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Solar PV Power Potential is 
Greatest Over Croplands
Elnaz H. Adeh1, Stephen P. Good   2, M. Calaf3 & Chad W. Higgins2

Solar energy has the potential to offset a significant fraction of non-renewable electricity demands 
globally, yet it may occupy extensive areas when deployed at this level. There is growing concern 
that large renewable energy installations will displace other land uses. Where should future solar 
power installations be placed to achieve the highest energy production and best use the limited land 
resource? The premise of this work is that the solar panel efficiency is a function of the location’s 
microclimate within which it is immersed. Current studies largely ignore many of the environmental 
factors that influence Photovoltaic (PV) panel function. A model for solar panel efficiency that 
incorporates the influence of the panel’s microclimate was derived from first principles and validated 
with field observations. Results confirm that the PV panel efficiency is influenced by the insolation, air 
temperature, wind speed and relative humidity. The model was applied globally using bias-corrected 
reanalysis datasets to map solar panel efficiency and the potential for solar power production given 
local conditions. Solar power production potential was classified based on local land cover classification, 
with croplands having the greatest median solar potential of approximately 28 W/m2. The potential for 
dual-use, agrivoltaic systems may alleviate land competition or other spatial constraints for solar power 
development, creating a significant opportunity for future energy sustainability. Global energy demand 
would be offset by solar production if even less than 1% of cropland were converted to an agrivoltaic 
system.

The goal of the United States Department of Energy is to reach a levelized cost of energy for solar PV of $0.03 per 
kilowatt hour at utility scale by 20301. This objective will strengthen the U.S. economy, help the country reposi-
tion in the international energy market2,3, and reduce CO2 gas emissions4–6. Solar energy represents a 1% share of 
the energy share in the U.S and is set to expand its share to as much as 30% by 20507. Potential land competition 
between energy and food production8,9 necessitates a deeper understanding of the available solar resource and the 
overlapping agricultural or ecosystem land use services10. The global expansion of solar energy will require that 
both the most sustainable energy infrastructure developments10 as well as the locations of these developments 
are identified. The aim of this study is to augment the scientific grounds for this discussion by ranking land cover 
classes according to their solar energy production potential.

Solar PV potential fundamentally depends on the incoming solar radiation, which is strongly dependent on 
geographic location, but it is also well-known that the system’s efficiency depends on the temperature of the solar 
cells, and the temperature of the solar cells is a function of the local microclimate. Each potential location has 
an associated microclimate; therefore, the influence of local climatology on PV conversion efficiency must be 
addressed. The thermal processes that connect a solar panel to its surroundings are modulated by four primary 
environmental variables: insolation, air temperature, wind speed and relative humidity. A first order descrip-
tion of the influence of these factors can be cast in a simple energy balance model of the PV panel where wind 
speed and air temperature influence convective heating or cooling of the panel, water vapor alters the long wave 
radiation budget, and solar radiation is the primary energy source. Here, this new microclimate-informed PV 
efficiency model is validated using field data11 from a 1.5 MW solar array located at Oregon State University in 
Corvallis, Oregon12. The first order model is used to map global solar power potential in order to assess the over-
lap between solar potential and underlying land use.
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Results
Modeled PV efficiency as a function of air temperature, wind speed and relative humidity are consistent with 
measured values in the Corvallis solar array (Fig. 1). A full description of the field measurements and the 
reduced-order model is provided in the material section. Solar PV efficiency diminishes as a function of air 
temperature at a rate of approximately 0.5% per 10 °C. This is consistent with literature observations of decreased 
efficiency with increasing ambient temperature13,14. Light winds lead to increased energy efficiency relative to qui-
escent conditions with a 0.5% increase in efficiency from 0.5 m/s to 1.5 m/s. This result is consistent with Dupré et 
al.8, who show that small changes in the convective heat transfer coefficient can lead to significant changes in the 
solar PV efficiency. Increased vapor pressure is associated with a reduction in median efficiency that is not fully 
captured with the reduced order model.

