAFv), see Fig. 126–29. A local moment description 
of RbFeSe has provided a satisfactory understanding of its magnetic excitation and inelastic neutron scattering 
spectrum. The neutron scattering studies have revealed a Fe4 block-AFM checkerboard (also known as a BAFv) 
structure. This block checkerboard orders with a √5 × √5 superlattice unit cell which can exist in either a left- or 
right- chiral orientation as shown in Fig. 1(a,b)26.

Experimental30–37, theoretical38–46, and computational47–50 investigations have demonstrated that resonant 
inelastic x-ray scattering (RIXS) spectroscopy can provide a rich source of physics information. Theoretical stud-
ies detailing the effects of magnetic frustration51, triangular lattice geometry52, magnon-phonon coupling53, and 
multi-band excitation54 of the bimagnon excitation at the K -edge indirect RIXS have been reported. Motivated 
by the conceptual underpinnings of the aforementioned RIXS studies and the occurence of the chiral 245 class 
of chalcogenides we investigate the following question – “Can indirect K -edge RIXS spectrosocpy assist with 
the detection of lattice chirality?” The scientific importance of a spectroscopic approach to analyze lattice chiral-
ity has been highlighted earlier. Within the context of the present article a new chirality detection method will 
benefit several scientific communities in physics including RIXS spectroscopy and highly frustrated quantum 
magnetism. Using RbFeSe as a realistic model system, we conclude from our calculations that indirect K -edge 
RIXS for bimagnons is a viable spectroscopic method to distinguish lattice chirality. Our theory considers realistic 
experimental conditions that include the effect of incoming X-ray polarization and Bragg angle effects (see Fig. 3a 
and Supplementary Fig. S1) and experimental resolution effects (see Fig. 4). We theoretically investigate various 
experimental set-ups to propose the optimal scattering condition for RIXS intensity detection55.

The starting point of our theoretical analysis is a highly frustrated J1-J2-J3 quantum Heisenberg Hamiltonian. 
This magnetic model provides a universal description of the local moment description of the 122 iron chal-
cogenides such as AyFe2−xSe2. Energy comparison studies have revealed that the vacancy-ordered states are 
energetically favored for the reduction of magnetic frustration. The BAFv phase can be modeled using six dis-
tinct interaction coefficients Jij ∈ {J1, J1′, J2, J2′, J3, J3′}, see Fig. 1 caption for exchange parameter values56. The 
Hamiltonian is written as
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where the index i ranges over all of the spin blocks in the system. The spin Si,δ is the δ-th spin in the i-th block. The 
lattice coordination vector δ′ ranges over the number of the spin sites that are in nearest-neighbor (NN) positions 
to the δ-th site, δ′′ ranges over the number of the spin sites that have next-nearest-neighbor (n-NN) interac-
tions with δ-th spin site, and δ′′′ ranges over the number of the spin sites that have next-next-nearest-neighbor 
(nn-NN) interactions, γ ranges over the number of the block sites that have NN interactions to the i-th block, and 
γ′ ranges over the number of block sites that have the n-NN interaction to the i-th block. We will use this model 
to compute the indirect K -edge bimagnon RIXS spectrum to highlight the effects of lattice chirality detection.

The scattering cross section between hard x-rays and matter can be increased by taking advantage of the reso-
nance absorption. In our calculation, we consider the Fe K -edge. To obtain sizable RIXS intensity, we need to tune 
the incident x-ray energy to an absorption energy characteristic of the constituent elements. The x-ray absorption 
spectra (XAS) at the K-shell resonance can be approximately calculated from the density of states (DOS) of the 
conduction p states ρ ε
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where ρ ε


( ) is the Fe-


p  DOS, γ(ω; ε) = ω + εK + iΓK − ε with εK and ΓK being the energy and damping of the K 
shell level, and 



w e( ) is the electric-dipole transition matrix for x-ray polarization e, given by
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where the elementary charge e and the electron mass m are expressed in natural units (c = ℏ = 1). To obtain the K 
-edge XAS for RbFeSe, we calculate Fe-p DOS ρ ε



( ) using the WIEN2k code57. In Fig. 2a, we present the calculated 
results of XAS for several scattering geometries where we set εK = −7112 eV and ΓK = 1 eV in our numerical cal-
culation. ΓK determines the life time of the core hole created in the intermediate state of RIXS, ℏ/
ΓK ~ femtoseconds.

