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electron collimator in Weyl 
semimetals with periodic magnetic 
barriers
Xunwu Hu & fang cheng

We investigate theoretically the effect of periodic magnetic barriers on the transport for a Weyl 
semimetal. We find that there are momentum and spin filtering tunneling behaviors, which is controlled 
by the numbers of the magnetic barriers. For the tunneling through periodic square-shaped magnetic 
barriers, the transmission is angular ϕ asymmetry, and the asymmetrical transmission probability 
becomes more pronounced with increasing the superlattice number n. However, the transmission 
is symmetric with respect to angle γ, and the window of the transmission become more and more 
narrower with increasing the number of barriers, i.e., the collimator behavior. This feature comes 
from the electron Fabry-Pérot modes among the barriers. We find that the constructive interference 
of the backscattering amplitudes suppress transmissions, and consequently form the minigaps of the 
transmission. The transmission can be switched on/off by tuning the incident energies and angles, the 
heights and numbers of the magnetic barriers, and result in the interesting collimator behavior.

In recent years, Weyl semimetal, has attracted extensive interest in the physics community due to its novel phys-
ical properties and potential applications1–6. The energy dispersion of quasi-particles in Weyl semimetal support 
nodal points that result from splitting of Dirac nodes7,8. Weyl cones and surface Fermi arcs have been observed by 
the angle-resolved photoemission spectroscopy in Weyl semimetals, such as in TaAs9,10, NbAs11 and TaS12. There 
are exotic properties in Weyl semimetals, such as the chiral anomaly13–15, a negative magnetoresistance16, the Hall 
effect17 and other anomalous transport properties18,19. Moreover, the electrons in Weyl semimetals have high 
mobility and chirality, therefore they have excellent application prospects in transport20–25.

Weyl semimetals, the three dimensional (3D) analogue of graphene, have linear dispersions around the Weyl 
points. It is convenient to operate the Dirac fermions in graphene by means of the external electric field and mag-
netic field26–31. Experimentally applying bias to the gate region or alkali doping can adjust the Fermi level in 3D 
Dirac semimetals32,33. Recently, a significant amount of attention was devoted to magnetotransport, which was 
studied theoretically and experimentally34–36.

Electron tunnelling through double magnetic barriers on the surface of a topological insulator was studied37. 
Subsequently, the effect of the periodic barriers on the surface of HgTe was studied38. After the realization of 
Weyl semimetals, the electron tunnelling through double magnetic barriers on the surface of a Weyl semimetal 
was investigated39. In this paper, we study theoretically the effect of periodic magnetic barriers on the Weyl semi-
metal surface. There are momentum and spin filtering behaviors, which is tuned by the numbers of the magnetic 
barriers. It is interesting to notice that electron collimator behavior can be found due to the electron Fabry-Pérot 
modes induced by the multiple reflections among barriers, the interference of the backscattering processes leads 
to minigap opening of the transmissions, i.e., the complete suppression of the transmission.

Methods
We consider n period magnetic barriers with the same width D (see Fig. 1). The distance between the neighbour-
ing barriers is L. The low energy Hamiltonian of the Weyl fermion under the magnetic field is

σ= ⋅ +H v ep A( ( )), (1)F

where vF is the Fermi velocity, and σ is Pauli matrices, the vector potential generated by the magnetic field 
B(x) = (0, 0, B) is A = (0, Ay, 0). Here we have neglected the Zeeman splitting because of very small band shift40. 
The electrical potential can make electron’s wave-vector in a Weyl semimetal with tilted energy dispersion shift 
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due to broken Lorentz symmetry22–24. It is possible to using the dispersion tilt instead of magnetic field barriers 
to obtain the electron collimation behavior. The Hamiltonian looks very similar with that of graphene and the 
surface states of 3D topological insulators (TIs), the tunneling processes were studied theoretically before37. The 
dominant difference between the Weyl semimetal and graphene and 3D TIs are that the Dirac cone in Weyl semi-
metal is a 3D system, while the others are two-dimensional systems. For convenience, we use dimensionless units: 
lB = [ℏ/eB0]1/2, E0 = ℏvF/lB, r → lBr, k → k/lB, B(x) → B0B(x), E → E0E, the Hamiltonian becomes

