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Structural Entropy: Monitoring 
Correlation-Based Networks Over 
Time With Application To Financial 
Markets
Assaf Almog    & Erez Shmueli   

The concept of “Structural Diversity” of a network refers to the level of dissimilarity between the 
various agents acting in the system, and it is typically interpreted as the number of connected 
components in the network. This key property of networks has been studied in multiple settings, 
including diffusion of ideas in social networks and functional diversity of regions in brain networks. 
Here, we propose a new measure, “Structural Entropy”, as a revised interpretation to “Structural 
Diversity”. The proposed measure relies on the finer-grained network communities (in contrast to the 
network’s connected components), and takes into consideration both the number of communities 
and their sizes, generating a single representative value. We then propose an approach for monitoring 
the structure of correlation-based networks over time, which relies on the newly suggested measure. 
Finally, we illustrate the usefulness of the new approach, by applying it to the particular case of 
emergent organization of financial markets. This provides us a way to explore their underlying 
structural changes, revealing a remarkably high linear correlation between the new measure and the 
volatility of the assets’ prices over time.

Following the 2008 financial crisis, there has been a soaring interest to broaden our understanding of financial 
markets’ behavior1,2. In particular, classical econometric models of rational agents and efficient markets were 
found to be very limited in explaining such extreme events, in part since they ignored complex interactions 
within the system3.

Bridging this gap, many recent studies have started to look at financial markets as complex systems with 
complex interactions between their various components4–7. One particularly interesting line of research, which 
was derived from this complex system perspective, is the representation of financial markets as correlation-based 
networks. Correlation-based networks are frequently used in fields such as neuroscience, biology and finance, 
as a way to infer a network structure from time series signals of the system’s components. In the case of finan-
cial markets, network nodes represent financial assets or instruments and network edges represent interactions 
between two assets, where such an interaction is typically measured by the correlation between the two assets’ 
price fluctuations over time.

The representation of financial markets as networks created a unique opportunity to strengthen our under-
standing of their behavior by applying standard network science tools. Indeed, various methods were suggested 
for inferring meaningful information about the markets by analyzing their network structure. A few examples 
include minimal spanning trees (MST)4,8, planar graphs9,10, asset trees4,7,11, and community detection for cor-
relation matrices12,13. Recent studies in this field, took one step forward and explored structural properties of 
the financial networks in different time periods, including extreme events and economic crises. However, the 
majority of these studies share two main limitations: First, they commonly select a specific period of time, and 
construct the corresponding network out of it4,7,8,11. In some cases, several periods of time are chosen, such as in 
the case of before and after a financial crisis14–16. Nonetheless, this approach does not provide any information on 
the dynamic process that led from one static network to another. Second, the resulting network structure contains 
a substantial amount of information (this is especially true for large networks), and in many cases, extracting 
meaningful insights out of it is very challenging.

Tel Aviv University, Department of Industrial Engineering, Tel Aviv, 69978, Israel. Correspondence and requests for 
materials should be addressed to A.A. (email: assafalmog@mail.tau.ac.il)

Received: 30 November 2018

Accepted: 12 July 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-47210-8
http://orcid.org/0000-0002-1429-2935
http://orcid.org/0000-0003-3193-5768
mailto:assafalmog@mail.tau.ac.il


2Scientific Reports |         (2019) 9:10832  | https://doi.org/10.1038/s41598-019-47210-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

To address the two limitations mentioned above, we propose an approach for continuous monitoring of the 
structure of correlation-based networks, and demonstrate its application to the special case of financial markets.

We first introduce a new measure, “Structural Entropy”, as a revised interpretation to the “Structural Diversity” 
of a network. Structural diversity refers to the level of dissimilarity between the various agents acting in the net-
work, and it is typically interpreted as the number of connected components in the network. This key property of 
networks has been studied in multiple settings, including diffusion of ideas in social networks17,18, and diversity of 
functional brain regions in Neuroscience19,20. In contrast, “Structural Entropy” is calculated based on the commu-
nity structure of the network, which represents a finer grained division of the network into sub-units than in the 
case of simple connected components. Moreover, “Structural Entropy” takes into consideration both the number 
of communities and their sizes, encapsulating a richer and more meaningful representation of the network’s 
structure into a single value. The proposed measure was inspired by Shannon Index, which is commonly used in 
the ecological literature to provide some indication regarding the bio-diversity level of an ecosystem. Here, we 
generalize and adjust Shannon Index to quantify the structural diversity of complex networks.