We apply the reduced order model to obtain a global maps of solar PV efficiency and annual mean solar power 
potential (Fig. 2a,b), using data sets for the solar radiation, air temperature, wind speed and humidity, obtained at 

Figure 1.  Solar PV efficiency comparison of field data (box plots) and proposed model (blue shaded region) for 
Oregon State University solar arrays: (a) air temperature, (b) wind speed and (c) vapor pressure. The centerlines, 
box height, and extended lines represent the median, the interquartile range and the full extent of the data, 
respectively. Blue shaded regions indicate the full range of the reduced order model’s output under the same 
conditions.
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a global scale from re-analysis products11,12. The reported solar efficiency is the ratio of the solar power generated 
to the solar irradiance incident on the PV panel.

The most efficient continental locations include western America, southern Africa, and the Middle East. This 
pattern is generally consistent with prior assessments of solar power’s potential which emphasize other factors15–17 
including transmission and economic potential which are not considered in the present study18–20. The solar 
power potential associated seventeen underlying land cover types identified with NASA’s Moderate Resolution 
Imaging Spectrometer (MODIS) data21 is ranked by its median value (Fig. 3). Here, we find that croplands, grass-
lands, and wetlands were the top three land classes. Barren terrains, traditionally prioritized for solar PV system 
installation22, were ranked fifth.

Discussion
The top three land covers associated with greatest solar PV power potential are croplands, grasslands and wet-
lands. Solar panels are most productive with plentiful insolation, light winds, moderate temperatures and low 
humidity. These are the same conditions that are best for agricultural crops, and vegetation has been shown to be 
most efficient at using available water under mesic conditions where atmospheric evaporative demand is balanced 
by precipitation supply23. Estimates of cropland expansion since 170024 suggest that much contemporary crop-
land was previously savannas/grasslands/steppes and forest/woodlands, thus similarity in the power potential of 
croplands with grasslands and mixed forests (Fig. 3) is likely driven by the conversion to agriculture of land with 

Figure 2.  (a). Yearly average of the monthly efficiencies as calculated from Equation 1 which uses the satellite 
derived solar radiation, air temperature, humidity and wind speed as inputs; (b) the annual mean of PV power 
potential, presented in W/m2. Monthly efficiencies are multiplied at each location by the local solar radiation to 
calculate monthly power potentials which are then averaged.
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Figure 3.  Solar power potential ranked by land cover classification. The centerlines, box height, and extended 
lines represent the median, the interquartile range and the full extent of the data, respectively. Boxes are colored 
by the underlying mean efficiency.
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similar climates. Further, one could think of agriculture as a form of solar harvesting where the sun’s energy is 
stored in the chemical bonds of the plant matter, and agricultural activities already occupy those places on earth 
most amenable to solar harvesting.

Our rankings of solar power potential by land cover type (Fig. 3) may be interpreted to forecast increased land 
competition between dedicated food production and dedicated energy production. It could also be interpreted to 
forecast a significant increase in the adoption of agrivoltaic systems. Agrivoltaic systems leverage the superposi-
tion of energy and food production for mutual benefit12. Crops are grown in the intermittent shade cast by the PV 
panels in agrivoltaic systems. The shade does not necessarily diminish agricultural yield.

Researchers have successfully grown aloe vera25, tomatoes26, biogas maize27, pasture grass12, and lettuce28 in 
agrivoltaic experiments. Some varieties of lettuce produce greater yields in shade than under full sunlight; other 
varieties produce essentially the same yield under an open sky and under PV panels29. Semi-transparent PV 
panels open additional opportunities for colocation and greenhouse production30. The reduced order model was 
re-evaluated to assess the potential for agrivoltaic globally, and the global energy demand31 (21 PWh) could be 
offset by solar production if <1% of agricultural land at the median power potential of 28 W/m2 were suitable 
candidates for agrivoltaic systems and converted to dual use. Lack of energy storage and the temporal variance in 
the availability of solar energy will restrict this expansion.

