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osteoporosis Recognition in Rats 
under Low-power Lens Based on 
convexity optimization feature 
fusion
Jie cai1, Wen-guang He1, Long Wang1, Ke Zhou1 & tian-xiu Wu2

considering the poor medical conditions in some regions of china, this paper attempts to develop a 
simple and easy way to extract and process the bone features of blurry medical images and improve 
the diagnosis accuracy of osteoporosis as much as possible. After reviewing the previous studies on 
osteoporosis, especially those focusing on texture analysis, a convexity optimization model was 
proposed based on intra-class dispersion, which combines texture features and shape features. 
experimental results show that the proposed model boasts a larger application scope than Lasso, a 
popular feature selection method that only supports generalized linear models. The research findings 
ensure the accuracy of osteoporosis diagnosis and enjoy good potentials for clinical application.

According to the World Health Organization (WHO), osteoporosis is a systemic skeletal disease where reduced 
bone mass and deteriorated microarchitecture increase the bone fragility and the risk of a broken bone1,2. This 
definition attaches equal importance to the mass and quality of bones. The bone quality is demonstrated by the 
microarchitecture, i.e. the 3D structure and connections of trabeculae. The variation in trabecular microarchitec-
ture is a major determinant of bone fragility. In the diagnosis of osteoporosis, it is even more sensitive than the 
popular index of bone mineral density (BMD)3,4. Therefore, the trabecular microarchitecture must be included 
in the research of osteoporosis.

Osteoporosis is now a common health problem among senior citizens in both developed countries like the UK 
and developing countries like China. In the UK, about 536,000 new fragility fractures occur each year5, leading 
to severe pain and disability to individual sufferers. In 2010 alone, osteoporosis treatment costed the National 
Health Service (NHS) of over £4.4 billion. Population ageing has become a serious problem in China. In 2017, 
the number of people over 60 in China had exceeded 240 million, about 17.3% of the total population. Among 
them, 158 million were aged 65 or above, accounting for 11.4% of the total population6. Many of these elderlies 
are faced with osteoporosis. Studies have shown that 33% of males and 73.8% of females aged between 70 and 79 
in China are suffering from this disease. Against this backdrop, it is imperative to realize early warning, diagnosis 
and effective intervention of osteoporosis.

The existing studies on osteoporosis mainly relies on bone texture analysis, a non-invasive method that pro-
vides rich information about bones, using images produced by such imaging techniques (e.g. X-ray, microscopy, 
micro computed tomography (micro CT) and magnetic resonance imaging (MRI)). For example, Yang Xinhui 
et al.7 extracted the trabecular textures from X-ray images on bones, classified ten X-ray images on bones by 
machine, and proved the application potential of texture analysis. R. Karunanithi et al.8 analysed the trabecular 
features in X-ray images on the calcaneus of postmenopausal women, and discussed the causes of osteoporosis 
through the analysis. F. Mallard et al.9 performed texture analysis on the X-ray images of spine, distal radius and 
calcaneus, realized the early detection of changes in the microarchitecture of bones, and demonstrated the values 
of texture analysis for preventing and treating osteoporosis. Muthu Subash Kavitha et al.10 conducted a texture 
analysis on the X-ray images of the teeth, revealing that texture analysis, coupled with conventional indices, 
can greatly facilitate the diagnosis of osteoporosis. Using X-ray images and CT images, Lespessailles, Chappard, 
Castellanos et al.11,12 demonstrated the excellent effect of texture analysis in determining the fragility, mass and 
microarchitecture of bones, and the capacity of texture analysis in the diagnosis and early detection of clinical 
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osteoporosis. Ji Ming and Chen et al.13,14 extracted the texture parameters of trabeculae from MRI images, and 
found significant texture differences between osteoporotic group (OVX group) and sham-operated group (SHAM 
group). The above studies confirmed the feasibility of texture analysis in osteoporosis research.

Recent years saw the application of many classification systems in the identification and classification of oste-
oporosis, such as multi-layer perceptron15, Bayesian classifier16, random forest classifier17 and support vector 
machine (SVM)10,18. The recognition accuracy of these systems hinges on the resolution of the source images. 
For instance, Frighetto19 obtained shape and texture parameters from spinal MRI images, and probed deep into 
the effect of the k-nearest neighbours (KNN) algorithm. Lately, the popular fuzzy logic has been proved effi-
cient in osteoporosis diagnosis. Muthu Subash Kavitha20 developed a way to diagnose osteoporosis based on the 
hybrid genetic swarm fuzzy (GSF) classifier. Similarly, the grey level co-occurrence matrix (GLCM) have been 
employed for texture recognition of osteoporosis. As a popular approach for texture feature analysis, the GLCM 
can describe the spatial distribution of different levels in a image using a second-order statistic21–23.