We then suggest an approach for continuous monitoring of the structure of networks, which relies on the 
newly suggested structural entropy measure. Since structural entropy generates a single value that represents 
the network’s structure, it allows us to explore underlying structural changes in the network over time, in a rela-
tively straightforward way. In this paper, we focus on correlation-based networks, where dynamic changes in the 
network structure are typically inherent. In particular, since the structure of such correlation-based networks is 
inferred from the activity of the system’s sub-units, monitoring the structural changes is highly important and 
can reveal underlying trends or phenomena in the system’s activity. For this aim exactly, we apply the structural 
entropy measure for continuous monitoring of correlation-based networks.

Finally, we illustrate the strength of the new approach, by applying it to the particular case of emergent organ-
ization of financial markets. In the context of financial markets, this organization translates into communities 
of stocks sharing the same price dynamics over time. More specifically, we construct assets-based correlation 
networks of two major financial markets, and monitor the structural entropy of these networks over time. Our 
analysis reveals a remarkably high linear correlation between the new measure and the volatility of the assets’ 
prices over time.

Results
Structural entropy.  Real world complex networks are commonly organized in a modular way with com-
munities of nodes that have dense connections internally and sparse connections externally21. These clusters 
represent the independent sub-units of the network, like families in social networks or brain regions in brain net-
works. Based on this community structure, we introduce “structural entropy” as a measure to quantify the level of 
structural diversity in a given network. In this framework, structural entropy refers to the level of heterogeneity 
of nodes in the network, with the premise that nodes that share functionality or attributes are more connected 
than others.

In practice, the measurement of structural entropy is composed of two main steps. The first step requires the 
identification of the network’s community structure, where each node is associated with a specific cluster (i.e. an 
optimal partition function). The second step includes the analysis of the partition function and the extraction of 
the diversity level as a single representing value.

We start by applying a community detection algorithm. This is mainly a generic step, nevertheless, different 
types of networks may require different approaches to optimally resolve their community structure. Over the 
years new various community detection and clustering techniques have been developed across different fields. 
Several specialized versions include algebraic topological data methods22,23 and methods based on a dedicated 
quality function like surprise maximization24. The selection of the community detection algorithm can be derived 
from the network properties such as size, density, directionality and more25. For the sake of simplicity, in this 
paper we focus on community detection algorithms that divide the network nodes into non-overlapping commu-
nities (i.e., each node is associated with exactly one community).

Let us now consider a network G with N nodes and let A be the chosen community detection algorithm. The 
partition of nodes into communities, as obtained by applying A on G, can be represented by an N-dimensional 
vector σ→, where the i-th component σi denotes the community to which node i was assigned to. The values in σ→ 
range from 1 (community one) to M which is the total number of detected communities.

Given the partition σ→, we calculate the M-dimensional probability vector 
→
P  which represents the propor-

tional size of the clusters in the network
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where ci is the size of community i. More specifically, the vector 
→
P  represents the probability of randomly drawing 

a node from each community (note that ∑ == P 1i
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Finally, we apply Shannon entropy to the probability vector:
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and the resulting value is defined as the “structural entropy” of network G.
Structural entropy is calculated based on the number of communities and their sizes. The calculation does 

not take into account the internal structure of the communities. Consider a network of N nodes. The minimal 
value for the structural entropy of a network is 0, and this value is obtained when all nodes in the network are 
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assigned to the same community (i.e., a single huge community). In contrast, the maximal value for the structural 
entropy of a network is obtained when each node is assigned to its own (different) community (i.e. N singleton 
communities). The value in this case depends on the number of nodes in the network N. If we fix the number of 
communities to a given number C, then the minimal value is obtained in the case of C − 1 singleton communities 
and a single large community with N − C + 1 nodes. Similarly, the maximal value is obtained in the case of C 
communities, each having N/C nodes.

To illustrate the possible range of values of Structural Entropy, we plot in Fig. 1 the maximal and minimal 
structural entropy values for networks that consist of 1000 nodes and a varying number of communities. The red 
line represents the maximal value and the blue line represents the minimal value of the structural entropy as a 
function of the number of communities. Clearly, in realistic network configurations, the actual structural entropy 
value will be somewhere in between these two lines.

