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training optimization for Gate-
Model Quantum neural networks
Laszlo Gyongyosi1,2,3 & Sandor imre2

Gate-based quantum computations represent an essential to realize near-term quantum computer 
architectures. A gate-model quantum neural network (Qnn) is a Qnn implemented on a gate-model 
quantum computer, realized via a set of unitaries with associated gate parameters. Here, we define 
a training optimization procedure for gate-model QNNs. By deriving the environmental attributes of 
the gate-model quantum network, we prove the constraint-based learning models. We show that the 
optimal learning procedures are different if side information is available in different directions, and if 
side information is accessible about the previous running sequences of the gate-model QNN. The results 
are particularly convenient for gate-model quantum computer implementations.

Gate-based quantum computers represent an implementable way to realize experimental quantum computations 
on near-term quantum computer architectures1–13. In a gate-model quantum computer, the transformations are 
realized by quantum gates, such that each quantum gate is represented by a unitary operation14–26. An input 
quantum state is evolved through a sequence of unitary gates and the output state is then assessed by a meas-
urement operator14–17. Focusing on gate-model quantum computer architectures is motivated by the successful 
demonstration of the practical implementations of gate-model quantum computers7–11, and several important 
developments for near-term gate-model quantum computations are currently in progress. Another important 
aspect is the application of gate-model quantum computations in the near-term quantum devices of the quantum 
Internet27–43.

A quantum neural network (QNN) is formulated by a set of quantum operations and connections between 
the operations with a particular weight parameter14,25,26,44–47. Gate-model QNNs refer to QNNs implemented 
on gate-model quantum computers14. As a corollary, gate-model QNNs have a crucial experimental impor-
tance since these network structures are realizable on near-term quantum computer architectures. The core of a 
gate-model QNN is a sequence of unitary operations. A gate-model QNN consists of a set of unitary operations 
and communication links that are used for the propagation of quantum and classical side information in the net-
work for the related calculations of the learning procedure. The unitary transformations represent quantum gates 
parameterized by a variable referred to as gate parameter (weight). The inputs of the gate-model QNN structure 
are a computational basis state and an auxiliary quantum system that serves a readout state in the output measure-
ment phase. Each input state is associated with a particular label. In the modeled learning problem, the training 
of the gate-model QNN aims to learn the values of the gate parameters associated with the unitaries so that the 
predicted label is close to a true label value of the input (i.e., the difference between the predicted and true values 
is minimal). This problem, therefore, formulates an objective function that is subject to minimization. In this 
setting, the training of the gate-model QNN aims to learn the label of a general quantum state.

In artificial intelligence, machine learning4–6,19,23,45,46,48–53 utilizes statistical methods with measured data to 
achieve a desired value of an objective function associated with a particular problem. A learning machine is an 
abstract computational model for the learning procedures. A constraint machine is a learning machine that works 
with constraint, such that the constraints are characterized and defined by the actual environment48.

The proposed model of a gate-model quantum neural network assumes that quantum information can only 
be propagated forward direction from the input to the output, and classical side information is available via clas-
sical links. The classical side information is processed further via a post-processing unit after the measurement of 
the output. In the general gate-model QNN scenario, it is assumed that classical side information can be propa-
gated arbitrarily in the network structure, and there is no available side information about the previous running 
sequences of the gate-model QNN structure. The situation changes, if side information propagates only backward 
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direction and side information about the previous running sequences of the network is also available. The result-
ing network model is called gate-model recurrent quantum neural network (RQNN).

Here, we define a constraint-based training optimization method for gate-model QNNs and RQNNs, and pro-
pose the computational models from the attributes of the gate-model quantum network environment. We show 
that these structural distinctions lead to significantly different computational models and learning optimization. 
By using the constraint-based computational models of the QNNs, we prove the optimal learning methods for 
each network—nonrecurrent and recurrent gate-model QNNs—vary. Finally, we characterize optimal learning 
procedures for each variant of gate-model QNNs.

The novel contributions of our manuscript are as follows.

•	 We study the computational models of nonrecurrent and recurrent gate-model QNNs realized via an arbitrary 
number of unitaries.

•	 We define learning methods for nonrecurrent and recurrent gate-model QNNs.
•	 We prove the optimal learning for nonrecurrent and recurrent gate-model QNNs.

This paper is organized as follows. In Section 2, the related works are summarized. Section 3 defines the sys-
tem model and the parameterization of the learning optimization problem. Section 4 proves the computational 
models of gate-model QNNs. Section 5 provides learning optimization results. Finally, Section 6 concludes the 
paper. Supplemental information is included in the Appendix.

Related Works
Gate-model quantum computers. A theoretical background on the realizations of quantum computa-
tions in a gate-model quantum computer environment can be found in15 and16. For a summary on the related 
references1–3,13,15–17,54,55, we suggest56.

Quantum neural networks. In14, the formalism of a gate-model quantum neural network is defined. The 
gate-model quantum neural network is a quantum neural network implemented on gate-model quantum com-
puter. A particular problem analyzed by the authors is the classification of classical data sets which consist of 
bitstrings with binary labels.

In44, the authors studied the subject of quantum deep learning. As the authors found, the application of quan-
tum computing can reduce the time required to train a deep restricted Boltzmann machine. The work also con-
cluded that quantum computing provides a strong framework for deep learning, and the application of quantum 
computing can lead to significant performance improvements in comparison to classical computing.

In45, the authors defined a quantum generalization of feedforward neural networks. In the proposed system 
model, the classical neurons are generalized to being quantum reversible. As the authors showed, the defined 
quantum network can be trained efficiently using gradient descent to perform quantum generalizations of clas-
sical tasks.

In46, the authors defined a model of a quantum neuron to perform machine learning tasks on quantum com-
puters. The authors proposed a small quantum circuit to simulate neurons with threshold activation. As the 
authors found, the proposed quantum circuit realizes a “œquantum neuron”. The authors showed an application 
of the defined quantum neuron model in feedforward networks. The work concluded that the quantum neuron 
model can learn a function if trained with superposition of inputs and the corresponding output. The proposed 
training method also suffices to learn the function on all individual inputs separately.

In25, the authors studied the structure of artificial quantum neural network. The work focused on the model 
of quantum neurons and studied the logical elements and tests of convolutional networks. The authors defined a 
model of an artificial neural network that uses quantum-mechanical particles as a neuron, and set a Monte-Carlo 
integration method to simulate the proposed quantum-mechanical system. The work also studied the implemen-
tation of logical elements based on introduced quantum particles, and the implementation of a simple convolu-
tional network.

In26, the authors defined the model of a universal quantum perceptron as efficient unitary approximators. The 
authors studied the implementation of a quantum perceptron with a sigmoid activation function as a reversible 
many-body unitary operation. In the proposed system model, the response of the quantum perceptron is param-
eterized by the potential exerted by other neurons. The authors showed that the proposed quantum neural net-
work model is a universal approximator of continuous functions, with at least the same power as classical neural 
networks.

Quantum machine learning. In57, the authors analyzed a Markov process connected to a classical proba-
bilistic algorithm58. A performance evaluation also has been included in the work to compare the performance of 
the quantum and classical algorithm.

In19, the authors studied quantum algorithms for supervised and unsupervised machine learning. This par-
ticular work focuses on the problem of cluster assignment and cluster finding via quantum algorithms. As a main 
conclusion of the work, via the utilization of quantum computers and quantum machine learning, an exponential 
speed-up can be reached over classical algorithms.

In20, the authors defined a method for the analysis of an unknown quantum state. The authors showed that 
it is possible to perform “œquantum principal component analysis” by creating quantum coherence among dif-
ferent copies, and the relevant attributes can be revealed exponentially faster than it is possible by any existing 
algorithm.

In21, the authors studied the application of a quantum support vector machine in Big Data classification. 
The authors showed that a quantum version of the support vector machine (optimized binary classifier) can be 
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implemented on a quantum computer. As the work concluded, the complexity of the quantum algorithm is only 
logarithmic in the size of the vectors and the number of training examples that provides a significant advantage 
over classical support machines.

In22, the problem of quantum-based analysis of big data sets is studied by the authors. As the authors con-
cluded, the proposed quantum algorithms provide an exponential speedup over classical algorithms for topolog-
ical data analysis.

The problem of quantum generative adversarial learning is studied in51. In generative adversarial networks a 
generator entity creates statistics for data that mimics those of a valid data set, and a discriminator unit distin-
guishes between the valid and non-valid data. As a main conclusion of the work, a quantum computer allows us 
to realize quantum adversarial networks with an exponential advantage over classical adversarial networks.

In54, super-polynomial and exponential improvements for quantum-enhanced reinforcement learning are 
studied.