Deep learning has achieved great success in the field of computer vision processing and has been applied to the 
medical field, especially to deal with image recognition and classification24,25, lesion segmentation, computer-aided 
diagnosis26,27 and microscopic image analysis28. Profound learning algorithm plays a vital role in assisting doctors 
to diagnose accurately and efficiently and becomes a supplement to human skills. Its models include supervised 
learning methods and unsupervised learning methods. Supervised learning methods need to give sample labels 
in advance. Classification models are trained by labeled image features. Classification categories are usually spec-
ified in advance. (1) Supervised learning methods are generally been adopted to support Vector Machines(SVM), 
Convolutional Neural Networks (CNN), Recurrent Neural Networks a (aRNN)and so on.Convolution network 
has successfully reduced the dimension of image recognition problem with huge amount of data through a series 
of methods, and finally it can be couched. Cem M. Deniz et al. presented an automatic proximal femur segmenta-
tion method that is based on deep convolutional neural networks (CNNs)29. CNNs have the unique capability of 
feature learning,it learn increasingly complex features from data automatically30. RNN is a kind of neural network 
that can predict the future to some extent while being used to analyze time series data (such as analyzing stock 
prices, predicting buying and selling points). Qiuling Suo, et al. proposed a multi-task framework that can mon-
itor the multiple status ofdiagnoses,Patients’ historical records were directly fed into a Recurrent Neural Network 
(RNN) which memorizes all the past visit information, and then a task-specific layer is trained to predict multiple 
diagnose31. (2) Unsupervised learning method automatically classifies different classes according to the similarity 
between samples without preset sample labels.Such Encoders as Autoencoder(AE), Stacked Autoencoder (SAE), 
Staked Sparse Autoencoder(SSAE), deep belief network(DBN), Deep Boltzmann Machines(DBM), Variational 
Auto-Encoder(VAE)are all in common use. Among them, AE is used for dimension reduction or feature learn-
ing. Sparse Automatic Coding (SSAE) is a special three-layer neural network with sparse constraints in general 
neural networks whose model aims to obtain a low-dimensional representation from the original data. SSAE can 
automatically learn features from unlabeled data and can give better feature descriptions than the original data32,33. 
When it comes to practical application, sparse auto-coding will function as the preprocessing process of data. Stack 
self-coding neural network (SAE) is used as a neural network composed of multi-layer sparse self-encoders, and 
the output of the former layer self-encoder is used as the input of the latter layer. The Stack-type neural network 
parameters can be achieved through greedy couching layer by layer. Yassine Nasser, et al. proposed a novel aided 
diagnosis method for osteoporosis consisting of SSAE and a SVM classifier34. Changhang Xu, et al. introduced a 
deep learning algorithm—stacked autoencoder (SAE) to enhance the visibility of delaminations35 DBN and DBM 
are deep learning models belonging to the boltzmann family wihch use restricted boltzmann machine (RBM) as 
the learning module. The Restricted Boltzmann Machine (RBM) is a generative stochastic neural network. DBNs 
have undirected connections at the top two layers which form an RBM and directed connections to the lower layers. 
DBMs have undirected connections between all layers of the network36.

Deep learning skill is not the ultimate algorithm but represents several personalized schools in artificial intel-
ligence, and its performance limit needs to be reasonably evaluated. In-depth learning, especially supervised 
learning, relies too much on high-quality, labeled big data. If there is a lack of high-quality labeled training sam-
ples. The trained model may be over-fitted or has poor robustness, so the obtained model needs to be tested for 
universality and applicability in various situations, which may not be suitable for the economic effect of medical 
images. Unsupervised learning has no such restriction and can work without supervision,embodying DBNs/
DBMs. However, it is difficult to accurately estimate the joint probability and calculate the cost when creating 
DBN, which constitutes a defect. On the other hand, if automatic encoders generate errors in the first layer, they 
are likely to become invalid, which is one of their shortcomings. Such errors may cause network learning to 
reconstruct the average value of training data. At the same time, the research of in-depth learning in the field of 
Medical Image Computing is still mainly based on technology, and the evaluation index adopted is also an eval-
uation index in the field of computers. For any medical application, we would like to see the evaluation of related 
technologies according to medical rules. For example, multi-center, randomized and controlled research proves 
that this technology has more significant advantages than previous technologies.

