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Coexisting ordered states, Local 
equilibrium-like Domains, and 
Broken ergodicity in a Non-
turbulent Rayleigh-Bénard 
Convection at steady-state
Atanu Chatterjee, Yash Yadati, Nicholas Mears & Germano Iannacchione

A challenge in fundamental physics and especially in thermodynamics is to understand emergent 
order in far-from-equilibrium systems. While at equilibrium, temperature plays the role of a key 
thermodynamic variable whose uniformity in space and time defines the equilibrium state the system 
is in, this is not the case in a far-from-equilibrium driven system. When energy flows through a finite 
system at steady-state, temperature takes on a time-independent but spatially varying character. In 
this study, the convection patterns of a Rayleigh-Bénard fluid cell at steady-state is used as a prototype 
system where the temperature profile and fluctuations are measured spatio-temporally. The thermal 
data is obtained by performing high-resolution real-time infrared calorimetry on the convection system 
as it is first driven out-of-equilibrium when the power is applied, achieves steady-state, and then as 
it gradually relaxes back to room temperature equilibrium when the power is removed. our study 
provides new experimental data on the non-trivial nature of thermal fluctuations when stable complex 
convective structures emerge. the thermal analysis of these convective cells at steady-state further 
yield local equilibrium-like statistics. In conclusion, these results correlate the spatial ordering of the 
convective cells with the evolution of the system’s temperature manifold.

From swarming in biological organisms to crack propagation in materials, from phase-transitions to glass transi-
tions, from molecular processes at nanoscale that form the basis of life to the ever-changing climate on this planet, 
it is no coincidence that everything around us operate under conditions that are far-from-equilibrium. These 
systems, that have been driven out-of-equilibrium exhibit an incredibly wide variety of patterns that emerge 
spontaneously through local interactions. By virtue of being driven out-of-equilibrium, these systems are typi-
cally nonlinear, thermodynamically open, often non-ergodic and disordered while exhibiting spontaneous emer-
gent order at the same time. The study of such systems, therefore becomes an extremely challenging affair1–7. 
In order to gain insights about these out-of-equilibrium systems some model systems that are actively studied 
include clustering of bacterial colonies and self-assembly in actomyosin motility assays, phase ordering in liquid 
crystals, synchronization of Kuramoto oscillators, oscillatory behaviors in reaction-diffusion systems such as 
the Belousov-Zhabotinsky reaction, or turbulence and pattern formation in thermal-convective systems like the 
Rayleigh-Bénard convection1,8–13.

In this paper, we focus on the Rayleigh-Bénard convection as a prototype for a far-from-equilibrium system 
that exhibits emergent order. It should be noted that our study of the Rayleigh-Bénard convection is motivated 
solely from a thermodynamic point of view and not from a fluid mechanics perspective. To elaborate, we focus 
on broad questions such as can multiple local equilibrium states coexist in an otherwise far-from-equilibrium 
system, or how the statistical mechanics of a far-from-equilibrium system differs from that of a system at equi-
librium? What are the limitations of the local equilibrium hypothesis, or under what conditions do thermal gra-
dients in a system dominate and allow for the spontaneous emergence of ordered structures1,14–21? While we 
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experimentally explore the far-from-equilibrium behavior of temperature, these results sheds light on the fun-
damental questions mentioned above. These questions, answers to which are yet unknown or inconclusive, are 
important for the broad scientific community, but are also of significant general interest.