The structural entropy measure encapsulates considerable amount of information regarding the community 
structure of the network in a single value, and can serve as a valuable indicator in different domains. In particu-
lar, the proposed measure is analogous to (and inspired by) the Shannon Index, which is commonly used in the 
ecological literature, as an indicator of the diversity level in an ecosystem. Here, we essentially adjust the Shannon 
Index to the setting of complex networks to measure structural diversity. In other words, we measure the diversity 
level as emerged from the structure of the network, i.e. size and number of communities, as obtained by a com-
munity detection algorithm. The measure quantifies the diversification in the network in terms of connectivity, 
i.e. the level of node fragmentation to different groups (communities) in the network. While Shannon Index gives 
a general indication to the current state of a system, the index itself is not explicitly informative. In contrast to 
the common use of Shannon Index in ecology, we want to analyze the dynamics of our proposed measure as it 
evolves over time.

Continuous monitoring of correlation-based networks.  Monitoring the dynamics of structural 
entropy over time can reveal significant information on underlying processes in the system. In this section, we 
propose a general approach for the continuous monitoring of structural entropy for the specific case of correlation 
based networks.

A correlation-based network represents a system’s network structure as derived by time series activity of the 
agents in the system. This approach is commonly used in fields such as Neuroscience, Finance, and Biology, where 
inferring information from empirical observation is vital. The aim is the extraction of meaningful information 
form multiple time series data such as: neural activity, stock prices, metabolic profiles. These multiple time series 
allow us to infer and identify emergent network organization of the system based on the activity of each compo-
nent. Specifically, because the structure of correlation-based networks is inferred from the units activity, moni-
toring the structural changes is very important and can reveal underlying trends or phenomenons in the system.

For this aim, we describe next, a general framework for continuous monitoring of structural entropy in 
correlation-based networks. In particular, we specify the process to extract time dependent structural entropy 
from the empirical data, provided as multiple time series.

Let us consider a system with N units. The single time series:

≡ …S s s s s T[ (1), (2), (3), , ( )] (3)i i i i i

represents the temporally ordered activity of the i-th unit of the system over T consecutive time steps. The set of 
time series for all N units, i.e., …S S S{ , , , }N1 2 , describes the synchronous activity of all units in the system.

Similarly to other studies in this field, we exploit the information encoded in the N × N cross-correlation 
matrix. The cross-correlation matrix C measures the mutual dependencies among the N time series on a scale 
between 1 and −1. The ij-th entry of C denoted by Cij is defined as the Pearson correlation coefficient between the 
two time series Si and Sj:
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Figure 1.  Minimal (blue) and maximal (red) structural entropy values for networks with a thousand nodes and 
a varying number of communities.
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where:

•	 ≡ −COV S S S S S S[ ][ ]i j i j i j is the co-variance between Si and Sj.
•	 ≡ − =VAR S S S COV S S[ ] [ ][ ]i i i i i
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Here, we suggest to measure the Pearson correlation for sub-periods of the time series data, using a’sliding 
window’ technique. We divide the original time series with length T to τ−T  sub periods, where τ is the length 
of the sub-periods (the number of time steps within a window).

Then, we calculate the correlation matrix for time step t, denoted by Ct, as:

τ τ≡ 
 − − 

C CORR S t t S t t( , ), ( , ) (5)ij
t

i j

Once the correlation matrix has been constructed (for each sub-period), the next step is transforming it into 
an adjacency matrix. The adjacency matrix is the representation of the network edges, and can be extracted from 
the correlation matrix in different ways. The most common approach is to use some threshold criteria, which 
determines which values of the correlation matrix will be transformed into edges in the network (and which 
values will not). However, there are other more refined ways to extract the adjacency matrix from the correlation 
matrix is used random matrix theory12,13, and choosing which method use depends on the properties of the spe-
cific data-set in hand.

Once the adjacency matrix (of the specific sub period) is resolved, we measure the structural entropy as 
described in the previous section. Note that Structural Entropy is calculated in each time step for the correspond-
ing sub-period, resulting in a new time series of Structural Entropy values.

Figure 2 depicts the main steps in the procedure of monitoring structural entropy of correlation-based net-
works. In sub-figure A we observe the raw data and the use of a sliding window technique. Next, in sub-figure B, 
we calculate the Pearson correlation matrix from the raw data. In sub-figure C, we see the transformation of the 
correlation matrix into an adjacency matrix using a threshold process. These three stages represent the main steps 
discussed in this section. The next two steps show the calculation of structural entropy. In sub-figure d, we see the 
outcome of a community detection algorithm running over the adjacency matrix, where each block in the matrix 
represents a community with high density of links. Next, in sub-figure E, we see the calculation of structural 
entropy as described in section 0. Lastly, in sub-figure F, we construct a new time series for the structural entropy 
measure, where each time step represents the diversity level of the system in the corresponding sub-period.