The indirect bimagnon RIXS amplitude can be expressed by the product of the bimagnon-excitation part and 
a resonance factor part within the lowest-order approximation in the coupling between the core-hole and mag-
nons40,41,58. The bimagnon-excitation part is given by

Figure 1. Chiral lattice structures of Rb0.89Fe1.58Se2 with the block antiferromagnetic spin ordering pattern. 
Exchange interactions, Brillouin zone momentum ordering wave vector combinations, and magnon energy 
bands are shown. Filled circles with solid dots represent up spins. Filled circles with crosses represent down 
spins. The shaded tilted squares are a guide to the two chiral lattice orientation. The exchange parameters (in 
meV) chosen for our calculation are J1 = −30, J2 = 20, ′ =J 03  and ′ = −J 101 , ′ = −J 202 , J3 = 9, with spin 
S = 1. (a) Left chiral lattice. (b) Right chiral lattice. (c) Bragg peak locations. The block antiferromagnetic 
checkerboard structure gives rise to eight antiferromagnetic Bragg peaks. The left chiral wave vector 
combinations are (Ho, Ko, Lo) = (0.2 + m, 0.6 + n, Lo); (−0.2 + m, −0.6 + n, Lo); (0.6 + m, −0.2 + n, Lo); 
(−0.6 + m, 0.2 + n, Lo). The right chiral wave vector combinations are (Ho, Ko, Lo) = (0.6 + m, 0.2 + n, Lo); 
(−0.6 + m, −0.2 + n, Lo); (0.2 + m, −0.6 + n, Lo); (−0.2 + m, 0.6 + n, Lo); m, n = {±2, ±4, …}. Lo is set equal to 
zero since we do not consider the three dimensional model. (d) Magnon dispersion energy bands ω (meV). The 
bands are numbered one through four. The double wiggly lines represent a break in the energy axis since the the 
highest band is far above the lowest lying three bands. All the bands participate in the RIXS scattering process.
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Figure 3. 7120 eV Fe K -edge bimangon indirect RIXS response of the chiral right and left lattices of 
Rb0.89Fe1.58Se2. The feasibility of utilizing bimagnon RIXS spectroscopy at the K -edge to distinguish and detect 
lattice chirality is explicitly demonstrated. Dashed line represents 30 meV experimental resolution convoluted 
RIXS response. (a) Polarization (P) and Bragg angle (θ) dependence of the RC ROWV response. (b) RC ROWV 
response with resonance factor contribution for Bragg angle choice of zero and (π, π) polarization. (c) LC LOWV 
response. (d) LC ROWV response. RC (LC) stands for right (left) chiral. ROWV (LOWV) stands for right (left) 
ordering wave vector. The Bragg peak momentum combination choice for all the calculations was {2, 4}.

Figure 2. X-ray absorption and multiband bimagnon RIXS spectrum. (a) Calculated x-ray absorption spectra 
(XAS) of Rb0.89Fe1.58Se2 for various polarization and scattering geometries. π [σ] polarization means that both 
the polarization directions of incoming and outgoing x-rays are parallel [perpendicular] to the scattering plane. 
(b) RIXS plot without the resonance factor dependence and experimental resolution for the right chiral lattice 
with a {2, 4} momentum combination. Intra- and inter- band transitions give rise to multiple peaks.

https://doi.org/10.1038/s41598-019-49157-2


5Scientific RepoRtS |         (2019) 9:12771  | https://doi.org/10.1038/s41598-019-49157-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑ ∑= ++ − + −
† † ⁎( )W b b W b bq( ) ,