In our previous research, the trabecular texture of rat tibial slices was investigated under the microscope. It is 
found that the ovariectomized group (OVX group) differed greatly in trabecular texture from the sham-operated 
group (SHAM group)37–41. In addition, the images on rat tibial slices were classified and recognized under 
4 × and 10 × microscopes. The recognition rate was always above 90%. Compared to 2.5 × microscope, 4 × and 
10 × microscopes can acquire the texture clearly. However, neither of the two microscopes can provide the whole 
picture of a slice. The only alternative is to take multiple images of the slice by manual positioning. Thus, it is 
difficult to maintain the morphological integrity of the trabeculae. What is worse, the experimental results may 
be affected by the inevitable overlapping or missing of images and the variation in light sources. By contrast, the 
2.5 × microscope can capture a complete rat tibial slice, but the resulting image is too unclear to be recognized 
with common texture parameters. To solve these problems, this paper weighs the texture parameters considering 
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the impacts from direction and distance, carries out feature fusion with shape parameters, and then recognizes 
the osteoporosis in the SHAM group and the OVX group.

Meanwhile, the previous research only extracts some of the texture parameters. With only a few parameters, 
there is no feature redundancy and no need for feature selection. In this paper, however, a total of 28 texture 
and shape parameters are extracted. In view of the strong correlation between these parameters, it is necessary 
to eliminate feature redundancy and find out effective feature parameters for the diagnosis of osteoporosis. 
Considering the poor medical conditions in some regions of China, this paper attempts to develop a simple and 
easy way to extract and process the bone features of blurry medical images and improve the diagnosis accuracy of 
osteoporosis as much as possible. Therefore, a convexity optimization model was proposed based on intra-class 
dispersion, which is capable of producing parameters suitable for classification and recognition. The proposed 
model boasts a larger application scope than Lasso, a popular feature selection method that only supports gener-
alized linear models. The research lays a solid diagnostic basis for osteoporosis with poor equipment conditions 
and unclear image features.

Methodology
experimental animals and feeding conditions. Three-month-old female Sprague Dawley (SD) rats 
with a mean weight of 250.1 g were selected for our experiment. These rats were divided randomly into the SHAM 
group and the OVX group. In the SHAM group, the rats were sham-operated and administered with 5 mL/kg·d 
of normal saline through the gastrointestinal tract. In the OVX group, the rats were ovariectomized and admin-
istered with 5 mL/kg·d of normal saline through the gastrointestinal tract. Each group has 10 rats and the exper-
iment lasts 90 days.

The feeding conditions are as follows: Keep indoor temperature at 24~28 °C and control humidity between 
50% and 60%. Keep the rats in separate cages in a special room, two in each cage. Change the mats every other 
day. Provide distilled water to the rats and let them drink the water freely. Feed them with the standard feed pro-
vided by the animal centre of our hospital. Weigh the rats once a week.

Sample processing and preparation. All rats were injected with 25 mg/kg tetracycline hydrochloride into 
the subcutis once 13 days and 14 days before being killed (the first fluorescent labelling), and with 5 mg/kg calcein 
into the subcutis once 3 days and 4 days before being killed. The two fluorescent labels are separated by 10 days.

At the end of the experiment, the rats were anaesthetized by intraperitoneal injection with 3% amytal sodium 
(1.5 mL/kg), and then killed by drawing the all the blood from right ventricle. This is to reduce the red blood cells 
in the marrow, which may otherwise disturb the observation and analysis of bone slices.

The upper segment of the tibia was extracted and made into non-decalcified bone slices. Each sample was cut 
into thin slices (5μm thick) and thick slices (9 μm thick). The thin slices were strained with toluidine blue, while 
the thick ones were directly mounted. The static parameters of the slices were detected by bone histomorphome-
try and calculated by relevant formulas.