The Rayleigh-Bénard convection, due to its conceptual richness and an easy experimental methodology, 
remains one of the most actively and extensively studied physical system. The dynamics of a Rayleigh-Bénard 
convection system joins fundamental ideas from both thermodynamics and fluid mechanics. When a thin film of 
liquid is heated, the competing forces of viscosity and buoyancy give rise to convective instabilities. This convec-
tive instability creates a spatio-temporal non-uniform thermal distribution on the surface of the fluid film. The 
advantage of this system lies in its simplicity, wherein a dimensionless quantity, the Rayleigh number (Ra), deter-
mines the onset of convective cell patterns1,12,22. The critical Rayleigh number of 1708 marks the onset of convec-
tion for a no-slip boundary condition was obtained by Jeffreys in 19291,12,22. Since then there has been a series of 
studies on the empirical relationships between the various dimensionless numbers (specially, Nusselt’s number 
(Nu), Reynold’s number (Re), Prandtl’s number (Pr) and Ra) under conditions of laminar and turbulent flows23,24. 
Studies reporting the efficiency in convective heat transfer based upon geometry or on the role of plumes, to 
measuring thermal fluctuations under turbulent flow conditions, have played an important role in understanding 
convection cell formation25–31. The onset of convection cell patterns in relation to thermal and hydrodynamic 
boundary layer models is an active area of interest in the fluid mechanics community, especially in exploring 
turbulence. Turbulence, although quite ubiquitous in nature, still remains one of the many unsolved problems 
in physics today. Not only as a tabletop experiment, but also through numerical simulations, the Rayleig-Bénard 
convection cell system serves as a very convenient prototypical model that has provided insights into the physics 
and hydrodynamics of turbulence. Noteworthy among them are studies on the effects of rotation and magnetic 
fields on Rayleigh-Bénard convection cells, turbulent convection at very high Rayleigh numbers with cryogenic 
He gas as the working fluid to probe velocity and thermal statistics, and measurements of the mean temperature 
and variance profile as a function of boundary layer thickness32–36.

This paper focuses on the non-turbulent spatio-temporal aspects of a Rayleigh-Bénard system at steady-state 
from a statistical physics point of view. Figure 1 illustrates the experimental configuration of the current study. A 
Rayleigh-Bénard system at steady-state is set up by heating at constant power ( Q) a thin film of a viscous liquid 
(oil) from the bottom. After stability is achieved, the temperature at the bottom of the oil film (Tbottom), which is in 
direct contact with the copper pan, becomes time-independent. The temperature of the top layer of the oil film 
(Ttop), however exhibits spatial variation. This calorimetric information is extracted by performing real-time ther-
mal imaging, and is further quantified by analyzing the spatio-temporal distributions of the thermal fluctuations. 
We note again that this paper does not aim to uncover new physics that is of interest to the fluid mechanics com-
munity, but it aims to provide interesting insights into the physics of far-from-equilibrium thermodynamics. Our 
analysis provides insights about the distribution of thermal states when far-from-equilibrium. In the context of 
the analysis, we also discuss ergodicity and symmetry-breaking, and the local equilibrium hypothesis while 

Figure 1. Cartoon illustrates the experimental configuration of the current study. The Rayleigh-Bénard system 
at steady-state is set up by heating a thin film of viscous liquid from the bottom ( Q). The temperature difference 
between Tbottom and Ttop gives rise to convection rolls. While at steady-state, Tbottom is constant, real-time thermal 
imaging of the top layer is performed to extract the spatial and temporal distribution of Ttop. The line cut of the 
thermal profile T tr( , )top  is also shown. As the goal was to have convection cells over as wide as an area possible 
for the thermal imaging to yield significant temperature statistics, a large diameter to thickness ratio of the 
apparatus (

R l mm2 / 225z / ∼mm5 45) yielded a stable convection cell pattern  mm150  in diameter and 
stable for as long as the power was applied.
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experimentally determining the temperature distribution of a system driven out-of-equilibrium3,37–40. Through 
this paper we hope to spur theoretical interest in the description of far-from-equilibrium steady-state systems.

Results
temporal analysis. In Fig. 2 we plot the mean of the top temperature (left axis) and its standard deviation 
(right axis) as a function of time when the silicone oil sample is heated. The sample, initially at room temperature 
is driven out-of-equilibrium by the application of a constant heating power. Once the system reaches a steady-
state, the heating power is switched off and system gradually relaxes back to room temperature. The top temper-
ature mean and standard deviation as a function of time for the cooling process is plotted in Fig. 3. The mean 
temperature of an arbitrary region of interest on the image, 〈 〉 = ∑ ∈T T

N i j I ij
1

,  and the standard deviation, 

σ =
∑ − 〈 〉

−
∈
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T T
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2

 are calculated from the image matrix (Iij). We observe from Figs 2 and 3 that the mean 
temperature follows a typical heat-conduction trend for heating as the system achieves ostensibly a new high-tem-
perature equilibrium as well as on cooling toward the original room temperature equilibrium state. The maxi-
mum temperature reached by each sample at steady-state increases as expected with increasing power based on 
the heat capacity for each film.