In55, the authors proposed strategies for quantum computing molecular energies using the unitary coupled 
cluster ansatz.

The authors of56 provided demonstrations of quantum advantage in machine learning problems.
In57, the authors study the subject of quantum speedup in machine learning. As a particular problem, the work 

focuses on finding Boolean functions for classification tasks.

System Model
Gate-model quantum neural network. Definition 1 A QNNQG is a quantum neural network (QNN) 
implemented on a gate-model quantum computer with a quantum gate structure QG. It contains quantum links 
between the unitaries and classical links for the propagation of classical side information. In a QNNQG, all quantum 
information propagates forward from the input to the output, while classical side information can propagate arbitrar-
ily (forward and backward) in the network. In a QNNQG, there is no available side information about the previous 
running sequences of the structure.

Using the framework of14, a QNNQG is formulated by a collection of L unitary gates, such that an i-th, i = 1, 
…, L unitary gate Ui(θi) is

θ θ= −U i P( ) exp( ), (1)i i i

where P is a generalized Pauli operator formulated by a tensor product of Pauli operators {X, Y, Z}, while θi is 
referred to as the gate parameter associated with Ui(θi).

In QNNQG, a given unitary gate Ui(θi) sequentially acts on the output of the previous unitary gate Ui−1(θi−1), 
without any nonlinearities14. The classical side information of QNNQG is used in calculations related to error der-
ivation and gradient computations, such that side information can propagate arbitrarily in the network structure.

The sequential application of the L unitaries formulates a unitary operator θ
→

U( ) as

θ θ θ θ
→

= …− −U U U U( ) ( ) ( ) ( ), (2)L L L L1 1 1 1

where Ui(θi) identifies an i-th unitary gate, and θ
→

 is the gate parameter vector

θ θ θ θ
→

= … .−( , , , ) (3)L L
T

1 1

At (2), the evolution of the system of QNNQG for a particular input system ψ φ,  is

θ ψ φ θ θ=
→

=
→

=
→

Y U U z U z( ) ( ) 1 ( ) , 1 , (4)

where Y  is the (n + 1)-length output quantum system, and ψ = z  is a computational basis state, where z is an 
n-length string

= …z z z z , (5)n1 2

where each zi represents a classical bit with values

∈ −z { 1, 1}, (6)i

while the (n + 1)-th quantum state is initialized as

ϕ = 1 , (7)

and is referred to as the readout quantum state.

Objective function. The θ
→

f ( ) objective function subject to minimization is defined for a QNNQG as

θ θ θ
→

= 〈
→

| |
→

〉˜f x l z( ) ( , ( )) , (8)0

where  ˜x l z( , ( ))0  is the loss function14, defined as

 = −˜ ˜x l z l z l z( , ( )) 1 ( ) ( ), (9)0

where l̃ z( ) is the predicted value of the binary label
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∈ −l z( ) { 1, 1} (10)

of the string z, defined as14

˜ †θ θ= 〈 |
→ →

| 〉+l z z U Y U z( ) ,1 ( ( )) ( ) , 1 , (11)n 1

where Yn+1 ∈ {−1, 1} is a measured Pauli operator on the readout quantum state (7), while x0 is as

= .x z, 1 (12)0

The ̃l  predicted value in (11) is a real number between −1 and 1, while the label l(z) and Yn+1 are real numbers 
−1 or 1. Precisely, the l̃  predicted value as given in (11) represents an average of several measurement outcomes 
if Yn+1 is measured via R output system instances |Y〉(r)-s, r = 1, …, R14.

The learning problem for a QNNQG is, therefore, as follows. At an T  training set formulated via R input strings 
and labels

 = = …z l z r R{ , ( ), 1, , }, (13)T
r r( ) ( )

where r refers to the r-th measurement round and R is the total number of measurement rounds, the goal is there-
fore to find the gate parameters (3) of the L unitaries of QNNQG, such that θ

→
f ( ) in (8) is minimal.

Recurrent Gate-model quantum neural network. Definition 2 An RQNNQG is a QNN implemented on 
a gate-model quantum computer with a quantum gate structure QG, such that the connections of RQNNQG form a 
directed graph along a sequence. It contains quantum links between the unitaries and classical links for the propaga-
tion of classical side information. In an RQNNQG, all quantum information propagates forward, while classical side 
information can propagate only backward direction. In an RQNNQG, side information is available about the previous 
running sequences of the structure.

The classical side information of RQNNQG is used in error derivation and gradient computations, such that 
side information can propagate only in backward directions. Similar to the QNNQG case, in an RQNNQG, a given 
i-th unitary Ui(θi) acts on the output of the previous unitary Ui−1(θi−1). Thus, the quantum evolution of the 
RQNNQG contains no nonlinearities14. As follows, for an RQNNQG network, the objective function can be simi-
larly defined as given in (8). On the other hand, the structural differences between QNNQG and RQNNQG allows 
the characterization of different computational models for the description of the learning problem. The structural 
differences also lead to various optimal learning methods for the QNNQG and RQNNQG structures as it will be 
revealed in Section 4 and Section 5.

Comparative representation. For a simple graphical representation, the schematic models of a QNNQG 
and RQNNQG for an (r − 1)-th and r-th measurement rounds are compared in Fig. 1. The (n + 1)-length input 
systems are depicted by ψ − 1r 1  and ψ 1r , while the output systems are denoted by −Yr 1  and Yr . The result of 
the M measurement operator in the (r − 1)-th and r-th measurement rounds are denoted by +

−Yn
r

1
( 1) and +Yn

r
1

( ) . In 
Fig. 1(a), structure of a QNNQG is depicted for an (r − 1)-th and r-th measurement round. In Fig. 1(b), the struc-
ture of a RQNNQG is illustrated. In a QNNQG, side information is not available about the previous, (r − 1)-th 
measurement round in a particular r-th measurement round. For an RQNNQG, side information is available about 
the (r − 1)-th measurement round (depicted by the dashed gray arrows) in a particular r-th measurement round. 

Figure 1. Schematic representation of a QNNQG and RQNNQG in an (n − 1)-th and r-th measurement rounds. 
The (n + 1)-length input systems of the (r − 1) and r-th measurement rounds are depicted by ψ − 1r 1  and 
ψ 1r , the output systems are −Yr 1  and Yr . The result of the M measurement operator in the (n − 1)-th and  
r-th measurement rounds are denoted by +

−Yn
r

1
( 1) and +Yn

r
1

( ) . (a) In a QNNQG, for an r-th measurement round, side 
information is not available about the previous (n − 1)-th measurement round. (b) In a RQNNQG, side 
information is available about the previous (n − 1)-th measurement round in an r-th round.
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The side information in the RQNNQG setting refer to information about the gate-parameters and the measure-
ment results of the (r − 1)-th measurement round.

parameterization. Constraint machines. The tasks of machine learning can be modeled via its mathemat-
ical framework and the constraints of the environment4–6. A  constraint machine is a learning machine working 
with constraints48. A constraint machine can be formulated by a particular function f or via some elements of a 
functional space  . The constraints model the attributes of the environment of .

The learning problem of a  constraint machine can be represented via a = V S( , )  environmental graph48,59-62.  
The  environmental graph is a directed acyclic graph (DAG), with a set V of vertexes and a set S of arcs. The ver-
texes of  model associated features, while the arcs between the vertexes describe the relations of the vertexes.

The  environmental graph formalizes factual knowledge via modeling the relations among the elements of 
the environment48. In the environmental graph representation, the  constraint machine has to decide based on 
the information associated with the vertexes of the graph.