Devices and software. The main devices include tungsten carbide steel knife (Leica, Germany), RM2155 
hard tissue microtome (Leica, Germany) and automated image digitization analysers (e.g. light microscope & 
fluorescence microscope) (Nikon, Japan). The bone histomorphometry measurement software (KSS Scientific 
Consultants, US) and MaZda texture analysis software were adopted for result analysis.

feature extraction. A total of 52 valid images of rat tibial slices were obtained for our experiment. Among 
them, 34 belong to the SHAM group and 18 belong to the OVX group. All of the images were taken under a 
2.5 × microscope.

extraction of trabecular texture parameters. Based on previous studies, we found that there was a 
significant difference in trabecular bone texture between OVX group and SHAM group under high power micro-
scope, as shown in Fig. 1, so it is important to identify the texture of trabecular microarchitecture from the images.
Here, a total of 16 texture parameters are extracted, including 11 from the GLCM and 4 from the grey-level run 
length matrix (GLRLM). The 11 parameters extracted from the GLCM are angular second moment, contrast, 
correlation, variance, sum of variance, mean sum, entropy, sum entropy, entropy difference, residual variance 
and inverse difference moment. The 4 parameters extracted from the GLRLM are run-length non-uniformity, 
grey-level non-uniformity, short run emphasis and long run emphasis.

extraction of shape parameters. As mentioned before, the 2.5× microscope can capture a com-
plete rat tibial slice, but the resulting image is too unclear to be recognized with common texture parameters. 
Besides, shape is an important feature of trabecular microarchitecture. Hence, the shape features of trabeculae 
were extracted and combined with the texture feature parameters, aiming to enhance the recognition accuracy. 
Figure 2 presents the extracted trabecular shapes.

Based on the extracted shapes, some shape parameters of the ROI were calculated and 6 dimensionless shape 
parameters were selected as follows:

Solidity = Area/Convex surface area
Regional density = Area/Perimeter2

Correction rate = Incircle diameter/Excircle diameter
Convexity = Convex surface perimeter/Perimeter
Roundness = Area/Maximum diameter2

Length-width ratio = Length of minimum bounding rectangle/Width of minimum bounding rectangle.

https://doi.org/10.1038/s41598-019-47281-7


4Scientific RepoRtS |         (2019) 9:10971  | https://doi.org/10.1038/s41598-019-47281-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

In addition, 7 Hu’s invariant moments were extracted to reflect the geometric features of the ROI. These 
parameters are so named because they are invariants with respect to translation, scale and rotation. In image pro-
cessing, geometric invariant moments can be treated as an important feature of the object and a basis for image 
classification. Thus, a total of 13 shape parameters are extracted in this study.

Data processing. It is well known that four directions, namely 0°, 45°, 90° and 135°, must be considered 
during the extraction of texture parameters from the GLCM and the GLRLM. Hence, a feature parameter has four 
values, each of which corresponds to one of the four directions. What is more, the texture parameters extracted 
from the GLCM are also influenced by distance. However, the impacts of direction and distance on texture 
parameters are often overlooked in the existing studies. The traditional approach is to set the distance at any 
direction to 1 or the mean value of the distances at all four directions.

Considering the limited number of pixels in the trabecular image under a low-power lens, the GLCM may 
be affected greatly by any slight variation in the grey-levels of adjacent pixels. As a result, the extracted texture 
parameters must be further processed before use. Here, the texture parameters are weighed by variation coeffi-
cient method, with the most direction-sensitive and distance-sensitive parameters serving as weight coefficients

Weighted texture parameters. The parameters should be given different weights in different directions. 
The variation coefficient method was adopted to calculate the weighting coefficient, due to its abilities to highlight 
the variation in each direction and discriminate between different values. Specifically, the most direction-sensitive 
GLCM texture parameters were identified and used to calculate the weighting coefficient. The algorithm can be 
described as follows.

Let x (i, 1), x (i, 2), x (i, 3) and x (i, 4) be the values of texture parameters of the i-th sample image, which 
are the most sensitive to the directions of 0°, 45°, 90° and 135°, respectively. Then, the mean value of these 
direction-sensitive parameters can be expressed as:

Figure 1. Trabecular images, (a)SHAM group; (b) OVX group.
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In this way, we have the weight of each sample in all four directions. Let p (i, j) (j = 1, 2, 3, 4) be the values of a 
texture parameter of the i-th sample image in each direction. Then, the final value of this texture parameter of the 
i-th sample image can be expressed as:
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Similarly, the most direction-sensitive GLRLM texture parameters were identified and used to calculate the 
weighting coefficient. The specific process is the same as the above.