Figure 2.  Illustration of the main steps in the procedure of monitoring structural entropy of correlation-based 
networks. (A) raw time series, using sliding window approach we analyze continuously sub-periods from the 
entire data. (B) generating Pearson correlation matrix (or different association matrix) (C) transforming the 
correlation matrix to an adjacency matrix (D) resolving community structure of the network (E) calculating 
the structural entropy for each specific sub-period (F) continuous monitoring of the structural entropy and 
analysis.
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In the next section, we apply this process to the case of financial data in order to resolve and monitor diversity 
level in emergent organization of financial markets.

Monitoring structural entropy in financial markets.  For our analysis we use daily closing prices from 
the FTSE100 and NIKKEI225 indices, for a 10-year period ranging from 24/10/2001 to 18/10/2011. For each 
index, we retained in our data set only stocks that were traded continuously throughout the entire selected period. 
This results in 78 stocks for FTSE100 and 193 stocks for NIKKEI225. For each stock si in the data set, we con-
structed a time series which is composed of its daily log-returns (i.e. the the log of its daily increment), as com-
monly done in the financial literature:
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where p t( )i  is the daily closing price of stock i at time t.
Then, as explained in the previous section, we use a sliding window approach, where each sub-period was ana-

lyzed by constructing the corresponding correlation-based network. The selection of an appropriate time period 
length, from which the correlation matrix is computed, is a well-recognized problem in the domain of correlation 
based networks. Clearly, there is a trade-off between long and short periods A long period reduces fluctuations 
and noise but suffers from non-stationarity. In contrast, a short time period results in very singular correlation 
matrices with strong fluctuations.

In this paper we picked the ratio τ ≈ N2 , which is typically used in similar studies to balance the aforementioned 
trade-off. Thus, for the FTSE100 index we used a window (sub-period) of 200 trading days (approximately one cal-
endar year), and for the NIKKEI225 we used a window (sub-period) of 400 trading days (approximately two calen-
dar years). The difference in the two window sizes is a result of the different number of stocks monitored in each 
market (different N). However, we should stress that our findings are robust and consistent when using other period 
lengths τ which grater than the size of the system (i.e., τ > N) as we demonstrate later in this section.

In order to resolve the community structure, we used a recent method12,13,26, which is specifically shaped to 
deal with correlation matrices, and is based on random matrix theory (for more information see the Methods 
section). The method infers the communities directly from the correlation matrix using a random null model, by 
filtering out the system noise and global trends. This particular capability allows us to explore the system with 
very short time windows τ< <N N3 , and it is the main reason why our findings are invariant to to the size of 
the window. More specifically, using random matrix theory the method filters the relevant noise based on a spe-
cific null model.

In general, other approaches, such as clustering (e.g., DBSCAN27), can be applied on the correlation matrix to 
extract the communities. However, in our setting, the correlation matrix is very dense, and applying such meth-
ods will typically result in a single community. To cope with this problem, it is possible to use some threshold 
criteria to determine which values of the correlation matrix will be transformed into edges in the network and 
which values will not. However, the threshold approach presents several major limitations as we further describe 
in the appendix.

In recent years, random matrix theory has become a popular tool for investigating the dynamics of financial 
markets using cross-correlations of empirical return time series28. For example, a recent work by Pharasi et al.29, 
used a power map to filter the noise from extremely short time frames and identify markets states. The researchers 
have isolated different independent markets states and analyzed the transition probability from one state to the 
other. Here, we take a different approach based on a continuous sliding window rather than independent “snap-
shots” of the system. In the sliding window approach, two consecutive time sub-periods share almost the exact 
same information by construction. Since financial systems are known to have a very short memory and to contain 
a significant amount of noise, this is a very accepted procedure.

We should also make a clear distinction with respect to different information theory measures such as mutual 
information30 and transfer entropy31,32, which were used to quantify information transfer between two ran-
dom processes. These measures are used frequently in the studies of temporal networks, when the time-varying 
changes are of a particular relevance to spreading processes, like the spread of information or disease. It is impor-
tant to stress that our approach is invariant to the specific composition and changes in the clusters. More spe-
cifically, structural entropy does not aim at quantifying the information transferred between two consecutive 
sub-periods. It rather adopts a more “grand canonical” framework, and does not focus on the specific variations in 
the links. In other words, structural entropy is calculated based on the number and size of clusters only, regardless 
of which node (stock in this case) belongs to which cluster.

Clearly, mutual information can also be used in our case as a nonlinear similarity measure instead of Pearson 
correlation33. However, for the type of data considered in this section, i.e. time series of stocks, the typical measure 
used in the literature is Pearson correlation. This is due in part to the following reasons: (1) time series of stocks 
have extremely short memory and the main assumption is that each time step is completely independent from the 
others, and (2) the dynamics itself is highly correlated on one hand and noisy on the other hand, where the main 
challenge is to filter the high level of correlation and “purifying” significant information.