The plots of the temperature standard deviation as a function of time, however, show a markedly different 
trend during both heating and cooling processes as can be seen from Figs 2 and 3, respectively. The standard 
deviation, a measure of the distribution width and is related to the temperature fluctuations in the system, gener-
ally increases with increasing temperature. Although an increasing trend in standard deviation as a function of 
time is observed on heating as expected since the temperature is increasing, this trend is broken at a point in time 
when the first hints of convection cells appear ≈200 seconds, where σT begins to decrease. This decrease in σT 
continues as the convection cells grow until they reach their maximum extent over the film, which is not the 
entire film area due to the side heating produced by the Cu walls. Once the convection cell pattern has stabilized, 
σT reaches a minimum at ≈900 seconds after which it begins to increase again and only flattens as the mean tem-
perature stabilizes. For cooling, after the heating power is removed, both the 〈 〉T  and σT begin to decrease with σT 
decreasing more rapidly as time progresses until the last vestiges of any cell pattern disappears after which the 
decrease in σT abruptly slows and flattens as 〈 〉T  returns to room temperature. Over regions of the film where the 
temperature appears uniform, σT is dominated by the spatial thermal fluctuations of the film but when convection 
cells are apparent σT contains additional contributions due to thermal gradients across the film.

Figure 4 presents the time-averaged scaled thermal variation at steady-state over a region of the film. This 
scaled thermal variation is calculated by the determining the difference between the temperature of a given pixel 
from 〈 〉T  of the region of interest then scaled by the same mean, δ =

− 〈 〉

〈 〉
⁎T

T T

T
ij . Once at steady-state, a series of 

images (a movie) is recorded at 30 frames/sec for 15 minutes. A fixed region of interest is then identified on the 

Figure 2. Figure shows on a semi-log scale the temperature mean and standard deviation as a function of time 
of the top of the silicone oil film as it responds to the applied heating power until steady-state is reached for 
various values of input power. The left axis corresponds to the temperature mean in degrees Celsius (solid blue 
circles) and the right axis corresponds to the standard deviation (solid red triangles). Plots (a,b,c) show heating 
profiles for a film thickness of = .l mm4 74z , and plots (d,e,f) for = .l mm5 02z . Note that the applied heating 
power in Watts are labeled by the far left y–axis.
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image, either one near the edge exhibiting no pattern or one over a hot or cool part of a convection cell, and δ ⁎T  
is then averaged over 27,000 frames,

∫δ δ= .⁎ ⁎T
T

T t dt1 ( ) (1)
T

0

In Fig. 4a,c, the time-averaged distributions for the upward (hot) and downward (cool) plumes denoted by, 
Phot and Pcold respectively, are shown. In Fig. 4b presents the time-averaged distribution for the entire patterned 
region, P. Each of these three histograms are fitted with a normal distribution function centered at zero. The plots 
in Fig. 4 are shown in a semi-logarithmic scale to highlight the behavior in the tails where deviations from the 
fit would be most apparent. For the histogram statistics on the hot regions in Fig. 4a, the normal curve describes 
the data very well over the entire range. However, in the cold regions shown in Fig. 4c, the normal curve does not 
reproduce the data, especially in the tails, as well and would suggest the possible presence of higher moments to 
the distribution. The combined distribution is dominated by the hot regions and so does not reveal the deviations 

Figure 3. Figure shows on a semi-log scale the temperature mean and standard deviation as a function of time 
of the top surface of the silicone oil film as it relaxes to room temperature after the applied heating power is 
removed. The left axis corresponds to the temperature mean in degrees Celsius (solid blue circles) and the right 
axis corresponds to the standard deviation (solid red triangles). Plots (a,b,c) show cooling profiles for the film 
thickness of = .l mm4 74z , and plots (d,e,f) for = .l mm5 02z . Note that the applied heating power in Watts are 
labeled by the far left y–axis.