Influence of distance on texture parameters. As mentioned before, the GLCM may be affected greatly 
by any slight variation in the grey-levels of adjacent pixels, due to the limited number of pixels in the trabecular 
image under a low-power lens. Therefore, the distance selection directly bears on the results of image analysis. 
The optimal experimental effect hinges on the selection of proper point-to-point distance. In this paper, the 

Figure 2. Delineation of the region of interests (ROI), (a) Trabecula; (b) ROI.
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texture parameters under the most stable distance are selected after analysing the variation in parameter value 
with distances.

feature selection based on a convex optimization model. Matrix representation of intra-class disper-
sion. Let matrices A1(A1 ∈

×Rn p1 ) and A2 (A2 ∈
×Rn p2 ) be the first-type and second-type samples in the sample 

space A, respectively. Then, the intra-class dispersion can be expressed as:
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where Θ is element subtraction; Ai is the mean value of the samples in class i, which is a p-dimensional vector.
Let =C A Ai i i. Then, the intra-class dispersion can be expressed as:
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Intra-class dispersion representation after feature selection and mapping. Let matrices A1(A1 ∈
×Rn p1 ) and A2 (A2 
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Suppose there exists a linear function (projection plane) such that the projections of A1 and A2 onto it satisfy 
the condition: the distance between all projections in the same sample is minimized. Let b = (b1, b2, …, bp) T be 
the mapping coefficient vector. Then, the linear function can be expressed as follows:

= + + +y A b a b a b a( ) p p1 1 2 2

Then according to the matrix representation in 3.3.1, the intra-class dispersion after mapping shall be 
expressed as:

= + = || || + || || S S S C b C bw
b b b

F F1 2 1
2

2
2

where “o” is the element-wise product operation.

Convex optimization method. The following convex optimization problem is considered:
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The loss function is generally expressed as a typical Lasso model: || − ||Ab Y 2
2. In many cases, however, feature 

selection should facilitate the subsequent classification and recognition. Therefore, the intra-class dispersion after 
selection and mapping must be minimized, in addition to ensuring the closeness of the selected features with the 
predicted variables. Thus, it is necessary to consider the P-shape optimization problem, whose objective function 
is = || − || + +|| || || || f b Ab Y( ) C b

n
C b

n2
2 F F1

2
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 and penalty function is λ= || ||pt b b( ) 1 1.

Lemma 1. The →f R R: P  is a C1 smooth convex function, whose gradient ∇f satisfies the Lipschitz continuity: 
||∇ − ∇ || ≤ ∇ || − ||f x f y L f x y( ) ( ) ( ) .

→f R R: ,P

Proof: Let ∇ = + + −f b A A D D b A Y( ) (2 ) 2T
n n

T2
1

2
2

1 2
, where D1 and D2 are p*p diagonal matrices. The j-th 

diagonal element in D1 is C j
1
( )

2

2
, i.e., the 2-norm square of the j-th column in the matrix C1. Similarly, the j-th 

diagonal element in the D2 is C j
2
( )

2

2
, and f(b) is the 2-norm of b. Thus, f(b) is a smooth convex function.
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As a smooth convex optimization problem, problem P can be transformed into the following model according 

to the gradient descent method and References20,21.
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By the iterative soft-thresholding algorithm (ISTA), the solution to problem P* can be iterated according to 
the formula below:

Therefore, according to the ISTA method, the solution to the problem P* can be iterated as follows:

∑λ λ= || − − ∇ || + || || + | − |+b L b b
L

f b b b bmin
2

( 1 ( )
(1)

k
b

k k
i j

i j1 2
2

1 1 2
,

Thus, the problem boils down to looking for the optimal solution of problem P*, which can be denoted as λ
λ

b̂
1

2. 
Next, the lemma in References22,23 can be introduced.

Lemma 2. L1 norm soft-thresholding method: For any λ λ ≥, 01 2 , the optimal solution to problem P* is 
λ= −λ

λ λ λ


ˆ ˆ ˆb b bsgn( ) max( , 0)0 0 11

2 2 2 , where “o” is the element-wise product operation.
The proof is detailed in the two references.
Since λ2 = 0, the problem (*) can be converted to problem P1 below:
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According to Lemma 2 and formula (1), the general ISTA steps of problem P1 can be expressed as:

λ= −+ 
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The algorithm can be summarized as the following steps:
Input: L = L(∇f), i.e., the Lipschitz constant of ∇f.
(1) Initialize vector b0;
(2) Calculate ∇ = + + −f b A A D D b A Y( ) (2 ) 2k