In the context of correlation based networks, another entropy measure that should be discussed is spectral 
entropy, which aims at measuring the spread of functionalists in a correlation matrix. In particular, spectral 
entropy measures the entropy of the power spectral density (the matrix eigenvalues). This measure appears to 
share some resemblance with the proposed structural entropy measure (in the specific case of correlation based 
network), since the matrix is decomposed and then filtered based on the eigenvalues. However, our method is 
inherently different. First, the random matrix theory method we use, filters the random noise and discards the 
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majority of the eigenvalues (as shown in Fig. 11). Thus, the majority of data used in the calculation of spectral 
entropy is discarded as noise (and global mode). Second and more important, once the “noisy” eigenvalues are 
identified, a “filtered network” is re-constructed. This means that the detected community structure is a result of 
a super-position of all the non-random eigenvalues and cannot be attributed to the number and magnitudes of 
the eigenvalues. For instance we cannot easily connect the number of non-random eigenvalues to the number of 
communities. In the appendix, we make a more thorough comparison between the two measures and present the 
results of this comparison.

We start our analysis by exploring the complete network structure in the two sub-periods with the maximal 
and minimal structural entropy. This step demonstrates the different’structural states’ of a market as identified by 
the new measure.

Figure 3 depicts the NIKKEI community structure of the two sub-periods with the maximal (A) and minimal 
(B) structural entropy throughout the 10 year period. Each stock is represented as by a dot, the 4000 highest 
correlations in the matrix are shown as edges, and different communities are colored differently. As shown in the 
figure, each of the detected communities contains a highly clustered core, i.e. the core has higher values of cor-
relation with respect to the rest of the values in the community. Surprisingly, despite the major difference in the 
structural entropy of the two sub-periods, both sub periods contain exactly 4 communities. This is because the 
sizes and the profiles of the communities in the two sub-periods are very different.

To better understand the result above, we label each of the stocks according to its industry sector using the 
Global Industry Classification Standard (GICS). As can be seen in the figure, the blue and light blue communities 
in Subfigure A, which mainly contain the sectors: industrials, Consumer Discretionary, and Materials, are con-
verged into one community in Subfigure B, which also observe some additional stocks. The Yellow community 
in Subfigure is reduced to contain a small number of stocks in Subfigure B, and the green cluster in Subfigure B is 
composed out of a single stock. This result provides a strong support for our proposed measure, where it demon-
strates how the information about the number of communities is not sufficient and more information is needed 
to describe the structural diversity of the system.
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Figure 3.  The NIKKEI market structure for the sub-periods with the highest entropy = .S 0 2628 (right) and 
the lowest entropy = .S 0 1327 (left). The values are normalized with the maximum entropy value when the 
system is composed of =N 193 communities. The different colors represent the different communities detected 
by each run, where the labels of the node represent the industry sector the stock belongs to according to the 
GICS classification.

Figure 4.  The average log-return (orange) and volatility (black) for each sub-period for FTSE100 (A) and 
NIKKEI225 (B) for approximately 10 years from 2001Q4 to 2011Q4. We can clearly see the relationship 
between high volatility and fluctuations in log-returns.
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Next, we explore the presence of the financial crisis in the data with conventional measurements. Volatility 
is a statistical measure of the dispersion of returns for a given market index (e.g. FTSE, NIKKEI). This measure 
refers to the level of uncertainty or risk associated with the size of changes in the market. A high volatility level 
corresponds to a high range of fluctuations in the prices of the stocks. This means that the price of an asset can 
change dramatically over a short time period in either direction. A lower volatility means that the asset value does 
not fluctuate dramatically, and tends to be more steady. Here, we define the volatility as the variance of all the 
log-returns in a given sub-period:

≡ − .VAR r t r t r t[ ( )] [ ( )] [ ( )] (7)i i i
2 2

In Fig. 4, we plot the measured volatility (black) and the mean log-return (orange) over the sub-periods for the 
FTSE100 and NIKKEI225 index (the X axis represents the date of the last day in the sub-period). The evidence of 
the crisis is very clear, where the shift in the time of the crisis are a result of the window sizes used (200 and 400 
days) and the difference in the markets. We can also observe a clear connection between high volatility to drastic 
fluctuations in log returns.