For any vertex v of V, a perceptual space element x, and its identifier 〈x〉 that addresses x in the computational 
model can be defined as a pair

〈 〉x x( , ), (14)

where ∈x  is an element (vector) of the perceptual space  ⊂ d. Assuming that features are missing, the ◊ 
symbol can be used. Therefore,   is initialized as 0 ,

∪= ◊ .{ } (15)0 

The environment is populated by individuals, and the   individual space is defined via V and 0 as

= ×V , (16)0I X

such that the existing features are associated with a subset ∼V  of V.
The features can be associated with the 〈x〉 identifier via a f perceptual map as

XP P→ = .
∼f V x f v: : : ( ) (17)

If the condition

∀ ∈ = = ◊
∼v V V x f v( \ ): ( ) (18)

holds, then f  is yielded as

XP P→ = .f V x f v: : : ( ) (19)

A given individual ι ∈   is defined as a feature vector ∈x  . An ι ∈  individual of the individual space   is 
defined as

ι = ϒ + ¬ ϒx v, (20)

where + is the sum operator in d, ¬ is the negation operator, while Υ is a constraint as

 ϒ ∈ ∨ ∈ .
∼ ∼v V x: ( ) ( \ ) (21)0

where 0  is given in (15). Thus, from (20), an individual ι is a feature vector x of   or a vertex v of .
Let ι ∈⁎  be a specific individual, and let f be an agent represented by the function →f : n . Then, at a 

given environmental graph , the  constraint machine is defined via function f as a machine in which the learn-
ing and inference are represented via enforcing procedures on constraints ι⁎C  and Cι, such that for a  constraint 
machine the learning procedure requires the satisfaction of the constraints over all ⁎ , while in the inference the 
satisfaction of the constraint is enforced over the given ι ∈⁎  48, by theory. Thus,  is defined in a formalized 
manner, as

C
I

I I⁎
⁎ ⁎ ⁎ ⁎

ι χ ι

ι χ ι
≡








∀ ∈ =

∈ =

∼

∼
ι

ι

C v f

C v f

: : ( , ( )) 0,

: \ : ( , ( )) 0, (22)

where ∼ is a subset of  , ι* refers to a specific individual, vertex or function, χ(⋅) is a compact constraint function, 
while v* and f*(ι*) refer to the vertex and function at ι*, respectively.

Calculus of variations. Some elements from the calculus of variations63,64 are utilized in the learning optimiza-
tion procedure.

Euler-Lagrange Equations: The Euler-Lagrange equations are second-order partial differential equations with 
solution functions. These equations are useful in optimization problems since they have a differentiable func-
tional that is stationary at the local maxima and minima63. As a corollary, they can be also used in the problems 
of machine learning.
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Hessian Matrix: A Hessian matrix H is a square matrix of second-order partial derivatives of a scalar-valued 
function, or scalar field63. In theory, it describes the local curvature of a function of many variables. In a 
machine-learning setting, it is a useful tool to derive some attributes and critical points of loss functions.

constraint-based computational Model
In this section, we derive the computational models of the QNNQG and RQNNQG structures.

Environmental graph of a gate-model quantum neural network. Proposition 1 The  = V S( , )QNNQG
 

environmental graph of a QNNQG is a DAG, where V is a set of vertexes, in our setting defined as

S U Y∪ ∪=V , (23)in

where in  is the input space,   is the space of unitaries,   is the output space, and S is a set of arcs.
Let QNNQG

 be an environmental graph of QNNQG, and let vUi
 be a vertex, such that ∈v VUi

 is related to the 
unitary Ui(θi), where index i = 0 is associated with the  z, 1  input system with vertex v0. Then, let vUi

 and vUj
 be 

connected vertices via directed arc sij, sij ∈ S, such that a particular θij gate parameter is associated with the forward 
directed arc (Note: the notation Uj(θij) refers to the selection of θj for the unitary Uj to realize the operation 
Ui(θi)Uj(θj), i.e., the application of Uj(θj) on the output of Ui(θi) at a particular gate parameter θj), as

θ θ= , (24)ij j

such that arc s0j is associated with θ0j = θj.
Then a given state θxU ( )i i

 of   associated with Ui(θi) is defined as

= +θ θx v a , (25)U U U( ) ( )i i i i i

where vUi
 is a label for unitary Ui in the environmental graph QNNQG

  (serves as an identifier in the computational 
structure of (25)), while parameter θaU ( )i i

 is defined for a Ui(θi) as

∑ θ= +θ θ θ
∈Ξ

a U x b( ) ,
(26)

U
h i

i hi U U( )
( )

( ) ( )i i h h i i

where Ξ(i) refers to the parent set of vUi
, Ui(θhi) refers to the selection of θi for unitary Ui for a particular input 

from Uh(θh), while θbU ( )i i
 is the bias relative to vUi

.
Applying a f∠ topological ordering function on QNNQG

  yields an ordered graph structure ∠f ( )QNNQG
 of the L 

unitaries. Thus, a given output Y  of QNNQG can be rewritten in a compact form as

θ θ θ θ=
→

= …− −Y U x U U U x( ) ( ( ) ( ) ( ) ), (27)L L L L0 1 1 1 1 0

where the term ∈x in0  is associated with the input system as defined in (12).
A particular state θxU ( )l l

, l = 1, …, L is evaluated in function of θ− −
xU ( )l l1 1

 as

θ= .θ θ− −
x U x( ) (28)U l l U( ) ( )l l l l1 1

The environmental and ordered graphs of a gate-model quantum neural network are illustrated in Fig. 2. In 
Fig. 2(a) the QNNQG

 environmental graph of a QNNQG is depicted, and the ordered graph 
∠f ( )QNNQG
  is shown in 

Fig. 2(b).

Computational model of gate-model quantum neural networks. Theorem 1 The computational model of a 
QNNQG is a  NN(Q )QG  constraint machine with linear transition functions fT(QNNQG).

Proof. Let =NN V S(Q ) ( , )QG  be the environmental graph of a QNNQG, and assume that the number of types of 
the vertexes is p. Then, the vertex set V can be expressed as a collection

∪=
=

V V ,
(29)i

p

i
1

where Vi identifies a set of vertexes, p is the total number of the Vi sets, such that ∩ = ∅V V ,i j  if only i ≠ j48. For 
a v ∈ Vi vertex from set Vi, an  →f :T

dim dimin out transition function48 can be defined as

Z X Zf x f x: : ( , ) ( , ), (30)T V
v

V V v v T v v
( )

( ) ( )i i i
γ γ× → →Γ

Γ Γ

where Vi
  is the perceptual space   of Vi,  V

dim( )
i

Vi⊂ ; dim( )Vi
 is the dimension of the space Vi

; xv is an ele-
ment of Vi

 ; ∈xv Vi
  associated with a unitary Uv(θv);   is the state space, Vi

 is the state space of Vi, 
 ⊂ V

dim( )
i

Vi , dim( )Vi
 is the dimension of the space Vi

; Γ(v) refers to the children set of v; |Γ(v)| is the cardi-
nality of set Γ(v); γ ∈  is a state variable in the state space   that serves as side information to process the v 
vertices of V in (QNN )QG , while  γ ∈ ⊂Γ

|Γ | |Γ |
v V

v v
( )

( ) ( )
i

 and γ γ γ=Γ Γ Γ |Γ |( , , )v v v v( ) ( ),1 ( ), ( ) , by theory48,62. Thus, 
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the fT transition function in (30) is a complex-valued function that maps an input pair (γ, x) from the space of 
×X Z  to the state space  .

Similarly, for any Vi, an  →f :O
dim dimin out output function48 can be defined as

Z X Y γ γ× → →F x F x: : ( , ) ( , ), (31)O V V V v v O v vi i i

where Vi
  is the output space  , and γv is a state variable associated with v, γ ∈v Vi

, such that γv = γ0 if Γ = ∅v( ) . 
The fO output function in (31) is therefore a complex-valued function that maps an input pair (γ, x) from the space 
of X Z×  to the output space  .

From (30) and (31), it follows that for any Vi, there exists the φ(Vi) associated function-pair as

φ = .V f F( ) ( , ) (32)i T O

Let us specify the generalized functions of (30) and (31) for a QNNQG.

Let θ
→

U( ) of QNNQG be defined as given in (2). Since in QNNQG, a given i-th unitary Ui(θi) acts on the output of 
the previous unitary Ui−1(θi−1), the network contains no nonlinearities14. As a corollary, the state transition func-
tion fT(QNNQG) in (30) is also linear for a QNNQG.

Let γv  be the quantum state associated with γv state variable of a given v. Then, the constraints on the transition 
function and output function of a QNNQG can be evaluated as follows.

Let fT(QNNQG) be the transition function of a QNNQG defined for a given v ∈ V of (QNN )QG  via (30) as

γ γ→ .Γ Γf x f x(QNN ): ( , ) ( , ) (33)T QG v v T v v( ) ( )

The FO(QNNQG) output function of a QNNQG for a given v of (QNN )QG  via (31) is

γ γ→ .F x F x(QNN ): ( , ) ( , ) (34)O QG v v O v v

Figure 2. (a) The RQNNQG
  environmental graph of a QNNQG, with L unitaries. The input state of the QNNQG is 

ψ,1 . A unitary Ui(θi) is represented by a vertex vUi
 in QNNQG

. The vertices vUi
 and vUj

 of unitaries Ui(θi) and 
Uj(θj) are connected by directed arcs sij. The gate parameters θij = θj are associated with sij, while in is the input 
space,   is the space of L unitaries, and   is the output space. Operator M is a measurement on the (n + 1)-th 
state (readout quantum state), and Yn+1 is a Pauli operator measured on the readout state (classical links are not 
depicted) (b) The compacted ordered graph 

∠f ( )QNNQG
  of QNNQG. The output is θ=

→
Y U x( ) 0, where 

=x z,10  and θ θ
→

= ∏ =U U( ) ( )l
L

l l1  (classical links are not depicted).
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Since fT(QNNQG) in (33) and FO(QNNQG) in (34) correspond with the data flow computational scheme of a 
QNNQG with linear transition functions, (33) and (34) represent an expression of the constraints of QNNQG. These 
statements can be formulated in a compact form.