T
n n k

T2
1

2
2

1 2
;

(3) Calculate = − ∇b̂ b f b( )k L k
1 ;

(4) Calculate λ= −+ 

ˆ ˆb b bsgn( ) max( , 0)k 1 1 ;
(5) Repeat Steps 2~4 until convergence.

experimental Results
Influence of direction on GLCM texture parameters. The four typical parameters of contrast, correla-
tion, entropy and inverse difference moment were selected to compare the data in the four directions of 0°, 45°, 
90° and 135°. Figure 3 shows the values of these parameters at the distance = 3. Specifically, the contrast describes 
the clarity of the image and the depth of the texture groove; the correlation reflects the similarity of GLCM ele-
ments in each direction, and the directionality of texture; the entropy depicts the unevenness or complexity of 
image texture; inverse difference moment signifies the homogeneity and local variation of image texture.

As shown in Fig. 3, the values of contrast, entropy and inverse difference moment differed slightly in the four 
directions (the same trend can be observed for the other 7 parameters). However, the correlation was very sensi-
tive to the change of the texture parameters in different directions. Hence, the texture parameters of the GLCM 
were processed by variation coefficient method.

Influence of direction on GLRLM texture parameters. Four parameters, namely, run-length 
non-uniformity, grey-level non-uniformity, long run emphasis and short run emphasis were selected to compare 
the data in the four directions of 0°, 45°, 90° and 135° (Fig. 4) below.

As shown in Fig. 4, the values of run-length non-uniformity and the grey-scale non-uniformity differed 
slightly in the four directions, while those of long run emphasis and short run emphasis were very sensitive to 
direction. The variation in long run emphasis was greater than that in short run emphasis. Hence, the texture 
parameters of the GLRLM were processed against the long run emphasis by variation coefficient method.

Influence of distance on texture parameters. The four typical parameters of the GLCM, namely, con-
trast, correlation, entropy and inverse difference moment, were observed to disclose the variation in parameter 
value with distances. The variations as the distance increased from 1 to 5 are recorded in Fig. 5 below.

As shown in Fig. 5, the entropy varied less violently than contrast, correlation and inverse difference moment 
with the increase in distance. Besides, the parameter changes exhibited a gradual declining trend as the distance 
continued to increase. It can be seen that the values of the four parameters all tended to be stable at the distance of 
3 (the same trend can be observed for the other 6 parameters of the GLCM), that is, the robustness was excellent 
at this distance. In light of this, the distance = 3 was adopted for the weighting process during the extraction of 
texture parameters from the GLCM.

feature selection. Through the proposed convex optimization, 16 parameters were selected out of the 28 
shape and texture parameters. The selected parameters include 7 shape parameters (i.e. solidity, shape factor, 
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correction rate, convexity, length-width ratio, invariant moment 3 and invariant moment 5) and 9 texture param-
eters (i.e. angular second moment, correlation, inverse difference moment, sum average, sum of variance, entropy, 
difference entropy, grey-level non-uniformity and long run emphasis). In other words, two of the feature param-
eters of Lasso method were removed, namely, sum of squares and sum entropy.

Results comparison. It is generally agreed that linear classifiers are good at classifying our data38,40,41. 
Considering the small number of samples, the linear support vector machine (SVM) classifier and the 
leave-one-out cross validation strategy were adopted to evaluate the classification performance of our method.

Figure 3. Values of GLCM texture parameters in different directions, (a) Contrast; (b) Correlation; (c) Entropy; 
(d) Inverse difference moment.
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The linear SVM classifier was employed to compare the classification results obtained by six different methods: 
direct averaging the original texture data without using variation coefficient method (TNS); direct averaging the 
original texture and shape data without using variation coefficient method (TSNS); processing the optimal texture 
data by variation coefficient method (TYS); processing the optimal texture and shape data by variation coefficient 
method (TSYS); processing the Lasso-optimized texture and shape data by variation coefficient method (TSYLS); 
processing the convex optimized texture and shape data by variation coefficient method (TSYLC).

The classification accuracies, sensitivities and specificities of these approaches are listed in Table 1.