=






− +

+ + −







( )
( )
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k k i k A
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where the three components of wavevector can be written kx = kFcosγcosϕ, ky = kFcosγsinϕ, kz = kFsinγ with the 
Fermi wavevector = + +k k k kF x y z

2 2 2 2. By solving eq. [2], we obtain the relationship: − = + +( )E k k k Az x y y
2 2 2 2

.
There are two different magnetic field profiles, i.e., square-shaped and delta-function-shaped magnetic 

fields. Depositing superconducting strips above the Weyl semimetal with a magnetic field, we can obtain the 
square-shaped magnetic fields41. The magnetic barrier strength is beyond 30 T42. The vector potential of a 
square-shaped magnetic barrier is Ay(n) = B(x − L(n − 2)/2) for mod(n, 2) = 0, and Ay(n) = (n − 1)BD/2 for other 
cases. Depositing ferromagnetic metallic strips on Weyl semimetal through a thin oxide layer, we can obtain the 
delta-function-shaped magnetic field43,44. And the magnetic field strength is achieved experimentally around 
3.75 T45. The vector potential of a delta-shaped magnetic barrier reads Ay(n) = BD for mod(n, 2) = 0, and Ay(n) = 0 
for other cases.

The momentum py and pz along the interface are good quantum numbers because of the translational invari-
ance. The wave function reads ( )r x ik y ik z( ) ( )exp y zΦ → = Ψ + , where ky and kz are the wave numbers. Assuming 
a Weyl fermion incident from the left electrode, the wave functions in the left and right regions can read 

ΨL = ψ+ + rψ−,ΨR = tψ+, where ψ =+ + +
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, in which r and t are the 
reflections and transmission coefficients. Applying the continuity of the wave functions at the boundaries, we 
obtain
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where l(i) is the position of the interface, l(i)± = l(i) ± δ with infinitesimal positive η, S(l(i)+) and S(l(i + 1)−) can 
be given by the x-dependent 2 × 2 matrixes, whose columns are constructed by the independent eigenstates of the 
Eq. (2). The transfer matrix of square-shaped magnetic barrier case can be expressed in general form as

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

S x
D k A D k A

i
v

D k A i
v

D k A
mod n

S x
e e

k x i k A e

E k

k x i k A e

E k

( )
2 2

2 2 2 2
, ( , 2) 0,

( ) ( ) ( ) , otherwise

(4)

v y y v y y

v y y v y y

ik x x ik x x

x y y
ik x x

z

x y y
ik x x

z

2 1 2 1

2 2

( ) ( )

( ) ( )

x x

x x











=







+ − +

+ − − +







=

=







+ +

+

− + +

+







.

− −

−

−

Figure 1. (a) The Weyl semimetal system with periodic magnetic barriers. The red arrow is incident wavevector 
with incident angles γ and ϕ. (b) The magnetic field B(x) of square-shaped barriers. (c) The magnetic field B(x) 
of delta-function-shaped barriers.
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Here v = E kz
2 2− . Note that the wave function forms of both square-shaped and delta-function-shaped mag-

netic field profiles are same at mod(n, 2) ≠ 0, but the vector potential Ay is different for the two different magnetic 
field profiles. The magnetic unit is B0 = 1T, the energy unit is E0 = 26 meV, and the length unit is lB = 26 nm in the 
following calculation. We can obtain the transmission probability using the scattering-matrix technique.