Figure 4. Figure shows the histograms for the scaled-thermal fluctuations averaged over time after the system 
has reached a steady-state on a semi-logarithmic scale. The panels (a) denote the hot regions (Phot), (b) the entire 
region (P), and (c) the cold regions (Pcold). The mean temperature, 〈 〉T  (in °C) of the various regions of interest 
are also denoted. The histograms are fitted with normal distribution functions all centered at zero.
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from normal as well. As the chosen hot and cold regions do not contain the pattern, they are not influenced by 
the thermal gradients across a cell therefore, the statistics therein measure pure thermal fluctuations; while the 
distribution over the whole pattern contains both gradients and fluctuations. Normal distributions imply that the 
fluctuations are essentially random in nature and that this indicates equilibrium-type fluctuations, which sup-
ports the notion that the individual hot and cool regions are each equilibrium-like domains but at different mean 
temperatures that co-exist in steady-state.

spatial analysis. In Fig. 5, the space-averaged scaled-thermal variation density from the steady-state images 
are plotted. A steady-state image is chosen in which structures are clearly visible. The two regions of interest, the 
patterned region (P) and the annular non-patterned region (R) are chosen. A measure, μ is defined over the col-
lection of pixel-points in P and R such that,

∫δ
μ

δ= .
μ

⁎ ⁎T
P

T P1
( )

( )
(2)

The left panels (a and c) in Fig. 5, report the histograms and the kernel density estimates for the patterned 
region for the two thicknesses. The salient feature of the plots is the presence of a bimodal behavior. For the same 
sample under same physical conditions, when a non-patterned region is chosen (right panels, b and d), the histo-
grams of the fluctuations are well fitted by a Gaussian distribution function. This bimodal result of the patterned 
region has two important aspects: i) the ergodicity is clearly broken, and ii) the ergodicity is broken spatially. It 
is interesting to note that a similar bimodal distribution of local thermal fluctuations was reported earlier, but in 
a very different context2,26. In the convective cell region (P), the distribution contains both gradient and fluctua-
tion contributions to the temperature spatial variation while the hot or cool or ring regions (i.e. chosen regions 
without a pattern) have a normal distribution. Of course, the emergence of these modes can be attributed to the 
steady-state patterns of convective instabilities arising due to the upward and downward drafts1,12,41. As seen in 
Fig. 5b,d, the peaks in the distribution are equidistant from the origin with a local minima close to the origin.

In Fig. 6, the pattern of convective cells were characterized spatially by a tracking typical length-scales that 
emerge in the patterns as the system evolves on heating to an out-of-equilibrium steady-state. Length-scales were 
extracted from each image using a spatial two-point autocorrelation function, 2, analysis on the thermal images. 
The spatial correlation function is defined as, = 〈 ⋅ + 〉 − 〈 〉〈 + 〉r T R T R r T R T R r( ) ( ) ( ) ( ) ( )2 , where T(R) rep-
resents the temperature at an arbitrary location on the image, R, and +T R r( ), the temperature at a distance, r 
from R. A typical two-point autocorrelation function is shown in Fig. 6a for a patterned and un-patterned image, 
P and R. The white filled-circles show the correlation data for the non-patterned region, R, described by a single 
exponential decay fit of the form, = − +

ξ( )r C C( ) exp r
2 1 0 . A correlation length (ξ) of 33 mm is estimated from 

the exponential fit for the 4.75 mm sample at 95 W in the non-patterned region, R. Whereas, for the patterned 
region, P, two correlation lengths are obtained, ξ = . mm18 5  and 9.3 mm. These lengths characterize the average 
length and width of the observed structures that appear worm-like in nature. Smaller correlation lengths imply 

Figure 5. Figure shows the histograms for the scaled-thermal fluctuations averaged in space after the system 
has reached a steady-state. The top panel shows the distributions for = .l mm4 74z  and the bottom panel for 

= .l mm5 02z . Panels (a and c) plots the scaled-fluctuation frequency counts for the patterned region, P with a 
kernel density estimate (dashed). Panels (b and d) plot the scaled-fluctuation frequency counts for the non-
patterned annular region, R with a normal curve fit centered at zero (solid).
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increased heterogeneity, the thermal surface of the film becomes progressively structured in time. This is clearly 
visible from the thermal images shown in Fig. 9b.