Let ζv be a constraint on fT(QNNQG) of QNNQG as

ζ γ − = .f NN: (Q ) 0 (35)v v T QG

Thus, the fT(QNNQG) transition function is constrained as

γ= .f (QNN ) (36)T QG v

With respect to the output function, let ϕv be a constraint on FO(QNNQG) of QNNQG as

ϕ ℘ =F: (QNN ) 0, (37)v v O QG

where ⚬ is the composition operator, such that =f g x f g x( )( ) ( ( )), ℘v  is therefore another constraint as 
℘ =F( (QNN )) 0v O QG .

Then let πv be a compact constraint on fT(QNNQG) and FO(QNNQG) defined via constraints (35) and (37) as

∑

∑

π

ζ ϕ

γ

= + −

= − + ℘ −

≠ .

∈

∈

f F

V

f F NN V

( (QNN ), (QNN ))

( ) 2

(( ( (QNN )) ( (Q ))) 2

0 (38)

v T QG O QG

v V
v v

v V
v T QG v O QG

Since it can be verified that a learning machine that enforces the constraint in (38), is in fact a constraint machine. 
As a corollary, the constraints (33) and (34), along with the compact constraint (38), define a (QNN )QG  con-
straint machine for a QNNQG with linear functions fT(QNNQG) and FO(QNNQG). ■

Diffusion machine. Let  be the constraint machine with linear transition function fT(γΓ(v), xv), and let §v be 
a state variable such that ∀ ∈v V

γ− =Γ§ f x( , ) 0, (39)v T v v( )

and let FO(γv, xv) be the output function of , such that ∀v ∈ V

γ =c F x( , ) 0, (40)v O v v

where cv is a constraint.
Then, the  constraint machine is a  diffusion machine48, if only  enforces the constraint C , as

∑ γ γ− = + = − = .
∈

Γ §C f x c F x V: (( ( , ) 0) ( ( , ) 0)) 2 0
(41)v V

v T v v v O v v( )

Computational model of recurrent gate-model quantum neural networks. Theorem 2 The computational 
model of an RQNNQG is a (RQNN )QG  diffusion machine with linear transition functions fT(RQNNQG).

Proof. Let (RQNN )QG  be the constraint machine of RQNNQG with linear transition function fT(RQN-
NQG) = fT(γΓ(v), xv). Using the RQNNQG

  environmental graph, let Λv be a constraint on fT(RQNNQG) of RQNNQG, 
v ∈ V as

γΛ − =f: (RQNN ) 0, (42)v v T QG

where γv  is the quantum state associated with γv state variable of a given v of RQNNQG. With respect to the out-
put function FO(RQNNQG) = FO(γv, xv) of RQNNQG, let ωv be a constraint on FO(RQNNQG) of RQNNQG, as

ω Ω =F: (RQNN ) 0, (43)v v O QG

where Ωv is another constraint as Ωv(FO(RQNNQG)) = 0.

Since RQNNQG is a recurrent network, for all v ∈ V of RQNNQG
 , a diffuse constraint λ(Q(x)) can be defined via 

constraints (42) and (43), as

https://doi.org/10.1038/s41598-019-48892-w
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∑

∑

λ
ω

γ

= Λ + −

= − + Ω −

=

∈

∈

Q x
V

f F V

( ( ))
( ) 2

(( ( (RQNN )) ( (RQNN ))) 2

0, (44)

v V
v v

v V
v T QG v O QG

where x = (x1, …, x|V|), and Q(x) = (Q(x1), …, Q(x|V|)) is a function that maps all vertexes of RQNNQG
. Therefore, 

in the presence of (44), the relation

C D=(RQNN ) (RQNN ), (45)QG QG

follows for an RQNNQG, where (RQNN )QG  is the diffusion machine of RQNNQG. It is because a constraint 
machine (RQNN )QG  that satisfies (44) is, in fact, a diffusion machine (RQNN )QG , see also (41).

In (42), the fT(RQNNQG) state transition function can be defined for a (RQNN )QG  via constraint (42) as

γ= .f (RQNN ) (46)T QG v

Then, let Ht be a unit vector for a unitary Ut(θt), t = 1, …, L − 1, defined as

= +H x iy , (47)t t t

where xt and yt are real values.

Then, let Zt+1 be defined via θ
→

U( ) and (47) as

θ=
→

++ +Z U H Ex( ) , (48)t t t1 1

where E is a basis vector matrix60.

Then, by rewriting θ
→

U( ) as

θ φ ϕ
→

= +U i( ) , (49)

where φ, ϕ are real parameters, allows us to evaluate θ
→

U H( ) t as

θ

θ

φ ϕ
ϕ φ







→

→






=






− 











U H

U H

x
y

Re( ( ) )

Im( ( ) (50)

t

t

t

t

with

= σ+ +H f Z( ), (51)t t1
RQNN

1
QG

where Ht+1 is normalized at unity, and function ⋅σf ( )RQNNQG  is defined as

=






≥
<σf Z

Z Z
Z

( )
, if 0

0, if 0
,

(52)
RQNN 1

1

QG

where |⋅|1 is the L1-norm.

Since the RQNNQG has linear transition function, (52) is also linear, and allows us to rewrite (52) via the environ-
mental graph representation for a particular (γΓ(v), xv), as

γ
=







≥

<σ
Γf Z

f x Z

Z
( )

( , ), if 0

0, if 0
,

(53)
T v vRQNN ( ) 1

1

QG

where fT(γΓ(v), xv) is given in (50).

Thus, by setting t = ν, the term Ht can be rewritten via (50) and (52) as

= = + .ν ν νH x x i xRe( ) Im( ) (54)t

Then, the Yt(RQNNQG) output of RQNNQG is evaluated as
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=










ν

ν
Y W

x
x

(RQNN )
Re( )
Im( )

,
(55)

t QG

where W is an output matrix60.

Then let |Γ(v)| = L, therefore at a particular objective function f(θ) of the RQNNQG, the derivative θ

ν

df
dx

( )  can be 
evaluated as

∏

∏

θ θ

θ

θ
θ

=

=

=
→

ν ν

ν

ν

Γ

Γ

Γ =

Γ −
+

Γ =

Γ −

+

df
dx

df
dx

dx

dx

df
dx

dx
dx

df
dx

D U

( ) ( )

( )

( ) ( ( )) ,
(56)

v

v

v k

v
k

k

v k

v

k
T

( )

( )

( )

( ) 1
1

( )

( ) 1

1

where

=+ +D diag Z( ) (57)k k1 1

is a Jacobian matrix60. For the norms the relation

∏
θ θ

θ≤
→

ν νΓ =

Γ −

+
df
dx

df
dx

D U( ) ( ) ( ( )) ,
(58)v k

v

k
T

( )

( ) 1

1

holds, where

θ
→

= .+ +‖ ‖D U D( ( )) (59)k
T

k1 1

The proof is concluded here. ■

optimal Learning

Gate-model quantum neural network. Theorem 3 A supervised learning is an optimal learning for a (QNN )QG .

Proof. Let πv be the compact constraint on fT(QNNQG) and FO(QNNQG) of (QNN )QG  from (38), and let A be a 
constraint matrix. Then, (38) can be reformulated as

π = − = .⁎f F Af x b x( (QNN ), (QNN )) ( ) ( ) 0 (60)v T QG O QG

where b(x) is a smooth vector-valued function with compact support48, →⁎f : n ,

=⁎f x f F x( ) ( (QNN ), (QNN ), ) (61)T QG O QG

is the compact function subject to be determined such that

 π∀ ∈ = .⁎x v f x: ( , ( )) 0 (62)v

The problem formulated via (60) can be rewritten as

= .⁎Af x b x( ) ( ) (63)

As follows, learning of functions fT(QNNQG) and FO(QNNQG) of (QNN )QG  can be reduced to the determination 
of function f*(x), which problem is solvable via the Euler-Lagrange equations48,63,64.