After confirming the presence of the extreme event in our data, we turn to exploring the relation between the 
market’s volatility and the structural diversity of the market. We anticipate that the different price dynamics in 
each sub-period would lead to a different community structure and in turn to a different structural entropy value.

In Fig. 5, we present the relation between volatility (X axis) and structural entropy (Y axis) for FTSE100 (top 
left panel) and NIKKEI225 (bottom left panel). We find a very strong anti-correlation between the two measures, 
which is present in the two markets (FTSE100 corr = −0.701, NIKKEI225 corr = −0.426). Indeed, we expected 
such negative relation, which reinforces the known behavior of markets to cluster (reduce structural diversity) in 
times of strong volatility. Surprisingly however, the remarkable result lies within the nicely fitted linear relation. 
More specifically, we can see that the sub-periods with the highest volatility (crisis times) do not appear as outli-
ers, but rather fit nicely on the line. For reference we also plotted the relation between volatility (X axis) and the 
number of detected communities (Y axis) for FTSE100 (top right panel) and NIKKEI225 (bottom right panel). 
Unlike the relation described above, we did not find a clear relation between the number of communities and 
volatility.

We further analyze the relation between structural entropy and volatility in both markets for different window 
sizes. Figure 6 presents the correlation values between structural entropy and volatility Corr[Var, SE] for different 
lengths of the sliding window. As can be seen from the figure, the high anti-correlation relation becomes evident 
already at τ > N . However, these values present some fluctuation which seem to stabilize around τ = N2 .

The previous result showed the strong negative relation between the structural entropy and the volatility in 
the system. However, it is more interesting (and beneficial) to analyze the structural entropy as it evolve over time, 
i.e. the dynamics of structural entropy. In Fig. 7, we plot the values of the structural entropy for 10 years (right 
panel) and the corresponding volatility (left panel). While the structural entropy measure is associated with some 
noise, we can still observe clear trends and shifts in the diversity of the system. We highlight the crisis period (in 

Figure 5.  We plot the relation between volatility (X axis) and structural entropy (Y axis) for FTSE100 (A) 
and NIKKEI225 (B). For reference we also plotted the relation between volatility (X axis) and the number of 
detected communities (Y axis) for FTSE100 (C) and NIKKEI225 (D).
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light blue) and the pre-crisis period (in light green) as observed by the volatility in the data. In the crisis period, 
we indeed see a negative relation between the two measures as highlighted by the red arrows. Interestingly, in the 
pre-crisis period we can see different behaviors: while structural entropy presents a big shift (in the same order 
of magnitude as in the crisis) volatility remain roughly constant. This may suggest that structural entropy is able 
to detect a significant change in the community structure ahead of time, while volatility is invariant to those 
changes.

To further analyze this relation we calculate the correlogram of structural entropy and volatility (see Fig. 8). 
This analysis reveals an interesting relation between the two measures, where in both examined datasets, the 
correlation reaches the highest value with a positive leg between structural entropy and volatility. The effect is 
significantly more evident in the FTSE market where the delay around 90 days. This result might suggest some 
level of predictive ability of the proposed measure, and it opens the door for future research with respect to the 
proposed measure.

Conclusion
In this study, we proposed a robust approach to quantify and monitor the structural diversity of correlation-based 
networks. At the heart of the approach lies the newly introduced “Structural Entropy” measure, which utilizes 
the finer-grained network communities (in contrast to the network’s connected components), and takes into 
consideration both the number of communities and their sizes. The proposed approach can serve as a powerful 
analysis tool in different settings, with the ability to combine various structural properties of a network into one 
representing value, and allowing to monitor these values over time.

We further demonstrated how the proposed approach can be applied to the particular case of monitoring 
structural diversity in emergent organization of financial markets. We showed that structural entropy can be 
used to differentiate structural states of the financial markets, and even found a strong linear relation between 
structural entropy and volatility of the system. These observations were consistent across different markets and 
periods.

Finally, we observed that our proposed measure can detect trends that could not otherwise be detected by 
volatility, indicating that it might be useful as an early warning signal to future major changes in financial markets 
and perhaps even in other settings. Clearly, testing this idea on additional markets, and building a predictive 
model based on these signals are very interesting directions for future research.

Our approach takes a simplified perspective of structural diversity which analyzes a network based on linear 
pairwise correlation. We find the simplicity of the approach to be a major advantage, since it can be used in a 
relatively interpretable manner by a wide variety of disciplines such as economy, neuro-science, biology, etc. (and 
is not restricted to physics or mathematics).