The time evolution of the extracted correlation lengths are shown in Fig. 6b as the system reaches steady-state. 
At a heating power of 95 W, sufficient for structures to emerge, a single correlation length is seen initially as long 
as the width of the film as no pattern has emerged just as was seen over the entire time-evolution of the film 
heated at 23.8 W that never exhibited emergent structures. The single correlation length remains roughly constant 
(ξ ~ 30 − 35 mm) until about 200–300 seconds, when it suddenly decreases to about 10–12 mm with the emergence 
of a second length-scale ~9–10 mm (shown in solid red triangles). Note that the sharp drop in the correlation 
length as a function of time coincides with the drop in standard deviation of the temperature plots during the heat-
ing process (see Fig. 2). The data in solid green triangles is for the film heated by 23.8 W, and illustrates the result 
of this spatial analysis as a reference since this run exhibits no patterns. However, this analysis is limited, as seen 
in both Fig. 6a,b, by the inherent noise of the correlation data due to limited spatial span available and the limited 
thermal/spatial resolution of the camera. Thus, these results are only estimates of the true correlation statistics.

Finally, the experimental configuration allows the comparison of the temperatures across the film surface to 
that expected if convection was absent. That is, to what would have been the theoretical temperature of the top 
surface of the fluid film if the mechanism of heat transport had been through pure conduction. In order to cal-
culate the theoretical conductive temperature, Tcond, the steady-state heat conduction equation is used along with 
the available calorimetry data,

=
+ −

× ×
= − ∇ = −






− 




Q
m c m c T T

kA T kA T T
l

( ) ( )

2 60 60
,

(3)

Cu p oil p bottom top cond bottom

z

Cu oil

where A is the area of the copper pan, the material properties are given in Table 2, and the measured temperature 
values from Table 1 of the theoretical expected temperature (Tcond) and the temperature of the upward and down-
ward drafts (TPhot

 and TPcold
). The resulting values of all the temperatures are listed for both the thicknesses in 

Table 1 and plotted as a function of applied power in Fig. 7. The critical Rayleigh Number for structures to emerge 
is 1708 and for experiments beyond this critical value (see Table 1 last column, after third row), the theoretical 

Figure 6. (a) Figure shows the two-point autocorrelation function, 2 as function of distance, r with 
exponential fits,  ∼ −

ξ( )r exp( ) r
2  where ξ is the correlation length on a log-log scale. The data shown in grey 

filled-circles with a single fit is for the non-patterned region of interest (R), whereas the data shown in white-
filled circles with two fits is for the region of interest that shows emergent structures (P). The shown analysis is 
run on a steady-state image for a 4.74 mm, 95 Watt sample at steady-state. (b) Figure shows the time-
dependence of the correlation length for a 4.74 mm sample at 23.8 Watt (green triangles) and 95 Watt (red and 
blue triangles) as it evolves from room-temperature equilibrium to an out-of-equilibrium steady-state on a 
semi-logarithmic scale.

Figure 7. Figure shows the temperature plots (T T T, ,P P condhot cold
 and Tbottom) for the steady-state images at 

different values of input power for (a) = .l mm4 74z  and (b) = .l mm5 02z . The inset plots capture the variation 
in the plume temperatures (TPhot

 and TPcold
) about the theoretical conduction temperature (Tcond) as a function of 

power. For details about the specific points denoted in the plots, refer Table 1. Also, note that ε is arbitrary.
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conduction temperature is close to the weighted average of the hot and cold plume temperatures denoted by, TPhot
 

and TPcold
. In the inset of Fig. 7, the variance of the plume temperatures about the conduction temperature 

( ε+Tcond  and ε−Tcond ) as a function of the applied power is shown. Interestingly, the nature of this variation 
does not follow a linear relationship, but rather oscillates above and below Tcond almost anti-symmetrically. 
Although macroscopically the system is at steady-state, and so time-invariant, the spatial regions corresponding 
to TPhot

 and TPcold
, can be thought of as separate local equilibrium-like regions coexisting with each other.