Then, let L(QNN) be a non-empty supervised learning set defined as a collection

S Xκ ∈κ κ x y: { , , }, (64)L(QNN)

where (xκ, yκ), yκ = f*(xκ) is a supervised pair, and   is the cardinality of the perceptive space   associated with 
L(QNN).
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Since L(QNN) is non-empty set, f*(x) can be evaluated by the Euler-Lagrange equations48,63,64, as







∑λ=





− − − ϒ −





κ
κ κ

=

⁎ ⁎f x A x f x y x x( ) 1 ( ) 1 ( ( ) ) ( ) ,
(65)

T

1

where AT is the transpose of the constraint matrix A, and  is a differential operator as

∑= − ∇
κ

κ
κ

κ

=
 c( 1) ,

(66)

k

0

2

where cκ-s are constants, ∇2 is a Laplacian operator such that ∇ = ∑ ∂f x f x( ) ( )i i
2 2 ; while Υ is as

ϒ − =κ κx x x x( ) ( , ), (67)

where ⋅( )  is the Green function of differential operator . Since function  ⋅( ) is translation invariant, the 
relation

 = −κ κx x x x( , ) ( ) (68)

follows. Since the constraint that has to be satisfied over the perceptual space   is given in (62), the  Lagrangian 
can be defined as

L
X∫ λ π= +⁎ ⁎ ⁎Pf Pf x x f x dx, ( ) ( , ( )) , (69)v

where 〈⋅,⋅〉 is the inner product operator, while P is defined via (66) as

= †P P, (70)

where †P  is the adjoint of P, while λ(x) is the Lagrange multiplier as




⁎

 ∑λ γ= −





+ − ϒ −





κ
κ κ

−

=
x AA b x A f x y x x( ) ( ) ( ) 1 ( ( ) ) ( ) ,

(71)
T 1

1

where

G
X∫γ = − κx x( ), (72)

and b is as




⁎

 ∑λ= −





+ − ϒ −






.

κ
κ κ

=
b x A A x f x y x x( ) ( ) 1 ( ( ) ) ( )

(73)
T

1

Then, (65) can be rewritten using (71) and (73) as





∑γ
=






+ Φ − ϒ −





κ
κ κ

=

⁎ ⁎



f x H x y f x x x( ) 1 ( ) 1 ( ( )) ( ) ,
(74)1

where H(x) is as

γ= −
H x A AA b x( ) ( ) ( ) (75)T T 1

and Φ is as

Φ = − −A AA AI ( ) , (76)n
T T 1

where In is an identity matrix.

Therefore, after some calculations, f*(x) can be expressed as

G G
X

X

∫ ∑γ
χ= − + Φ −

κ
κ κ

=

⁎f x z H x z dz x x( ) 1 ( ) ( ) ( ),
(77)1

where χκ is as

χ
γ

=
−

.κ
κ κ

⁎y f x1 ( )

(78)
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The compact constraint of (QNN )QG  determined via (77) is optimal, since (77) is the optimal solution of the 
Euler–Lagrange equations.

The proof is concluded here. ■

Lemma 1 There exists a supervised learning for a (QNN )QG  with complexity  S( ), where |S| is the number arcs 
(number of gate parameters) of QNNQG

.

Proof. Let QNNQG
 be the environmental graph of QNNQG, such that QNNQG is characterized via θ

→
 (see (3)).

The optimal supervised learning method of a (QNN )QG  is derived through the utilization of the QNNQG
  environ-

mental graph of QNNQG, as follows.

The AC(QNN )QG
 learning process of (QNN )QG  in the QNNQG

  structure is given in Algorithm 1.

Algorithm 1. Superviseid learning for a (QNN )QG .
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The optimality of Algorithm 1 arises from the fact that in Step 4, the gradient computation involves all the gate 
parameters of the QNNQG, and the gate parameter updating procedure has a computational complexity  S( ). 
The QNNQG complexity is yielded from the gate parameter updating mechanism that utilizes backpropagated 
classical side information for the learning method.

The proof is concluded here. ■
Description and method validation. The detailed steps and validation of Algorithm 1 are as follows.

In Step 1, the number R of measurement rounds is set.
Step 2 is the quantum evolution phase of QNNQG that yields an output quantum system Y  via forward prop-

agation of quantum information through the unitary sequence θ
→

U( ) realized via the L unitaries. Then, a param-
eterization follows for each θxU ( )i i

, and the terms θWU ( )i i
 and θQU ( )i i

 are defined to characterize the θi angles of the 
Ui(θi) unitary operations in the QNNQG.

In Step 3, side information initializations are made for the error computations. A given θWU ( )i i
 is set as a cumu-

lative quantity with respect to the parent set Ξ ∈ i of unitary Ui(θi) in QNNQG.
Note, that (80) and (81) represent side information, thus the gate parameter θhi is used to identify a particular 

unitary U(θhi).
Let ′QNNQG

 be the the environmental graph of QNNQG such that the directions of quantum links are reversed. 
It can be verified that for a ′QNNQG

, δ θU ( )i i
 from (82) can be rewritten as

∑ ∑δ θ δ= =θ
Ξ

θ

θ

θ

θ

θ

θ
θ

Ξ
θ

∈ ∈

dW

dQ

dQ

dW

dW

dQ
Q ,

(89)
U

h i

U

U

U

U

U

U
U

h i
hi U( )

( )

( )

( )

( )

( )

( )

( )
( )

( )
( )i i

L L

h h

h h

i i

i i

i i
i i h h

and δ θU ( )L L
 can be evaluated as given in (83)

d x l z
dQ
( , ( )) ,

(90)
U

U
( )

0

( )
L L

L L

˜
δ =θ

θ

while the term δ θ θWU U( ) ( )i i j j
 for each Ui(θi) can be rewritten as

δ
θ θ

= = .θ θ
θ

θ˜ ˜
W d x l z

d
d x l z

dQ

dQ

d
( , ( )) ( , ( ))

(91)
U U

ij U

U

ij
( ) ( )

0 0

( )

( )
i i j j

i i

i i 

Since (86) and (85) are defined via the non-reversed QNNQG
 , for a given unitary the Γ children set is used. The 

utilization of the Ξ parent set with reversed link directions in ′QNNQG
  (see (89), (90), (91)) is therefore analogous 

to the use of the Γ children set with non-reversed link directions in QNNQG
. It is because classical side information 

is available in arbitrary directions in QNNQG
.

First, we consider the situation, if i = 1, …, L − 1, thus the error calculations are associated to unitaries U1(θ1), 
…, UL−1(θL−1), while the output unitary UL(θL) is proposed for the i = L case.

In QNNQG
, the error quantity δ θU ( )i i

 associated to Ui(θi) is determined, where θWU ( )L L
 is associated to the output 

unitary UL(θL). Only forward steps are required to yield θWU ( )L L
 and θQU ( )L L

. Then, utilizing the chain rule and 
using the children set Γ(i) of a particular unitary Ui(θi), the term θ θdW dQ/U U( ) ( )L L i i

 in δ θU ( )i i
 can be rewritten as 

= ∑ ∈Γ
θ

θ

θ

θ

θ

θ

θ

θ

dW

dQ h i
dW

dQ

dQ

dW

dW

dQ( )
UL L

Ui i

UL L

Uh h

Uh h

Ui i

Ui i

Ui i

( )

( )

( )

( )

( )

( )

( )

( )
. In fact, this term equals to θ δ∑θ θ∈ΓQU h i hi U( ) ( ) ( )i i h h

, where δ θU ( )h h
 is the error 

associated to a Uh(θh), such that Uh(θh) is a children unitary of Ui(θi). The δ θU ( )h h
 error quantity associated to a 

Figure 3. The learning method for a QNNQG. The QNNQG network realizes unitary θ
→

U( ) as a sequence of L 
unitaries, θ θ θ θ

→
= …− −U U U U( ) ( ) ( ) ( )L L L L1 1 1 1 . The algorithm determines the gradient of the loss with respect to 

the θ gate parameter, at a particular loss function ˜x l z( , ( ))0 . All quantum information propagates forward via 
quantum links (solid lines), classical side information can propagate arbitrarily (dashed lines).
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children unitary Uh(θh) of Ui(θi) can also be determined in the same manner, that yields δ =θ θ θdW dQ/U U U( ) ( ) ( )h h L L h h
. 

As follows, by utilizing side information in QNNQG
  allows us to determine δ θU ( )i i

 via the  ⋅( ) loss function and the 
Γ(i) children set of unitary Ui(θi), that yields the quantity given in (82).