(4)i j
ij i j ij i j

k
k q k k q k2

,


where q is the RIXS transfer momentum, the matrix elements Wij are defined in Eqs (18) and (19), i, j = 1, 2, 3, 4 
are band indices, †b b( )i ik k  represent creation (annihilation) operators for band index i and momentum vector k, 
respectively. Note, within the UCL expansion scheme the final RIXS operator expression is similar to Eq. (4) 
which is essentially the Born approximation result in the weak coupling limit41. The resonance factor contribution 
is given by
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where the coefficient V denotes the local coupling between the core hole and a pair of magnons. ei [eo] and ωi 
[ωo = ωi − ω] represent the polarization and energy of the incoming [outgoing] x-ray, respectively. When the 
incoming x-ray energy ωi is tuned near the resonance absorption energy, then |γ(ωi; ε)| is small, and the reso-
nance factor as well as XAS intensity becomes significantly enhanced. The full RIXS intensity is expressed by the 
product of the resonance factor part and the bimagnon correlation function
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where S(q, ω) is the bimagnon correlation function computed by means of the spin-wave theory as
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Here we should note that, in tetragonal cases as FeSC, the resonance factor as well as XAS does not depend on 
the in-plane azimuthal angle and furthermore on chirality, since ρx(ε) = ρy(ε). In all our subsequent RIXS calcu-
lations we choose 7120 eV (indicated by the arrow in Fig. 2a) as the incoming x-ray energy choice to maximize 
the RIXS intensity.

Figure 4. Chiral composition mixture response for Flack parameter ρ variation with 30 meV resolution. All 
responses are for the right chiral ordering wave vector and includes the effects of the resonance factor. (a) 
ρ = 0.0 (pure right chiral), (b) ρ = 0.5 (racemic conglomerate), (c) ρ = 0.75, and (d) ρ = 1.0 (pure left chiral).
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Results
In Fig. 2b we show the results of the bimagnon RIXS spectrum without the resonance factor and considering 
(for this discussion) zero experimental resolution. In contrast to the analysis of a simple two dimensional square 
lattice with spin 1/2, which has a single magnon band, for RbFeSe we need to consider all possible intraband and 
interband RIXS transitions. Figure 1d shows all the four bands participating in the RIXS scattering process.

This multiband structure causes the RIXS operator to assume a matrix form, see Eq. (19). Prior work by two of 
the authors (T.D. and D.X.Y) has highlighted the intricacies of multiband RIXS scattering processes giving rise to 
multipeak structures54. The response of the right chiral lattice with the ROWV can be separated into three energy 
ranges that lie between 40–135 meV, 160–235 meV, and 160–330 meV. In the absence of experimental resolution 
multiple intra- and inter-band peaks are possible. Naturally, with the inclusion of experimental resolution most of 
these peaks are washed away. Please see Supplementary Figs S2 and S3, both available online, for assistance with 
associating the RIXS peaks with the corresponding band transition. All our calculations were performed for the 
(2, 4) momentum combination, see Fig. 1c.

The checkerboard lattice supports acoustic spin waves which arises from eight Bragg peaks. We have ver-
ified that irrespective of the momentum combination choice, see Fig. 1c, the RIXS response is the same. We 
also infer from our investigation that at any location along the Bragg peak locations formed by connecting the 
right-ordering-wave-vector (ROWV) points on the right chiral (RC) lattice the RIXS response is the same. We 
find from our calculations that when the lattice chirality matches up with the probe ordering wave vector, for 
example right chiral with ROWV, there is a multi-peak contribution with two major RIXS peaks and one minor 
one. One of these is centered on 90 meV. The other is at 190 meV. There is a high energy sub-dominant intraband 
contribution above 300 meV arising from the 4-4 scattering channel. The peak at 190 meV slightly dominates in 
intensity compared to the lower 90 meV peak. The former arises from scattering process between the fourth band 
and the rest of the energy bands, i.e., 1-4, 4-1, 2-4, 4-2, 3-4, and 4-3. The remaining channels contribute to the 
90 meV peak.