Discussion
The lack of a theoretical framework makes systems that are out-of-equilibrium difficult to study. However, the 
Rayleigh-Bénard convection, with controllable system variables and access to all measurable quantities is an 
attractive platform to shed light that may guide theoretical development. In this study, the Rayleigh-Bénard sys-
tem is used as a prototype to gain insights about far-from-equilibrium thermodynamics. Equilibrium behav-
ior is typically easy to visualize, as at equilibrium, all macroscopic thermodynamic variables collapse into fixed 
points in phase-space42–44. Temperature, which plays a key role in equilibrium thermodynamics, is often quoted 
as a bad thermodynamic variable to characterize far-from-equilibrium systems, and hence should not be used 
to describe out-of-equilibrium behavior. This notion is technically sound, as macroscopic variables when 
far-from-equilibrium are constantly changing in time and no descriptive state-function can be written. Although, 
when deviations are linear and relatively small, the equilibrium description can be extended under the claims of 
local equilibrium hypothesis. Nevertheless, even after 200 years of effort, a general theory of far-from-equilibrium 
thermodynamics is currently missing, and is still quoted as “work in progress”14,15 (Non-equilibrium 
Thermodynamics, https://en.wikipedia.org/wiki/Non-equilibrium_thermodynamics). The argument against the 
use of temperature as a measure to theorize far-from-equilibrium thermodynamics although logically valid does 
not provide a way to solve this long-standing problem. This work seeks to provide experimental observations to 
stimulate theoretical progress.

A remarkable observation from our analysis of the steady-state thermal images is that local equilibrium-like 
regions appear to spatially coexist in an out-of-equilibrium system driven presumably by the partitioning of the 
heat energy flow into entropic and coherent work (the convection circulation). The system is therefore 
non-ergodic as a whole, but is ergodic in equilibrium-like sub-regions that do not exhibit a pattern in time, but 
not over the entire film. Since, time translation symmetry is preserved, any macroscopic description of the system 
should be found to conserve energy (or have applicable the First Law of Thermodynamics). As translation sym-
metry is broken over the whole film, there must exist internal gradients of temperature between adjacent regions, 
the internal coherent work that drives the convective flow of fluid is also maintaining these internal temperature 
gradients. The Second Law is well preserved for the macroscopic description of the system, locally however it gets 
violated due to the emergence of structures and internal gradients38,39,45–49. This can be seen in the cooling profiles 
in Fig. 3, where the structures and internal gradients disappear as soon as the system relaxes back to room 

Kinematic 
Viscosity ν (cSt)

Density ρ 
(Kg/m3)

Thermal Conductivity 
k (W/m − K)

Specific Heat 
c poil

 (J/Kg − K)
Thermal Diffusivity 
α (m2/s)

Compressibility βT 
(m2/N)

150 970 0.16 1500 1.099 × 10−7 9.5 × 10−4

Table 2. Table outlines thermal and material properties of the Silicone oil sample that was used to perform the 
current study (Shin Etsu Silicone-Global, http://www.shinetsusilicone-global.com/catalog/).

lz (mm) # Power (W) Ttop (°C) TPhot (°C) TPcold (°C) Tbottom (°C) Tcond (°C)
Rayleigh 
Number Ra

4.74

1 23.8 39.4 —— —— 53.2 46.8 831

2 42.2 48.4 61.5 54.8 71.7 61.7 1410

3 66 59.9 78.2 69.7 89.5 76.1 1790

4 95 70.9 100.9 91.1 115 96.4 2670

5 130 89.8 124.8 114.1 147 122.2 3464

5.02

1 10.5 30.3 —— —— 37.9 34.5 535

2 23.8 38.1 43.1 39.7 53.4 46.9 1080

3 42.2 47.2 63.5 56.7 70.9 60.9 1670

4 66 58.8 84.4 73.6 91.8 77.7 2330

5 95 73.1 101.3 90.1 115 96.4 2960

Table 1. Table shows the calorimetric data from the steady-state images at different powers for the two thickness 
( = .l mm4 74z  and 5.02 mm). The numbers listed in the first column denote the specified points in the plots 
shown in Fig. 7. The top temperature (Ttop) is recorded by the thermal camera, bottom temperature (Tbottom) by 
the thermocouple T1, the hot and cold spot temperatures (TPhot

 and TPcold
) are obtained by spatially averaging 

regions of interest (Phot and Pcold) from the thermal images, conduction temperature (Tcond) is calculated from 
Equation 3, and the Rayleigh Number 


 = −





β
να

Ra T T( )g l
bottom top

z
3

 from the listed values in Table 2.
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temperature. Future work on this system would naturally be to quantitatively determine the amount of work 
required to maintain these co-existing localized gradients on the energy manifold. The emergent work averaged 
over these states and the free-energy differences between the equilibrium-like states are statistically related as, 

−〈 〉 = −∆W k T F k Texp( / ) exp( / )B B
50,51. Insights about the free-energy of the local equilibrium-like states would 

throw considerable light on the interpretation of the partition function for such non-equilibrium steady-state 
systems52–54.