The situation differs if the error computations are made with respect to the output system, thus for the L-th 
unitary UL(θL). In this case, the utilization of the loss function ˜x l z( , ( ))0  allows us to use the simplified formula 
of δ =θ θ

˜d x l z dQ( , ( ))/U U( ) 0 ( )L L L L
, as given in (83). Taking the 

θ

˜d x l z
d

( , ( ))

ij

0  derivative of the loss function ˜x l z( , ( ))0  

with respect to the angle θij yields 
θθ

θ˜d x l z
dQ

dQ

d
( , ( ))

Ui i

Ui i

ij

0

( )

( ) , that is, in fact equals to δ θ θ( )WU U( )i i j j
.

In Step 4, the quantities defined in the previous steps are utilized in the QNNQG for the error calculations. The 
errors are evaluated and updated in a backpropagated manner from unitary UL(θL) to U1(θ1). Since it requires only 
side information these steps can be achieved via a P( )QNNQG

 post-processing (along with Step 3). First, a gate 
parameter modification vector θ∆

→
 is defined, such that its i-th element, θ∆

→
i, is associated with the modification 

of the θi gate parameter of an i-th unitary Ui(θi).
The i-th element θ∆

→
i is initialized as θ∆

→
= θWi U ( )i i

. If θ∆
→

i equals to 1, then no modification is required in the 
θi gate parameter of Ui(θi). In this case, the δ θU ( )i i

 error quantity of Ui(θi) can be determined via a simple summa-
tion, using the children set of Ui(θi), as δ θ δ= ∑ ′θ θ∈ΓU j i ij U( ) ( ) ( )i i j j

, where Uj(θj) is a children of Ui(θi), as it is given in 
(85). On the other hand, if θ∆

→
≠ 1i , then the θi gate parameter of Ui(θi) requires a modification. In this case, 

summation θ δ∑ Γ θ∈j i ij U( ) ( )j j
 has to be weighted by the actual θ∆

→
i to yield δ θU ( )i i

. This situation is obtained in (86).
According to the update mechanism of (84–86), for z = L − 1, …, 1, the errors are updated via (88) as follows. 

At z = L and θ∆
→

= 1z , δ θU ( )z z
 is as

δ δ′ = .θ θ (92)U U( ) ( )z z L L

while at θ∆
→

≠ 1z , δ θU ( )z z
 is updated as

δ θ δ′ = ∆
→

.θ θ( ) (93)U z U( ) ( )z z L L

For z = L − 1, …, 1, if θ∆
→

= 1z , then δ θU ( )z z
 is as

∑δ δ θ δ′ = = .θ θ
Γ

θ
∈ (94)

U U
j z

zj U( ) ( )
( )

( )z z z z j j

while, if θ∆
→

≠ 1z , then

∑ ∑δ ∆ θ θ δ θ δ′ =
→

= ′ .θ θ θ
∈Γ ∈Γ

( )( )
(95)

U z
j z

zj U
j z

zj U( )
( ) ( )

( )z z j j j j

In Step 5, for a given unitary Ui(θi), i = 2, …, L and for its parent Uj(θj), the 
θ θgU U( ), ( )i i j j

 gradient is computed via 
the δ θU ( )i i

 error quantity derived from (85–86) for Ui(θi), and by the θ( )WUj j
 quantity associated to parent Uj(θj). (For 

U1(θ1) the parent set Ξ(1) is empty, thus i > 1.) The computation of 
θ θgU U( ), ( )i i j j

 is performed for all Uj(θj) parents of 
Ui(θi), thus (87) is determined for ∀j, j ∈ Ξ(i). By the chain rule,

δ
θ

θ

θ

θ

= ′ =
′

=
′

=
∑

′
.

θ θ θ θ
θ

θ

θ

θ

θ

θ

θ∈Ξ

( ) ( )g W
dW

d
dW

dQ

dQ

d

dW

dQ

d W

d

( )

(96)

U U U U
U

ij

U

U

U

ij

U

U

h i hi U

ij

( ), ( )
( )

( )

( )

( )

( )

( )

( ) ( )

i i j j i i j j
L L

L L

i i

i i

L L

i i

h h

Since for i = L, δ θU ( )L L
 is as given in (83), the gradient can be rewritten via (91) as


( )g d x l z

d
( , ( ))

(97)
U U

ij
( ),

0
i i j j

˜

θ
=

′
.θ θ

Finally, Step 6 utilizes the number R of measurements to extend the results for all measurement rounds, r = 1, 
…, R. Note that in each round a measurement operator is applied, for simplicity it is omitted from the description.

Since the algorithm requires no reversed quantum links, i.e. ′QNNQG
  for the computations of (85–86), the 

gradient of the loss in (87) with respect to the gate parameter can be determined in an optimal way for QNNQG 
networks, by the utilization of side information in QNNQG

 .
The steps and quantities of the learning procedure (Algorithm 1) of a QNNQG are illustrated in Fig. 3. The 

QNNQG network realizes the unitary θ
→

U( ). The quantum information is propagated through quantum links 
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(solid lines) between the unitaries, while the auxiliary classical information is propagated via classical links in the 
network (dashed lines). An i-th node is represented via unitary Ui(θi).

For an i-th unitary, Ui(θi), parameters θWU ( )i i
, θQU ( )i i

 and δ =θ θ θdW dQ/U U U( ) ( ) ( )i i L L i i
 for i < L, are computed, where 

θ= ∑θ Ξ θ∈W VU j L Lj U( ) ( ) ( )L L j j
. For the output unitary, δ =θ θ

˜d x l z dQ( , ( ))/U U( ) 0 ( )L L L L
 . Parameters θWU ( )i i

 and θQU ( )i i
 are 

determined via forward propagation of side information, the δ θU ( )i i
 quantities are evaluated via backward propa-

gation of side information. Finally, the gradients, δ=θ θ θ θg W ,U U U U( ), ( ) ( ) ( )i i j j i i j j
 are computed.

Recurrent gate-model quantum neural network. In classical neural networks, backpropagation59–61 
(backward propagation of errors) is a supervised learning method that allows to determine the gradients to learn 
the weights in the network. In this section, we show that for a recurrent gate-model QNN, a backpropagation 
method is optimal.

Theorem 4 A backpropagation in RQNNQG
  is an optimal learning in the sense of gradient descent.

Proof. In an RQNNQG, the backward classical links provide feedback side information for the forward propaga-
tion of quantum information in multiple measurement rounds. The backpropagated side information is analo-
gous to feedback loops, i.e, to recurrent cycles over time. The aim of the learning method is to optimize the gate 
parameters of the unitaries of the RQNNQG quantum network via a supervised learning, using the side informa-
tion available from the previous k = 1, …, r − 1 measurement rounds at a particular measurement round r.

Let RQNNQG
  be the environmental graph of RQNNQG, and fT(RQNNQG) be the transition function of an RQNNQG. 

Then the γv constraint is defined via RQNNQG
  as

γ γ= = Γf f x(RQNN ) ( , ), (98)v T QG T v v( )

while the constraint Ωv on the output F(γv, xv) of RQNNQG is defined via ωv = 0 as48,61,62

ω γΩ = Ω = .ΓF f x F f x x: ( (RQNN ), ) ( ( , ), ) 0 (99)v v T QG v v T v v v( )

Utilizing the structure of the RQNNQG
 environmental graph allows us to define a modified version of the back-

propagation through time algorithm59 to the RQNNQG.

The learning of (RQNN )QG  with constraints (42), (43), and (44) is given in Algorithm 2, depicted as AD(RQNN )QG
.

As a corollary, the training of (RQNN )QG  can be reduced to a backpropagation method via the environmental 
graph of RQNNQG. ■

Description and method validation. The detailed steps and validation of Algorithm 2 are as follows.
In Step 1, the number R of measurement rounds are set for RQNNQG. For each measurement round initializa-

tion steps (100, 101) are set.
Step 2 provides the quantum evolution phase of RQNNQG, and produces output quantum system Yr  (102) via 

forward propagation of quantum information through the unitary sequence θ
→

U( )r  of the L unitaries.
Step 3 initializes the P(r)(RQNNQG) post-processing method via the definition of (105) for gradient computa-

tions. In (106), the quantity θΦ = +
→

+−z U B( )r
r

r r
( )

1  connects the side information of the r-th measurement 
round with the side information of the (r − 1)-th measurement round; and θ

→
−U( )r 1  is the unitary sequence of the 

(r − 1)-th round, and Br is a bias the current measurement round. The quantity ξr,k = dΦr/dΦk in (107) utilizes the 
Φi quantities (see (106)) of the i-th measurement rounds, such that i = k + 1, …, r, where k < r.