While our approach is suitable in cases where the community structure of the network changes constantly 
over time, it is less suitable in cases where the network’s structure is more stable, such as some types of social 
networks in which the community structure is based on certain social factors34, or brain networks in which the 
community structure is strictly based on anatomy35. In both of these cases, the communities support the dynamic 
processes over the network rather than changing their number and size over time.

Moreover, the proposed structural entropy measure takes into account only the number of communities 
and their sizes, and disregards the internal structure of these communities and the connections between them. 
While it provides a relatively simple and interpretable quantification of the network structure, in some cases these 
internal structures and connections may hold highly nontrivial and important information. In this regard, it is 
worth noting other measures that were suggested in the literature and utilize such information, such as the one 
suggested by Andjelković et al. for the analysis of time-series graphs representing the traffic fluctuations on net-
works36 and the one by Garcia-Martinez et al. for extracting insightful information from brain activity signals37.
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Figure 6.  The correlation between structural entropy and volatility for different (sliding) window sizes in both 
markets. As can be seen, high anti-correlation values appear at τ > N  and the fluctuations seem to stabilize at 
τ = N2 .
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Methods
Community detection.  For the community detection step, we adopt a new method12,13, which is specifically 
shaped to deal with correlation matrices, based on random matrix theory (for more information see the Methods 
section). By using the method we overcome two main limitations of more traditional clustering approaches12. 
First, the method does not requires introduction of any arbitrary threshold criteria, which can change the out-
come of resolved structure dramatically as shown in Fig. 9. Secondly, the method filters statistical noise, thus, 
enables us to use shorter periods of time for our analysis.

Now, we use the redefined modularity measure for correlation matrices12. This redefinition avoids the use of 
a network representation and uses an appropriate null model that can be applied directly to correlation matrices. 
The method defines the modularity as

∑ δ σ σσ→ = 
 − 〈 〉 

Q
C

C C( ) 1 ( , )
(8)norm i j

ij ij null i j
,

where Cij is the correlation matrix and 〈 〉Cij null is a random null model that needs to identify the random proper-
ties of empirical correlation matrices.

Figure 7.  Measured volatility (A) and structural entropy (B) for FTSE100. Measured volatility (C) and 
structural entropy (D) for NIKKEI225).
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Figure 8.  The correlogram between structural entropy and volatility for the NIKKEI market (left) and the FTSE 
market (right).
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In this approach, the empirical correlation matrix is first decomposed and then reconstructed using only 
the eigenvalues (and eigenvectors) that are not reproduced by the random null model. Thus in this context, we 
are interested in the correlation matrix spectrum which the random model (multiple time series) generates. 
Once compared with the observed spectrum of the empirical correlation matrix, the model will identify the 
non-random eigenvalues (by elimination). The non-random eigenvalues will later be used to generate the new 
filtered matrix. The null model serves as the “random benchmark” in this new definition of modularity.

Here, we use a null model to serve as the random benchmark for the empirical data. The null model describes 
the most simple case of a random system, where we have N independent, random time series for T time steps (the 
observed period). In this specific case, the resulting correlation matrix would be an N × N Wishart matrix, whose 
statistical properties are well-known38,39. In the limits where → ∞N T,  and ≥T N/ 1 the eigenvalues of the 
Wishart matrix are distributed according to a Marchenko-Pastur distribution
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Figure 9.  Measured structural entropy for the FTSE index using the popular threshold procedure. We can see 
that the results are highly sensitive to the value of the threshold.
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Figure 10.  The eigenvalue density distribution of the empirical correlation matrix of the S & P500. Generated 
by daily closing prices from 2001Q4 to 2011Q3 for N = 445 stocks of the S&P500 index. In red is the empirical 
density distribution, in black is the theoretical Marchenko Pastur (M-P) prediction for a random correlation 
matrix (Eq. (9)), and in green is the eigenvalue density obtained by the randomized data. The inset is the 
fully zoomed-out version of the plot, showing the maximal eigenvalue (the ‘market mode’), as well as several 
deviating eigenvalues from the predicted curve.
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λ
λ λ λ λ

πλ
λ λ λ=

− −
≤ ≤+ −

− +P T
N

if( )
( )( )

2 (9)

and λ =P( ) 0 otherwise. The boundaries λ+ and λ− are dependent on the data size and given by

λ =




 ±





 .±

N
T

1
(10)

2

This analytic curve represents the boundaries of the bulk eigenvalues, which predominantly represent noise, 
and so have little meaning assigned to them.