In order to make our results as quantitatively realistic as possible with experiments we take full account of 
the effects of the resonance factor described earlier and a 30 meV experimental resolution. We incorporate the 
resonance enhancement arising from XAS by tuning the incident x-ray energy around the maximum of XAS, i.e. 
around the main absorption energy 7120 eV. The results are displayed in Fig. 3a. In general the resonance factor 
in K-edge RIXS does not bring about any significant momentum dependence into the total RIXS intensity. As a 
consequence momentum dependence of RIXS spectra is attributable to that of the corresponding electron corre-
lation function. It appears that for σ polarization the Bragg angle set up does not have a significant effect, but the π 
polarization is sensitive to the Bragg scattering angle. Henceforth, we use this polarization and angle combination 
for our calculations. In Fig. 3b we display the results of the resonance factor, both with and without experimental 
resolution. Comparing the spectrum with Fig. 2b we find that the effect of the resonance factor is to cause a reduc-
tion in the intensity. The momentum dependence is unaffected, as expected. From an experimental perspective 
the (π, π) beam polarization with a Bragg angle of zero maximizes the intensity. Inclusion of the experimental 
resolution removes the sharp multiple peaks in favor of a two-peak enveloping spectrum. Our recommendation 
to the experimentalists is to use this set up for an experimental verification of the proposed theory.

In Fig. 3c,d we display the RIXS response of an X-ray photon at the right- or left- ordering-wave-vector on a 
LC lattice. The response of the left chiral lattice with the LOWV is similar in its energy range with the right chiral 
lattice with the ROWV. However, these two spectra are not identical. In fact, for the left chiral lattice the 90 meV 
peak is more intense than the 190 meV location. When the lattice chirality is mismatched with the probe ordering 
wave vector, all the intra- and inter-band transitions are substantially muted in intensity in comparison to the 1-1 
transition. This is primarily an elastic peak contribution which is absent when the chirality matches up with the 
ordering wave vector. The 1-1 channel is singular because of a vanishing denominator of Π ′q t k k( , ; , )ij

0  where 
ω = ω1,k+q = ω1−k = 0. These results hold considering realistic experimental resolution into account.

The response of the LC lattice interacting with the right (left) -ordering-wave vector produces a strikingly 
different signal. We notice that when the lattice chirality matches up with the incoming ordering wave vector chi-
rality the system preserves its multipeak structure. In this example, it could be the multiple sharp peaks (at zero 
resolution), or the two-peak structure at finite experimental resolution. But, when it is mismatched a single dom-
inant elastic peak arises. We should note that the other channels of RIXS scattering are not entirely extinguished. 
This difference in the responses (including resolution or not) allow us to conclude that the K -edge RIXS signal is 
sensitive to lattice chirality. Thus we have demonstrated the feasibility of our claim that K -edge bimagnon RIXS 
signal can be used to differentiate and identify lattice chirality. A point of concern is the presence of the strong 
elastic peak signal for wave vector lattice chirality mismatch where our predicted signal may be hiding. However, 
note that after the background elastic peak subtraction we expect a negligible RIXS signal from the rest of the 
intra- or interband scattering channels. Thus, our proposal to test lattice chirality will still hold. In fact, since 
substantial difference between left and right chiral lattices appears already at the elastic intensity ω = 0, elastic 
scattering (RXES) could also suffice to distinguish the chiral lattices. However, a knowledge of the inelastic part 
(ω > 0) can lend insight into the potential multiband scattering processes.

Discussion
In this article we report our findings on the detection of lattice chirality using K -edge bimagnon indirect RIXS 
spectroscopy. Radiation incident at right or left ordering wave vector leads to distinct RIXS signals. Based upon 
the type of the ordering wave vector and the underlying lattice chirality the multipeak structures arising from 
intra- and inter- band transitions either survive or are almost extinguished (on a scale relative to the dominant 
peak). The extinction or survival of these RIXS peaks allows for the identification of the two chiral lattice orien-
tations. To analyze experimental data that can include both types of chiral lattices we introduce the chiral Flack 
parameter ρ as
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ω ρ ω ρ ω= − +I I Iq q q( , ) (1 )[ ( , )] [ ( , )] , (8)rch lch

where [I(q,ω)]rch(lch) stands for right (left) chiral lattice RIXS intensity contribution.
In Fig. 4 we track the evolution of the RIXS peaks of a chiral mixture of left- and right- lattices as the Flack 