Step 4 determines the gr loss function gradient of the r-th measurement round. In (108), the gr gradient is 
determined as L

S
∑

θ= Φ
Φ
Φ

Φ
→


˜
k
r x l z

d
d
d

d

d1
( , ( ))

( )
r

r

r

r

k

k

r

0,
( )

, that is, via the utilization of the side information of the k = 1, …, r meas-

urement rounds at a particular r.
In Step 5, the gate parameters are updated via the gradient descent rule59 by utilizing the gradients of the k = 1, 

…, r measurement rounds at a particular r. Since in (111) all the gate parameters of the L unitaries are updated by 
ωr as given in (112), for a particular unitary Ui(θr,i), the gate parameter is updated via α→r (114) to θr+1,i as
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θ θ α θ ω= − = − .+ (117)r i r i r i r i r1, , , ,

Finally, Step 6 outputs the G final gradient of the total R measurement rounds in (116), as a summation of the 
gr gradients (108) determined in the r = 1, …, R rounds.

Algorithm 2. Optimal learning method for a (RQNN )QG .
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The steps of the learning method of an RQNNQG (Algorithm 2) are illustrated in Fig. 4. The θ
→

r  gate parameters 
of the unitaries of unitary sequence θ

→
U( )r  are set as θ θ ω

→
=

→
−− − ,r r r1 1  where θ

→
−r 1 is the gate parameter vector 

associated to sequence θ
→

−U( )r 1 , while αr−1,i = ωr−1 is the gate parameter modification coefficient, and 
L

S
ω = ∑

λ

θ− − =
−

→
˜

r r k
r x l z

d1 1 1
1 ( , ( ))

( )
k

k

k

0,
( )

.

Closed-form error evaluation. Lemma 2 The δ quantity of the unitaries of a (RQNN )QG  can be expressed in a 
closed form via the RQNNQG

  environmental graph of RQNNQG.
Proof. Let RQNNQG

 be the environmental graph of RQNNQG, such that RQNNQG is characterized via θ
→

 (see 
(3)). Utilizing the structure RQNNQG

 of RQNNQG allows us to express the square error in a closed form as 
follows.

Let Y and Z refer to output realizations Y  and Z  of RQNNQG, ∈ Y Z, , with an output set  , and let 
 ˜x l z( , ( ))0  be the loss function. Then let HRQNNQG

 be a Hessian matrix48 of the RQNNQG structure, with a generic 
coordinate  ij lm,

RQNNQG, as
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where θWU ( )i i
 is given in (81), fi∠m(⋅) is a topological ordering function on RQNNQG

, indices Y and Q are associated 
with the output realizations Y  and Q , while δ θ θ( )U U

Q
( ), ( )

2

l l i i
 is the square error between unitaries Ul(θl) and Ui(θi) 

at a particular output Q  as

∑ ∑
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= =
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Figure 4. The learning method for an RQNNQG. In an r-th measurement round, the RQNNQG network realizes 
the unitary sequence θ

→
U( )r , and side information is available about the previous k = 1, …, r − 1 running 

sequences of the structure. Quantum information propagates only forward in the network via quantum links 
(solid lines), the αr−1,i = ωr−1 quantities are distributed via backpropagation of side information through the 
classical links (dashed lines). The θr,j gate parameter of an i-th unitary Ui(θr,i) of θ

→
U( )r  is set to θr,i = θr−1,i − αr−1,i, 

where θr−1,i is the gate parameter of the i-th unitary Ui(θr−1,i) of the θ
→

−U( )r 1  unitary sequence.
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where θQU ( )i i
 is as in (80). Note that the relation δ ≠θ θ( ) 0U U

Q
( ), ( )

2

l l i i
 in (119) holds if only there is an edge sil between 

∈v VUi
 and ∈θv VU ( )l l

 in the environmental graph RQNNQG
  of RQNNQG. Thus,

δ
δ

δ
=










= ∉
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.θ θ

θ θ

θ θ

( ) ( )
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s S

s S

0, if

0, if (120)
U U
Q U U

Q
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U U
Q
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( ), ( )
2 ( ), ( )

2

( ), ( )
2l l i i

l l i i

l l i i

Since RQNNQG
 contains all information for the computation of (119) and (RQNN )QG  is defined through the 

structure of RQNNQG
 , the proof is concluded here. ■

conclusions
Gate-model QNNs allow an experimental implementation on near-term gate-model quantum computer 
architectures. Here we examined the problem of learning optimization of gate-model QNNs. We defined the 
constraint-based computational models of these quantum networks and proved the optimal learning methods. 
We revealed that the computational models are different for nonrecurrent and recurrent gate-model quantum 
networks. We proved that for nonrecurrent and recurrent gate-model QNNs, the optimal learning is a supervised 
learning. We showed that for a recurrent gate-model QNN, the learning can be reduced to backpropagation. The 
results are particularly useful for the training of QNNs on near-term quantum computers.

References
 1. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018).
 2. Harrow, A. W. & Montanaro, A. Quantum Computational Supremacy. Nature 549, 203–209 (2017).
 3. Aaronson, S. & Chen, L. Complexity-theoretic foundations of quantum supremacy experiments. Proceedings of the 32nd 

Computational Complexity Conference, CCC ’17, 22:1–22:67, (2017).
 4. Biamonte, J. et al. Quantum Machine Learning. Nature 549, 195–202 (2017).
 5. LeCun, Y., Bengio, Y. & Hinton, G. Deep Learning. Nature 521, 436–444 (2014).
 6. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. MIT Press. Cambridge, MA (2016).
 7. Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).
 8. Monz, T. et al. Realization of a scalable Shor algorithm. Science 351, 1068–1070 (2016).
 9. Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).
 10. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
 11. Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 

(2016).
 12. IBM. A new way of thinking: The IBM quantum experience. URL, http://www.research.ibm.com/quantum (2017).
 13. Brandao, F. G. S. L., Broughton, M., Farhi, E., Gutmann, S. & Neven, H. For Fixed Control Parameters the Quantum Approximate 

Optimization Algorithm’s Objective Function Value Concentrates for Typical Instances. arXiv 1812, 04170 (2018).
 14. Farhi, E. & Neven, H. Classification with Quantum Neural Networks on Near Term Processors. arXiv 1802, 06002v1 (2018).
 15. Farhi, E., Goldstone, J., Gutmann, S. & Neven, H. Quantum Algorithms for Fixed Qubit Architectures. arXiv 1703, 06199v1 (2017).
 16. Farhi, E., Goldstone, J. & Gutmann, S. A Quantum Approximate Optimization Algorithm. arXiv 1411, 4028 (2014).
 17. Farhi, E., Goldstone, J. & Gutmann, S. A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence 

Constraint Problem. arXiv 1412, 6062 (2014).
 18. Lloyd, S. The Universe as Quantum Computer, A Computable Universe: Understanding and exploring Nature as computation, H. Zenil 

ed., World Scientific, Singapore, 2012, arXiv:1312.4455v1 (2013).
 19. Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. arXiv 1307, 

0411v2 (2013).
 20. Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis. Nature Physics 10, 631 (2014).
 21. Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum Support Vector Machine for Big Data Classification. Phys. Rev. Lett. 113 (2014).
 22. Lloyd, S., Garnerone, S. & Zanardi, P. Quantum algorithms for topological and geometric analysis of data. Nat. Commun. 7, 

arXiv:1408. 3106 (2016).
 23. Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemporary Physics 56, pp. 172–185. 

arXiv: 1409.3097 (2015).
 24. Imre, S. & Gyongyosi, L. Advanced Quantum Communications - An Engineering Approach. Wiley-IEEE Press (New Jersey, USA) 

(2012).
 25. Dorozhinsky, V. I. & Pavlovsky, O. V. Artificial Quantum Neural Network: quantum neurons, logical elements and tests of 

convolutional nets, arXiv:1806.09664 (2018).
 26. Torrontegui, E. & Garcia-Ripoll, J. J. Universal quantum perceptron as efficient unitary approximators, arXiv:1801.00934 (2018).
 27. Lloyd, S. et al. Infrastructure for the quantum Internet. ACM SIGCOMM Computer Communication Review 34, 9–20 (2004).
 28. Gyongyosi, L., Imre, S. & Nguyen, H. V. A Survey on Quantum Channel Capacities. IEEE Communications Surveys and Tutorials 99, 

1, https://doi.org/10.1109/COMST.2017.2786748 (2018).
 29. Van Meter, R. Quantum Networking, John Wiley and Sons Ltd, ISBN 1118648927, 9781118648926 (2014).
 30. Gyongyosi, L. & Imre, S. Multilayer Optimization for the Quantum Internet. Scientific Reports, Nature, https://doi.org/10.1038/

s41598-018-30957-x, (2018).
 31. Gyongyosi, L. & Imre, S. Entanglement Availability Differentiation Service for the Quantum Internet. Scientific Reports, Nature, 

https://doi.org/10.1038/s41598-018-28801-3, https://www.nature.com/articles/s41598-018-28801-3 (2018).
 32. Gyongyosi, L. & Imre, S. Entanglement-Gradient Routing for Quantum Networks. Scientific Reports, Nature, https://doi.