Results and Discussions
Transport with periodic square-shaped magnetic barriers. The transmission probability for periodic 
square-shaped magnetic barriers structure under successively increasing number of modulations n = 3, 5, 7, 9 are 
plotted as a function of the incident angle in Fig. 2. As shown in Fig. 2(a), the transmission is angular ϕ asymmet-
ric due to the inhomogeneous magnetic field. The asymmetrical transmission probability become more distinct 
with increase of the superlattice number n, which means that a wave-vector filtering is more astonishing for big-
ger superlatt ice number.  The boundar y of T  =  0 can be obtained by the equation EFB0lB 
cosγ(1 − sinϕ) = (n − 1)BDE0/2. The transmission falls sharply and even to zero when the incident angle ϕ is past 
a critical value ϕc = arcsin(1 − (n − 1)BDE0/2EFB0lBcosγ). The wavevector becomes imaginary, evanescent modes 
in the outgoing region appear, thus the transport is switched off. The transmission is symmetrical to the incident 
angle γ (see Fig. 2(b)). The transport is concentrated in a narrower area with the increase superlattice number n, 

according to the relation ( ) ( )k lx B
E

E
E

E
n BD

B l
cos 2 cos sin ( 1)

2

2
F F

B0 0 0
= − +γ γ ϕ − . For a fixed incident energy, the trans-

mission falls sharply and even to zero when γ is past a critical value γc = arccos(n − 1)BDE0/2EFB0lB(1 − sinϕ).
It is interesting to see the effect of the incident energy and superlattice number n on the perfect transmission. 

Figure 3 is the contour plot of the transmission probability T(EF, n) for a periodic square-shaped magnetic bar-
riers structure. The incident angle is γ = 0 for Fig. 3(a) and γ = π/6 for Fig. 3(b), respectively. The tunneling is 
switched on when the incident energy EF is past the critical value, and the critical incident energy becomes bigger 
with increasing superlattice number n. The boundary of the total reflection region is determined by the relation 
EF ≤ (n − 1)BDE0/2B0lBcosγ(1 − sinϕ). In the case of γ = 0 as shown in Fig. 3(a), there is not oscillating behavior 
due to without quasibound states. However, for γ = π/6 as shown in Fig. 3(b), there is the reflection in the z direc-
tion, therefore there is oscillating behavior of the transmission probability because of quasibound states. This is 
accordance with our previous work39. Reference39 has investigated the transport in a magnetic/normal/magetic 
hybrid structure on the surface of a Weyl semimetal. This present work focuses on the influence of the number of 
superlattice layers on transport.

Figure 4 is the contour plot of the transmission probability T(B, n) through a periodic square-function-shaped 
magnetic barriers, in the case of incident energy EF = 78 meV, incident angle ϕ = 0, the width D = 26 nm, dis-
tance L = 26 nm. The incident angle is γ = 0 for Fig. 4(a) and γ = π/6 for Fig. 4(b), respectively. One can see 
clearly that the tunneling is totally forbidden at the cut-off magnetic field B, and the critical magnetic field 
becomes weaker as increasing superlattice number n. The total reflection region is dertermined by B ≥ (n − 1)EFlB 
cosγ(1 − sinϕ)B0/2DE0. The magnetic field B strongly affect and control the transmission. As we known, the 
cyclotron orbit radius is R = vm/qB. When B exceeds a certain magnetic field value, then the cyclotron orbit 
radius R is less than the width D, so the incident electron will back out of the barrier region. Therefore, there is a 
sharp transition where the transmission probability T becomes almost zero beyond a certain magnetic field value. 
For γ = π/6 as shown in Fig. 4(b), there is quasibound states due to the reflection in the z direction, therefore there 
is oscillating behavior of the transmission probability, which is consistent with Fig. 3(b).

Most interestingly, we can control spin transport on Weyl semimetal. The spin orientation is plotted as 
function of ϕ and γ for a parallel configuration square-shaped magnetic barriers at different incident energy 
EF = 52 meV and 104 meV, respectively (Fig. 5(a,b)). There is a rotation angle between the transmitted electron 

Figure 2. Transmission probability in the case of periodic square-shaped magnetic barrier versus the incident 
angles (a) ϕ with γ = π/6, (b) γ with ϕ = −π/4. The incident energy is EF = 78 meV, the barrier width is 
D = 26 nm, distance is L = 26 nm and magnetic field is B = 1 T.
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spin and the incident electron spin. And the rotation angle depends on the electron energy and the vector poten-
tial Ay, as shown in Fig. 5(a,b). The spin orientation is plotted as function of ϕ and γ for square-shaped mag-
netic barriers with a fixed incident energy EF = 104 meV for different superlattice n = 5 and n = 9, respectively 
(Fig. 5(c,d)). The Ay in the outgoing region depends on the magnetic barrier height and width, therefore the spin 
and direction of motion of the transmitted electrons can be controlled by the number of the barriers. The decrease 
of incident energy and/or the increase of magnetic barrier number n can inhibit transmission probability.