parameter ρ is varied. We find that our chirality detection proposal holds true irrespective of whether experi-
mental resolution is included or not. We have tested the validity of our proposal over additional resolution values 
(10 meV, 15 meV, 50 meV, and 70 meV), see Supplementary Figs S4–S7. Based on our calculations we conclude 
that even beyond the 50 meV mark, detection of lattice chirality is still feasible (within the context of RbFeSe). 
Additionally, it is possible that a quasi-elastic line can possibly hide the magnetic excitation weight. We expect, 
in real experiments, appropriate subtraction of such a quasi-elastic line may be necessary still in the current res-
olution limit of 30–50 meV. According to the calculated results, the tail of the quasi-elastic line should be within 
less than 100 meV, roughly speaking, which is about the excitation energy of the first main peak. On the other 
hand, we believe that further advancements in experimental resolution coupled with instrumentation techniques 
which can suppress the quasi-elastic tail will make the low-energy magnetic excitations observable. We also stress 
that although we chose RbFeSe as one example among various chiral materials, our calculations are not restricted 
only to Fe compounds. Our analysis approach can be generalized to other chiral transition-metal compounds. 
Furthermore, specific to the case of RbFeSe RIXS at the K -edge, magnetic excitations can lie on top of dominant 
fluorescent peaks. But, these fluorescence peaks will shift along the energy loss axis, depending on the incident 
x-ray energy, while the RIXS weight will maintain the same energy-loss position due to its Raman-like character. 
Therefore, it is still possible to observe low-energy magnetic excitations even when the fluorescence peaks vanish 
or survive.

To establish an experimental protocol we suggest the following steps. First, perform the RIXS experiment 
using either the right- or left- chiral ordering wave vector. If the signal produces a single dominant peak then the 
lattice is of opposite chirality. If a multipeak response survives then the chirality is the same as that of the ordering 
wave vector. The only caveat here is to ensure that the data allow for each and every peak to be recorded up to its 
full intensity. Otherwise, there is a possiblity of misidentifying low intensity responses as a multipeak response. 
Using the signal from the right- or left- ordering wave vector as a baseline and by comparing the appearance and 
disappearance of the RIXS peaks one can deduce the chiral Flack parameter composition number ρ. For systems 
with more complicated unit cells multiple magnon bands are possible. While it maybe difficult to pinpoint the 
exact channel contributions to the peaks since the number of bands   causes the RIXS channels to increase as 

2 , the basic premise of the technique would still hold.
We have tested the validity of our prediction successfully for other commonly reported magnetic couplings 

relevant to the RbFeSe J1-J2-J3 model26,56. Additionally, the S = 1 spin value will have reduced quantum spin fluc-
tuation effects compared to S = 1/2 where higher order interaction corrections are required51. Thus, the overall 
qualitative shape of the predicted RIXS spectrum will survive. The feasbility of the proposed approach is not 
restricted to collinear magnetic systems. In principle, even for non-collinear magnets that can display lattice 
chirality and support stable bimagnon excitations it should be possible to distinguish the chiral lattices using our 
approach. However, at present it is unclear what would be the consequences for a material where both the lattice 
and the magnetic chiralities are strongly coupled. It is possible that neutron scattering could offer an alternate way 
to detect lattice chirality, at least magnetic chirality, since the difference is evident in the one-magnon dispersion 
level59. But, RIXS has a practical advantage due to its small sample size requirement compared to neutron scatter-
ing. For example, it is difficult to grow samples of sizeable volume for the 1111 class of iron-pnictides.

Two-magnon RIXS is possible also at ligand K -edge in the soft x-ray regime. For copper oxides, two-magnon 
excitations and their dispersion have been observed at the O K -edge35,60, although the range of momentum trans-
fer is somewhat restricted. Within the theoretical framework of this article, the two-magnon RIXS at ligand K 
-edges can be treated in a similar way as in the cases of transition-metal K -edges. We expect the only difference 
to be in the microscopic process to derive the magnon-core-hole coupling. The typical beamline resolutions are 
currently 30 meV for both K- and L -edges. For the Cu -K edge 25 meV has been achieved at DESY61, but, for other 
transition-metal K -edges, there are no beamlines higher than 100 meV, to our full knowledge. Generally, intensity 
of K -edge spectra becomes too weak as the resolution is increased. While resolution issues still plague the K -edge 
(compared to the L -edge), the potential to utilize a multimagnon excitation to unravel lattice chirality effect offers 
an exciting future for RIXS spectroscopy in general. Finally, we hope our results will provide X-ray beamline sci-
entists and experimentalists, engaged in RIXS research, with an impetus to further the limits of K -edge bimagnon 
detection and its potential lattice chirality application.