Figure 4. Values of GLRLM texture parameters in different directions, (a) Run-length non-uniformity;  
(b) Grey-level non-uniformity; (c) Long run emphasis; (d) Short run emphasis.
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Discussion and conclusions
In this paper, two different image features (i.e. shape parameters and texture parameters) are integrated into an 
organic whole. Considering the impacts from direction and distance, the texture parameters were optimized for 
different directions and distances. Then, the parameters were selected by convex optimization method, aiming to 
reduce the redundancy of feature parameters. The proposed method outperforms the traditional Lasso method 
and enjoys a good application potential.

feature processing. Influence of direction on GLCM texture parameters. According to the values of texture 
parameters in Fig. 3, the SHAM group surpassed the OVX group in both contrast and correlation, indicating that 

Figure 5. Values of GLCM texture parameters at different distances, (a) Contrast; (b) Correlation; (c) Entropy; 
(d) Inverse difference moment.
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the texture in the former group is relatively clear and uniform. Since the correlation indicates the directionality of 
the texture, it is learned that both groups carried relatively uniform texture features in the horizontal and vertical 
directions. This phenomenon is evidenced by the trabecular texture under the high-power lens (Fig. 1). In addi-
tion, the SHAM group had a greater entropy than the OVX group. This means the image of the SHAM group out-
shines that of the OVX group in information quantity, texture complexity and texture uniformity. Furthermore, 
the inverse difference moment of the SHAM group was smaller than that of the OVX group, revealing that the 
texture in the former group is more changeable than that in the latter group. These results reflect the decline in 
BMD and the vagueness of bone structure in the images42, and prove that it is feasible to recognize osteoporosis 
through the texture analysis of trabecular images.

From the variation of each curve in Fig. 3, it can be seen that the values of texture parameters changed in 
a similar pattern in the four directions, suggesting that the texture parameters can respond to sample texture 
correctly. In particular, the correlation values fluctuated more significantly than those of the other parameters 
in the four directions. Hence, correlation was determined as the most direction-sensitive parameter. This agrees 
well with the concept that correlation can reflect the similarity of GLCM elements in different directions, that is, 
texture directionality.

Influence of direction on GLRLM texture parameters. As can be seen from Fig. 4, the SHAM group surpassed 
the OVX group in run-length non-uniformity, grey-level non-uniformity and short run emphasis, but lagged 
behind the latter in long run emphasis. The comparison further proves that the image of the SHAM group features 
relatively intense texture primitives, complex and fine texture and low grey-level similarity, all of which are the 
characteristics of osteoporosis images.

In addition, the values of texture parameters changed in a similar pattern in the four directions according to 
the variation of each curve in Fig. 4. (The trends of long and short run emphases were opposite because the two 
parameters are antonyms.) The results show that the texture parameters of the GLRLM can respond to sample 
texture correctly in all directions. Among them, the long run emphasis, an indicator of the number of coarse 
texture, was the most sensitive parameter to direction.

Influence of distance on texture parameters. The values of the texture parameters extracted from the GLCM may 
change with the distance. Normally, the data at the distance of 1 are selected for further analysis. Nevertheless, 
when the imaging effect is poor, the number of pixels within the trabeculae is very limited. In this case, the GLCM 
may be affected greatly by any slight variation in the grey-levels of adjacent pixels. Hence, the selection of distance 
has a major impact on the results of image analysis. Figure 5 shows that the values of all parameters tended to be 
stable at the distance of 3. Thus, this distance was selected to calculate the texture parameters of the GLCM.

To disclose the impacts of direction and distance on texture parameters, the parameters must be given dif-
ferent weights in different directions. The variation coefficient method was adopted to calculate the weighting 
coefficient, thanks to its abilities to highlight the variation in each direction and discriminate between different 
values. According to Figs 3–5, the weights of the texture parameters of the GLCM were calculated at the distance 
of 3 by variation coefficient method, and the weights of those in the GLRLM were calculated against the long run 
emphasis by the same method. After that, the weighted averages of the texture parameters in all directions were 
derived as the final results.

feature selection. As mentioned before, the previous research only extracts a few texture parameters, which 
eliminates the need for feature selection. In our research, however, a total of 28 shape and texture parameters are 
extracted, many of which are closely correlated with each other. For example, the correlation coefficient between 
invariant moments is above 0.8, that between roundness and correction rate stands at 0.97, that between sum 
entropy and entropy reaches 0.95, and that between run-length non-uniformity and grey-level non-uniformity 
amounts to 0.92. Meanwhile, both sum entropy and entropy illustrate the complexity of the texture, while the long 
run emphasis has the opposite meaning of the short run emphasis. To reduce the redundancy of these highly sim-
ilar parameters, a convex optimization method based on intra-class dispersion was proposed for feature selection. 
Then, the parameters with nonzero weights were selected for SVM classification. The classification results were 
compared with those obtained by Lasso-based feature parameters. The results show that our method can achieve 
a high accuracy with fewer feature parameters.