Transport in the presence of periodic delta-function-shaped barriers. In the following we consider 
tunneling in the presence of the periodic delta-function-shaped magnetic barriers under successively increasing 
number of modulations n = 3, 5, 9, 41. Figure 6 is contour plot of transmission probability T(ϕ, γ). Here we have 
fixed that EF = 78 meV, B = 1 T, D = 26 nm, L = 26 nm. For the case of a single barrier structure n = 3 (Fig. 6(a)), 
there is no oscillating behavior, and there is a high transmission probability in the range of γ = [−60°, 60°] and 

Figure 3. The (EF, n) dependence of tunneling probability through square-shaped periodic magnetic barrier for 
(a) γ = 0 and (b) γ = π/6. The incident angle is ϕ = 0, D = 26 nm, L = 26 nm and B = 1 T.

Figure 4. The (B, n) dependence of transmission probability through square-shaped periodic magnetic barrier 
for the incident angle for (a) γ = 0 and (b) γ = π/6. The incident angle ϕ = 0, EF = 78 meV, D = 26 nm, and 
L = 26 nm.
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ϕ = [−60°, 30°]. For the case of a double barrier structure n = 5 (Fig. 6(b)), the transmission becomes very differ-
ent from that of the single barrier structure. There are Fabry-Pérot modes due to the multiple reflections in both y 
and z directions. And the transmission for the delta-function-shaped magnetic barrier case has obvious resonant 
behavior in the case of large positive incident angles. On the contrast, tunneling for the square-shaped magnetic 
barrier case is completely forbidden for large positive angle ϕ [see Fig. 2(a)] and large angle |γ| [see Fig. 2(b)]. The 
interference behavior becomes more obvious with increasing n. (see Fig. 6(c,d)). Except the Fabry-Pérot modes 
between the two barriers, there is interference of the backscattering by different layers when n ≥ 7. It is interest-
ingly to see that the boundary of perfect transmission and totally forbidden in the central region is more clearly 
at n = 41, which is as shown in Fig. 6(d). This is because the number of layers n increases, the interference effect 
becomes more obvious. There is constructive inteference when kx is an integer multiple of π/(L + D)38.

Figure 7 shows the tunneling in the case of the periodic delta-function-shaped magnetic barriers as a func-
tion of Fermi energy under successively increasing number of modulations n = 3, 5, 9, 41. For a single barrier 
structure n = 3 (black solid line in Fig. 7), there is no oscillating behavior. For a double barrier structure n = 5 
(red dashed line in Fig. 7), we find a obvious oscillating behavior stems from Fabry-Pérot modes between the two 
barriers. The first transmission peak appears nearby EF ≈ 18 meV, and the transmission valley appears nearby 
EF ≈ 30 meV. With increasing n, there is a huge oscillation in the transmission peak nearby EF ≈ 18 meV, this is 
because the interference of the backscattering by different layers. When the number n of modulation is further 
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Figure 5. The angular dependence of the spin orientations. The black arrows respond to the incident electrons, 
the red arrows to the transmitted electrons, and the green arrows to the reflected electrons, respectively. The 
barrier width D = 26 nm, L = 78 nm, and B = 1. The superlattice n = 3 and the incident energy is (a) EF = 52 meV, 
(b) EF = 104 meV, respectively. The incident energy is EF = 104 meV and the superlattice is (c) n = 5, (d) n = 9, 
respectively.
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increased, it is interesting to see that the transmission pronounced dip near EF ≈ 88 meV, and a totally forbidden 
near EF ≈ 25 meV, 38 meV]. The increasingly strong interferences of backscattering cause superlattice minigaps, 
thus completely suppress the transport.