Methods
Spin wave hamiltonian. The Hamiltonian, Eq. (1), was treated using the linear spin wave theory (LSWT) 
approach. Using the standard Holstein–Primakoff transformation each spin operator Si was transformed as 

=+S S a2i i, =− †S S a2i i , and = − †S S a ai
z

i i, where ai ( †ai ) represents the bosonic annhilation (creation) oper-
ators at site i, respectively. The bosonic basis was Fourier transformed to = ∑ ⋅a e ai N

i
k

k R
k

1 i  and 
= ∑ − ⋅† †a e ai N

i
k

k R
k

1 i , where Ri is the position of site i, N is the number of magnetic unit cells, and ak and †ak  are 
the momentum dependent bosonic operators. After performing the LSWT transformation the Hamiltonian can 
then be written as = +H E0  ψ ψ∑ +† O S(1/ )k k k k , where E0 is the classical ground state energy of the system, 
ψ =† † † † †a a a a[k k k k k1 2 3 4 − − − −a a a a ]k k k k1 2 3 4  is the basis set, k  is Hamiltonian matrix, and O(1/S) represents the 
non-linear spin wave theory terms. A paraunitary diagonalization was performed to calculate the energy modes 
of the bosonic excitations, see Fig. 1d. At a given momentum k the energies of the bosonic modes are given by the 
eigenvalues to the expression Ip k  where
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= 

 −



I I

I
0

0 (9)p

is the paraunitary matrix and I and 0 are the identity and null matrices of dimension 4×4, respectively. The eigen-
vector solutions Xkn to

λ=I X X (10)p n n nk k k k

are the Bogoliubov transformation coefficients for the n–th energy eigenmode λkn. The Bogoliubov transformed 
basis is given by ψ ψ′ = −Xk k k

1 , where Xk = [Xk1Xk2Xk3Xk4(IiXk1)T(IiXk2)T(IiXk3)T(IiXk4)T] is the Bogoliubov trans-
formation matrix, the transposed eigenket ψ′ = − − − −

† † † †b b b b b b b b[ ]k k k k k k k k1 2 3 4 1 2 3 4 , and [Ii]8×8 is the exchange 
(reverse identity) matrix.

Multiband indirect K–edge RiXS. We employ a perturbation expansion in the core hole potential to define 
the RIXS operator as40,41.

∑= ⋅⋅J eq S S( ) ,
(11)i j

ij
i

i j
q R

,

i

where q is the X-ray transfer momentum. The RIXS operator ψ ψ= ∑ +
†q( ) k k q k k   after the spin wave theory 

transformation becomes

=












M M
M M

q( ) ,
(12)

A B

B A
k

with

=













+ + +

+ + +

+ + +

+ + +













+ + +

+ + +

+ + +
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q
q

q
q

( )
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( )
( ) (13)
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k k q k k q k k q

k k q k k q k k q

k k q k k q k k q

k k q k k q k k q

1

2

1

2

and

=













+ + +

+ + +

+ + +
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.