Methods
Data sources.  Field data used in this study were collected during a two-year study on a six acre agrivoltaic 
solar farm and sheep pasture at Oregon State University Campus (Corvallis, Oregon, US.)11,12. Climatic variables 
(temperature, relative humidity, wind speed and incoming short-wave radiation were collected at a height of two 
meters (as the solar panel height) and one-minute intervals over two years. Wind speed was measured with a 
DS-2 acoustic anemometer (Meter Group, WA); relative humidity and air temperature were recorded with a VP-3 
hygrometer (Meter Group, WA), and incoming solar radiation was measured by a PYR sensor (meter Group, WA) 
which integrated the solar spectrum between 300 and 1200 nm. The arithmetic means of all data were calculated 
on 15-minute intervals that coincided with the energy production data at the solar array (provided by Solar City).

PV efficiency model definition.  The low-order solar PV efficiency model is a simple energy balance of the 
solar PV module.

The incoming energy is the sum of the shortwave radiation from the sun and the incoming longwave radia-
tion from the atmosphere and ground. The outgoing energy is composed of a reflected shortwave component, 
the black body radiation from the PV panel itself, the convective cooling of the panel, and the electrical energy 
output. The imbalance between the incoming and outgoing heat fluxes results in a gain or loss of stored thermal 
energy expressed through a change of the panel’s temperature.

A schematic of the control volume and the associated energy fluxes is presented in Fig. 4. Steady state is 
assumed, and the atmosphere is modeled under a neutral stratification as a first order approximation. The conse-
quence is that the energy storage term is neglected and that the ground temperature is equal to the air tempera-
ture. The resultant energy balance of the panel is expressed as:

α ε− − + + − − =↓ ↓ ↑R L L L q(1 ) 2 2 0, (1)
sun sky g p

conv

where ε is the efficiency of the solar panel, α = 0.2 is the PV panel surface albedo, Rsun is the measured incoming 
shortwave radiation from the sun, and expressions for the remaining individual terms are presented below. The 
integral longwave radiation reaching the solar module from the sky (assuming clear sky conditions) is modeled 
according to Brutsaert (1975)32.

Figure 4.  Schematic of the energy pathways that are measured or parameterized for the reduced order model 
outlined in Equation 1.
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where ea is the measured vapor pressure of water (hPa), Ta, is the measured air temperature (°K) and 
σ = 5.670367 × 10−8 kg s−1 K−4 is the Stephan-Boltzmann constant. The incoming long wave radiation from the 
ground is modeled as a simple black body:
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g
4

where Tg is the ground surface temperature. The PV panel is modeled as a black body for longwave emission:

= σL T , (4)p
P

4

where Tp is the panel temperature. The convective cooling of the panel is modeled with the bulk transfer equation:

= −( )q h T T , (5)conv p a

where h is the convective heat transfer coefficient which has been estimated as33:
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 is the thermal conductivity of dry air, υ = 1.57e-5 m2s−1 is the kinematic viscosity of air, 
Pr = 0.707 is the Prandtl number of dry air, and u is the measured wind speed at the panel height. PV panels are 
typically arranged in rows that span a distance much greater the size of an individual panel. Heat transfer is max-
imal when the flow is perpendicular to the row. In this case, the relevant scale is the length of an individual panel, 
lpanel = 1.5 m. The efficiency of the solar panel is modeled based on a linear relationship with panel temperature, 
according to34:

ε ε= 


− − 
( )A T T1 , (7)ref p ref

where εref = 0.135, is the reference efficiency of the panel at a reference temperature, Tref = 298 K, and 
A = 0.0051/°K is the change in panel efficiency associated with a change in panel temperature34. This linear rela-
tionship is assumed valid when − ≤ °T T K20p ref

34.
Substitution of Equations 2–7 into Equation 1 yields an equilibrium expression for the PV panel efficiency. 

This expression is a quartic polynomial with only one unknown: the PV panel efficiency, ε, and four input varia-
bles: ↓R sun, Ta, u, and ea. This equation also has only one real root which can be obtained numerically with any root 
finding algorithm. The field data described above were used as inputs to generate the model outputs plotted in 
Fig. 1. Night time periods and times of low sun angles (≤15°) were excluded from the analysis. In the global scale 
analysis, the input environmental data were provided for each 0.5° × 0.5° pixel. Monthly reanalysis datasets were 
used to compute monthly maps which were arithmetically averaged to produce Fig. 2a,b.
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