Figure 8 shows the contour plot of the transmission probability T(B,n) for the case of a periodic 
delta-function-shaped magnetic barriers. The incident angle is γ = 0 for Fig. 8(a) and γ = π/6 for Fig. 8(b), 
respectively. One can see clearly that the tunneling is totally forbidden at the cut-off magnetic field 
B = EFlBcosγ(1 − sinϕ)B0/DE0. The cut-off magnetic field would not decrease as superlattice number n increases. 

Figure 6. The angular dependence of the transmission probability through delta-function-shaped periodic 
magnetic barrier. EF = 78 meV, D = 26 nm, L = 26 nm, and B = 1T.

Figure 7. Transmission probability through the delta-function-shaped periodic magnetic barrier versus 
incident energy EF. The incident angles γ = π/6, ϕ = 0, the barrier width D = 26 nm, distance L = 26 nm and 
magnetic field B = 1T.
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On the contrast, the critical magnetic field becomes weaker as increasing superlattice number n for the case of the 
square-shaped magnetic barriers [see Fig. 4(a,b)].

the magnetoresistance. The magnetoresistance ratio is defined as MR = (GP − GAP)/GAP, where the 
GP(GAP) denotes the conductance of the parallel (antiparallel) configuration. In terms of the Landauer-Büttiker 
formalism, we can obtained the ballistic conductance, G G TdEdk dk

k

k

k

k
y z0

F

F

F

F∫ ∫ ∫=
−∞

∞

− −
, where G0 = e2LyLz/(πh) is 

the conductance unit, Ly(Lz) is the length in the y (z) direction.
The magnetoresistance ratio is shown as a function of EF for different superlattice numbers n (Fig. 9). The 

MR for square-shaped barrier is smaller than that for delta-function-shaped barrier (see Fig. 9(a,b)). All the 
magnetoresistance ratio MR becomes negative with the superlattice number increasing. For the parallel 
square-shaped configuration, with the increase of the superlattice number, the vector potential Ay in the outgoing 
region increases. When the vector potential Ay is past a critical value, the outgoing wave becomes evanescent 

Figure 8. The (B, n) dependence of transmission probability through the periodic delta-function-shaped 
magnetic barriers for (a) γ = 0 and (b) γ = π/6. The incident angle ϕ = 0, EF = 78 meV, D = 26 nm, and 
L = 26 nm.

Figure 9. The magnetoresistance ratio MR as a function of the incident energy EF for a (a) square-shaped 
magnetic barrier (b) delta-function-shaped magnetic barrier. Here D = 26 nm, L = 78 nm, B = 1 T.
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spatially, thus GP decreases. While for the antiparallel square-shaped configuration, the transmission is inde-
pendent of the superlattice number. Therefore, MR changes from the positive to negative with the increase in 
the superlattice number. In the case of delta-function-shaped barrier, there is significant oscillation in MR(see 
Fig. 9(b)). The increase in superlattice number reduces the differences in parallel square-shaped configuration 
and antiparallel square-shaped configuration, thus leads to MR increase.

conclusion
In summary, we investigate theoretically the effect of periodic magnetic barriers on transport for a Weyl semi-
metal. The transmission has an interesting momentum and spin filtering feature which can be tuned by the num-
ber of the magnetic barriers. The transmission probability T becomes zero beyond a certain magnetic field value. 
The critical magnetic field is proportional to the number of the superlattice for the tunneling through periodic 
square-shaped magnetic barriers, but independent of the number of the superlattice for the tunneling through 
periodic delta-function-shaped magnetic barriers. The constructive interference of the backscattering by different 
periodic magnetic barriers results in the formation of superlattice minigaps and switches off the transport. The 
tunneling magnetoresistance depends on the number of the magnetic barriers. These behaviors offer us an effi-
cient way to control the transport and construct Weyl semimetal-based electronic devices.
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