+ + +
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+ + +

+ + +
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M
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0
0

0
0 (14)

B

k k q k k q k k q

k k q k k q k k q

k k q k k q k k q

k k q k k q k k q

The off diagonal matrix entries are given by = − − + ′ + ′ + − ′E S J J J J J J( 2 2 2 )1 1 2 1 2 3 3 , = ∆⋅
→

F J Sei
k

k
1

( )1,2 , 
= + ′∆ ∆⋅

→
⋅ ′
→

G J Se J Sei i
k

k k
2

( )
3

( )1,3 1,3 ,  = ∆⋅
→

S J Sei
k

k
1

( )1,4 ,  = ′ +∆ ∆⋅ ′
→

⋅ ′
→

B J Se J Sei i
k

k k
2

( )
3

( )2,1 2,1 ,  = ′ ∆⋅ ′
→

C J Sei
k

k
1

( )3,1 , 
= ′ ∆⋅ ′

→
D J Sei

k
k

1
( )4,2 , = + ′ ″∆ ∆⋅ ′

→
⋅
→

T J Se J Sei i
k

k k
2

( )
3

( )2,4 2,4 , and = ′ + ″∆ ∆⋅ ′
→

⋅
→

L J Se J Sei i
k

k k
2

( )
3

( )2,3 2,3  where ∆
→

 denotes the 
intrablock separation, ∆′

→
 the NN interblock separation, and ∆″

→
 denotes the n–NN interblock separation. The 

separation vectors between the spin sites are scaled by the lattice constant. The diagonal coefficients are defined as

= + + − ′ + ′ +

− + ′ − +

− − +

− + − −

A E S J e e J e J e e

J e J e J e e

q( ) [ ( ) ( )

( )], (15)

i q i q i q i q q i q q

i q q iq iq iq
1 1 3

2 2
3

2
2

( ) ( )

2
( )

1 1

y x x x y x y

x y y x y

= + + − ′ + ′ +

− + ′ − + .

− − + − +

− − −

A E S J e e J e J e e

J e J e J e e

q( ) [ ( ) ( )

( )] (16)

i q i q i q i q q i q q

i q q iq iq iq
2 1 3

2 2
3

2
2

( ) ( )

2
( )

1 1

y x y x y x y

x y x x y

To obtain the RIXS intensity we utilize the Bogoliubov transformed RIXS operator which is given by

′ = −q X X( ) , (17)k k k k
1 

where the above operator can be recast in terms of four matrices as

′ =




 .





q( )

(18)
k

11 12

21 22


 
 

The off diagonal matrices of 12 and 21 have entries given by
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 = =























.

W W W W
W W W W
W W W W
W W W W (19)

12 21

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

The individual entries are termed the intra- or inter- band single channels (see Supplementary Figs S2 and S3). 
The multiband indirect K -edge bimagnon RIXS operator constructed from these entries is expressed as

∑ ∑ ∑=





+






+ − + −

† † ⁎W b b W b bq( ) ,
(20)i j

ij i j
i j

ij i j
k

k q k k q k2
, ,



where the sublattice indices span over i, j = 1, ..., 4. We introduce the time-ordered correlation function

∫ω = − 〈 | | 〉ω∞ †G i dte i t iq q q( , ) ( , ) ( , 0) , (21)
i t

0
2 2TO O

to compute the frequency and momentum dependent RIXS intensity, see Eq. (7). The matrix elements of the RIXS 
operators are taken between |i〉 and | f〉 which represent the initial and final states with transfer energy ωfi. The 
noninteracting LSWT bimagnon propagator is defined as

Π ′ = − 〈 | | 〉.+ − ′+ − ′
† †t i b t b t b bq k k( , ; , ) 0 ( ) ( ) (0) (0) 0 (22)ij i j i jk q k k q k

0
, , , ,

We can expand the above bimagnon propagator in terms of the one magnon propagators. Since there are four 
band indices we have four possible combinations given by

= − 〈 | | 〉†G t i b t bk( , ) 0 ( ) (0) 0 , (23)b b i jk k, , ,i j


where i, j = 1, 2, 3, and 4 for the b1, b2, b3, and b4 magnons,   is the time ordering operator, and |0〉 is the ground 
state. Combining Eqs (20), (22), and (23) we obtain

∑ ∑

∑ ∑

ω
π

ω

π ω ω ω

∝ −








| | Π ′








= −








| |
− − +









′

+ −
+

I

I

q m W

m W
i

q k kS( , ) 1 ( , ; , )

1 1
0

,
(24)

ij
ij ij

ij
ij

i j

k k

k k q k

,

2 0

2

,

which is same as Eq. (7).

Data Availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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