org/10.1038/s41598-017-14394-w, https://www.nature.com/articles/s41598-017-14394-w, (2017).
 33. Gyongyosi, L. & Imre, S. Decentralized Base-Graph Routing for the Quantum Internet, Physical Review A, American Physical 

Society, https://doi.org/10.1103/PhysRevA.98.022310, https://link.aps.org/doi/10.1103/PhysRevA.98.022310 (2018).
 34. Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications, Nature 

Communications, 15043, https://doi.org/10.1038/ncomms15043 (2017).
 35. Pirandola, S. et al. Theory of channel simulation and bounds for private communication. Quantum Sci. Technol. 3, 035009 (2018).
 36. Laurenza, R. & Pirandola, S. General bounds for sender-receiver capacities in multipoint quantum communications. Phys. Rev. A 

96, 032318 (2017).
 37. Pirandola, S. Capacities of repeater-assisted quantum communications. arXiv 1601, 00966 (2016).
 38. Pirandola, S. End-to-end capacities of a quantum communication network. Commun. Phys. 2, 51 (2019).

https://doi.org/10.1038/s41598-019-48892-w
http://www.research.ibm.com/quantum
https://doi.org/10.1109/COMST.2017.2786748
https://doi.org/10.1038/s41598-018-30957-x
https://doi.org/10.1038/s41598-018-30957-x
https://doi.org/10.1038/s41598-018-28801-3
https://www.nature.com/articles/s41598-018-28801-3
https://doi.org/10.1038/s41598-017-14394-w
https://doi.org/10.1038/s41598-017-14394-w
https://www.nature.com/articles/s41598-017-14394-w
https://doi.org/10.1103/PhysRevA.98.022310
https://link.aps.org/doi/10.1103/PhysRevA.98.022310
https://doi.org/10.1038/ncomms15043


1 9Scientific RepoRtS |         (2019) 9:12679  | https://doi.org/10.1038/s41598-019-48892-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

 39. Cacciapuoti, A. S. et al. Quantum Internet: Networking Challenges in Distributed Quantum Computing. arXiv 1810, 08421 (2018).
 40. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).
 41. Petz, D. Quantum Information Theory and Quantum Statistics, Springer-Verlag, Heidelberg, Hiv: 6. (2008).
 42. Bacsardi, L. On the Way to Quantum-Based Satellite Communication. IEEE Comm. Mag. 51(08), 50–55 (2013).
 43. Gyongyosi, L. & Imre, S. A Survey on Quantum Computing Technology, Computer Science Review, Elsevier, https://doi.

org/10.1016/j.cosrev.2018.11.002, ISSN: 1574-0137 (2018).
 44. Wiebe, N., Kapoor, A. & Svore, K. M. Quantum Deep Learning. arXiv 1412, 3489 (2015).
 45. Wan, K. H. et al. Quantum generalisation of feedforward neural networks. npj Quantum Information 3, 36 arXiv 1612, 01045 (2017).
 46. Cao, Y., Giacomo Guerreschi, G. & Aspuru-Guzik, A. Quantum Neuron: an elementary building block for machine learning on 

quantum computers. arXiv: 1711.11240 (2017).
 47. Lloyd, S. & Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett., 121, arXiv 1804, 09139 (2018).
 48. Gori, M. Machine Learning: A Constraint-Based Approach, ISBN: 978-0-08-100659-7, Elsevier (2018).
 49. Hyland, S. L. & Ratsch, G. Learning Unitary Operators with Help From u(n). arXiv 1607, 04903 (2016).
 50. Dunjko, V. et al. Super-polynomial and exponential improvements for quantum-enhanced reinforcement learning. arXiv: 

1710.11160 (2017).
 51. Romero, J. et al. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. arXiv: 1701.02691 

(2017).
 52. Riste, D. et al. Demonstration of quantum advantage in machine learning. arXiv 1512, 06069 (2015).
 53. Yoo, S. et al. A quantum speedup in machine learning: finding an N-bit Boolean function for a classification. New Journal of Physics 

16(10), 103014 (2014).
 54. Farhi, E. & Harrow, A. W. Quantum Supremacy through the Quantum Approximate Optimization Algorithm. arXiv 1602, 07674 

(2016).
 55. Crooks, G. E. Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem. arXiv 1811, 

08419 (2018).
 56. Gyongyosi, L. & Imre, S. Dense Quantum Measurement Theory. Scientific Reports, Nature, https://doi.org/10.1038/s41598-019-

43250-2 (2019).
 57. Farhi, E., Kimmel, S. & Temme, K. A Quantum Version of Schoning’s Algorithm Applied to Quantum 2-SAT. arXiv 1603, 06985 

(2016).
 58. Schoning, T. A probabilistic algorithm for k-SAT and constraint satisfaction problems. Foundations of Computer Science, 1999. 40th 

Annual Symposium on, pages 410–414. IEEE (1999).
 59. Salehinejad, H., Sankar, S., Barfett, J., Colak, E. & Valaee, S. Recent Advances in Recurrent Neural Networks. arXiv 1801, 01078v3 

(2018).
 60. Arjovsky, M., Shah, A. & Bengio, Y. Unitary Evolution Recurrent Neural Networks. arXiv: 1511.06464 (2015).
 61. Goller, C. & Kchler, A. Learning task-dependent distributed representations by backpropagation through structure. Proc. of the 

ICNN-96, pp. 347–352, Bochum, Germany, IEEE (1996).
 62. Baldan, P., Corradini, A. & Konig, B. Unfolding Graph Transformation Systems: Theory and Applications to Verification, In: Degano 

P., De Nicola R., Meseguer J. (eds) Concurrency, Graphs and Models. Lecture Notes in Computer Science, vol 5065. Springer, Berlin, 
Heidelberg (2008).

 63. Roubicek, T. Calculus of variations. Mathematical Tools for Physicists. (Ed. Grinfeld, M.) J. Wiley, Weinheim, ISBN 978-3-527-41188-
7, pp. 551–588 (2014).

 64. Binmore, K. & Davies, J. Calculus Concepts and Methods. Cambridge University Press. p. 190. ISBN 978-0-521-77541-0. OCLC 
717598615. (2007).

Acknowledgements
The research reported in this paper has been supported by the National Research, Development and Innovation 
Fund (TUDFO/51757/2019-ITM, Thematic Excellence Program). This work was partially supported by the 
National Research Development and Innovation Office of Hungary (Project No. 2017-1.2.1-NKP-2017-00001), 
by the Hungarian Scientific Research Fund - OTKA K-112125 and in part by the BME Artificial Intelligence FIKP 
grant of EMMI (BME FIKP-MI/SC).

Author contributions
L.GY. designed the protocol and wrote the manuscript. L.GY. and S.I. analyzed the results. All authors reviewed 
the manuscript.

Additional information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-48892-w.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-48892-w
https://doi.org/10.1016/j.cosrev.2018.11.002
https://doi.org/10.1016/j.cosrev.2018.11.002
https://doi.org/10.1038/s41598-019-43250-2
https://doi.org/10.1038/s41598-019-43250-2
https://doi.org/10.1038/s41598-019-48892-w
http://creativecommons.org/licenses/by/4.0/

	Training Optimization for Gate-Model Quantum Neural Networks
	Related Works
	Gate-model quantum computers. 
	Quantum neural networks. 
	Quantum machine learning. 

	System Model
	Gate-model quantum neural network. 
	Objective function. 
	Recurrent Gate-model quantum neural network. 
	Comparative representation. 
	Parameterization. 
	Constraint machines. 
	Calculus of variations. 


	Constraint-based Computational Model
	Environmental graph of a gate-model quantum neural network. 
	Computational model of gate-model quantum neural networks. 
	Diffusion machine. 
	Computational model of recurrent gate-model quantum neural networks. 

	Optimal Learning
	Gate-model quantum neural network. 
	Description and method validation. 

	Recurrent gate-model quantum neural network. 
	Description and method validation. 
	Closed-form error evaluation. 


	Conclusions
	Acknowledgements
	Figure 1 Schematic representation of a QNNQG and RQNNQG in an (n − 1)-th and r-th measurement rounds.
	Figure 2 (a) The environmental graph of a QNNQG, with L unitaries.
	Algorithm 1 Superviseid learning for a .
	Figure 3 The learning method for a QNNQG.
	Algorithm 2 Optimal learning method for a .
	Figure 4 The learning method for an RQNNQG.