Among the 16 parameters, the difference entropy had the largest weight coefficient, followed by the sum mean 
and the convexity. The weight coefficients of invariant moment 3, inverse difference moment, correlation, and 
entropy were basically the same. These results reveal the importance of the complexity, grey-level variation and 

ACC(%) SEN(%) SPE(%)

TNS 68.2 69.32 66.41

TSNS 76.6 77.48 74.28

TYS 77.01 78.2 74.47

TSYS 82.76 84.02 80.22

TSYLS 85.06 86.96 89.13

TSYLC 86.21 88.20 90.22

Table 1. Classification performance of different approaches.
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structure regularity of trabecular image. As shown in Fig. 1, the SHAM group image indeed had richer and more 
complex texture than the OVX group image; in terms of shape, the trabeculae in the SHAM group were more 
regular than those in the OVX group. Hence, the ranking of weight coefficients agrees well with the laws in the 
images of the two groups.

Classification performance. It can be seen from Table 1 that the recognition efficiency was not high if only 
the texture parameters were taken into account, and the accuracy was still 77.01% after the weighting by varia-
tion coefficient method. The recognition rate increased obviously after the coupling between texture and shape 
parameters. The TSNS was 8.4% more accurate than the TNS, and the TSYS was 5.75% more accurate than the 
TYS. The comparison shows the impacts of texture and shape of trabeculae on classification and recognition. The 
results are consistent with the shape changes (e.g. thinning and sharpening) of trabeculae in osteoporosis patients.

It can also be learned from Table 1 that the data weighted by variation coefficient method (TYS and TSYS) led 
to better recognition rate than those not processed by this method (TNS and TSNS). Thus, the impacts of direction 
on texture should not be overlooked in texture parameter processing, especially when the imaging effect is poor.

Furthermore, the feature selection through the traditional Lasso method (TSYLS) achieved better recognition 
rate than using all the parameters (TSYS), and the TSYLS exceeded the method without feature selection in accu-
racy, specificity and sensitivity. However, the proposed method TSYLC outperformed the TSYLS in all indices 
with fewer parameters. Thus, there is indeed redundancy in the feature parameters, which needs to be eliminated 
to prevent over-fitting. The proposed method manages to select the most effective parameters for recognition. 
That is why the TSYLC realized the highest accuracy, specificity and sensitivity.

More importantly, sensitivity and specificity are two leading indices in the clinical application. The two indices 
directly bear on the rate of missed diagnosis and misdiagnosis. In our experiment, both the TSYLS and TSYLC 
methods achieved high sensitivity and specificity. The Youden’s indices (YI) of the two methods are:

= . + . − = .TSYLS: YI 86 96% 89 13% 1 0 7609

= . + . − = .TSYLS: YI 88 20% 90 22% 1 0 7842

The greater-than-0.7 YI means the proposed method can be applied to osteoporosis diagnosis, especially when 
the imaging devices are poor and image features are too vague for artificial diagnosis.

further research. The proposed convex optimization method can achieve a high accuracy with a few param-
eters, despite the low feature dimension. However, the images in our research are 2D microscopic images and only 
29 texture and shape parameters are considered. In future, the proposed method will be applied to the analysis 
of bone densitometry (DXA) or MRI images, and will be integrated with the data on population, blood samples 
and genes. The purpose is to further improve the diagnosis of bone tissue diseases and the research of bone 
microarchitecture.

ethics approval. This study was carried out in strict accordance with the recommendations in the Guide 
for the Care and Use of Laboratory Animals of the Guangdong Laboratory Animal Monitoring Institute and the 
National Laboratory Animal Monitoring Institute of China. The experiments have been conducted according 
to the protocols approved by Specific Pathogen Free animal care of the Animal Center of Guangdong Medical 
University, and approved by the Academic Committee on the Ethics of Animal Experiments of the Guangdong 
Medical University, Zhanjiang, Peoples Republic of China, Permit Number: SYXK (Canton) 2016-0148.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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