In Fig. 10 we plot the eigenvalue density distribution of the empirical correlation matrix of the S & P500. In red 
is the empirical density distribution, in black is the theoretical Marchenko Pastur (M-P) prediction for a random 
correlation matrix (Eq. (9)), and in green is the eigenvalue density obtained by the randomized data. It is clear that 
the randomized curve is almost identical to the theoretical Marchenko Pastur distribution, confirming the agree-
ment with random matrix theory for uncorrelated data. In the inset we can observe the maximal eigenvalue (the 
‘market mode’), as well as several deviating eigenvalues from the predicted curve. The ‘market mode’ effect is caused 
by the fact that stocks typically move up or down together, this results in the presence of a very large eigenvalue λm, 
orders of magnitude greater than the rest. We can also see that a significant amount of the eigenvalues is laying in the 
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Figure 11.  A comparison of Structural Entropy, Spectral Entropy and Chaikin volatility. In the left panels we 
plot the dynamics of all three measures over time. In the right panels we plot the relation between each measure 
and volatility for each sub-period.
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‘sub random’ range12, where λ λ< −. This phenomenon is associated with the presence of the global mode, where 
the random bulk is shifted to the right due to a very large eigenvalue and is discussed in39. Here we take the same 
rigorous approach and associate the ‘sub random’ range as noise, while the other deviating eigenvalues outside of the 
“random bulk“, have structural implications and relate to groups of correlated stocks39.

As a result, any empirical correlation matrix C can be identified as the sum of three matrices:

= + +C C C C , (11)r g m( ) ( ) ( )

where C(r) is the random part aggregated from the eigenvalues in the random spectrum (λ λ λ≤ ≤− +), i.e.

∑ λ≡ | 〉〈 |
λ λ λ≤ ≤− +

C v v ,
(12)

r

i
i i i

( )

: i

and

λ≡ | 〉〈 |C v v (13)m
m m m

( )

represents the market mode, and

∑ λ≡ | 〉〈 |
λ λ λ< <+

C v v
(14)

g

i
i i i

( )

: i m

represents the remaining correlated groups. These sub-groups of correlated stocks comprise the mesoscopic 
structure of the market. They are also referred to as “group modes” in the literature4,39.

The maximal eigenvalue represents a common factor influencing all the stocks in a given market, from a struc-
tural perspective, the market mode eigenvalue signifies the presence of one single super-community, containing 
all the stocks in the market. Thus, the other eigenvalues (not including the market mode), which deviate from the 
bulk, λ λ λ< <+ i m are the ones corresponding to mesoscopic clusters, i.e. groups of stocks with similar dynam-
ics. Now, returning to the modularity, we define the filtered empirical correlation matrix as Cij

g( ) once both the 
global mode C(m) and the random bulk C(r) have been filtered.

Once we input this result into the modularity equation

∑ ∑δ σ σ δ σ σσ→ = 
 − 〈 〉 

 = − −( )Q
C

C C
C

C C C( ) 1 ( , ) 1 ( , )
norm i j

ij ij null i j
norm i j

ij ij
r

ij
m

i j
, ,

( ) ( )

we see that this leads to

∑ δ σ σσ→ = .Q
C

C( ) 1 ( , )
(15)norm i j

ij
g

i j
,

( )

In other words, to clearly differentiate between the mesoscopic groups, one must subtract out the main drift of 
the system and the random correlation, using the random null model. The filtered matrix Cij

g( ) constituted from 
the “non-random” eigenvalues λ λ λ< <+ i m and their corresponding eigenvectors vi. The method modified 
three modern community detection algorithms, customizing where necessary to be effective with correlation 
matrices12.

Lastly, to broaden our analysis we compare the proposed structural entropy to the spectral entropy and 
Chaikin volatility. The first method aims at measuring the spread of functionality in a correlation matrix and 
shares some resemblances by using eigenvalues analysis. The latter, is a volatility indicator which calculates the 
Exponential Moving Average of the difference between the current interval’s high and low prices and its value a 
number of periods ago. We calculate each of the measures for the exact same sub-periods and using the same slid-
ing window technique. In Fig. 11, we present a comparison between the three measures. In the panels on the left, 
we plot the dynamics of all three measures over time. In the panels on the right, we plot the relation between each 
measure and volatility for each sub-period. We can see that the spectral entropy has a very different dynamics 
than the structural entropy, and that its relation to volatility is very noisy. This is quite expected as spectral entropy 
does not filter noise and analyzes the whole spectrum of the correlation matrix. As for the Chaikin volatility 
measure, while it does not present a clear relation to the volatility measure, we can still observe the main event 
(volatile period). Nevertheless, structural entropy presents this volatile period long before it can be observed by 
Chaikin volatility33.
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