The breaking of translation symmetry and unbalanced internal gradients can possibly explain the peculiar 
nature of the standard deviation plots during heating and cooling. From Figs 2 and 9 we can observe that the 
curve for the Ttop bends at time, t ~ 200–300 sec when the first structures appear. It is tempting to conclude that 
the two observations are related to the same phenomenon. As the system is heated, local equilibrium-like regions 
start to emerge which causes the system to start getting correlated. As the correlations get stronger, the system 
starts behaving as collections of local equilibrium-like domains (see Fig. 6). As the fluctuations between these 
domains get stronger (compare the ranges of the scaled fluctuations from the x–axis in Fig. 5), they start dominat-
ing the fluctuations elsewhere which gives rise to Casimir like effect55–58. Due to the finite size of the system these 

Figure 8. Figure illustrates the experimental setup with the copper pan ( = .R m2 0 225 ), the three 
thermocouples (T1, T2, T3), inlet and outlet ducts for the forced convective heat transfer, and the Infra Red 
camera for real-time thermal imaging. The inlet and the outlet ducts are present on the top cover and the copper 
pan sits on a wooden bottom rest and a polyurethane foam foundation which acts as an insulator.

Figure 9. (a) Figure shows steady-state thermal images recorded for two thickness, = .l mm4 74z  and 5.02 mm 
at various powers. (b) Figure shows the time-evolution of the = .l mm4 74z  at 95.0 W over a period of two 
hours. Note that the shown images are logarithmically placed in time.
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effects propagate at a much faster rate than mere thermal diffusion. This is readily observed in the sudden decline 
of the standard deviation during heating. While cooling, the domains disintegrate and the system becomes weakly 
correlated, thus the strong fluctuations almost immediately disappear.

In conclusion, although macroscopically the system is at steady-state the regions in space corresponding to 
Phot and Pcold can be realized as localized heat baths with equilibrium-like statistics confined within them. The 
dissipation from the equilibrium fluctuations within these localized regions manifests as a spatial variation of 
the temperature manifold, the curvature of which indicates how far one is from the equilibrium state, Tcond (see 
Fig. 7). The upward and downward drafts at these localized regions perform internal work to maintain the con-
vection (structure and internal gradients) while resisting spontaneous equilibration. An intuitive understand-
ing of this mechanism is the bifurcation of the theoretical conduction temperature beyond the critical Rayleigh 
Number (see Fig. 7). Therefore, in order to interpret temperature far-from-equilibrium we must consider, tem-
perature not as state variable but as a functional on the energy landscape16. This energy landscape consists of local 
equilibrium-like points, and within each of these regions the macroscopic equilibrium thermodynamics ideally 
holds true. A theory that would encompass this idea must have to preserve the First Law while modifying it to 
include the emergence of internal gradients17,59–62. The results presented in this paper may provide a new per-
spective and a way forward to laying out the foundations for a theoretical interpretation of far-from-equilibrium 
phenomena.

Methods
experimental methodology. A thin layer of silicone oil is heated in a copper pan whose average diameter 
is 0.225 m. The thermal and material properties of the oil is outlined in Table 2. The pan is heated from the bottom 
by an electric heater. In Fig. 8 we illustrate the experimental setup in detail. The top cover is made up of wood and 
has inlet and outlet ducts for forced convective heat transfer. The two thermocouples T2 and T3 measure the tem-
perature of the incoming and outgoing gas respectively. The bottom rest, also made up of wood has a cavity with 
a recess on which the copper pan sits snugly. The wooden base rests on top of a block of Polyurethane foam. The 
thermocouple, T1 is connected to the base of the copper pan which measures the bottom temperature of the pan 
(Tbottom). An infra-red camera (with a precision ~10−3 K), placed concentrically above the copper pan captures the 
real-time thermal images from a height. The temperature scale of the camera is calibrated by heating the empty 
copper pan. Due to small varying thickness of the base of the copper pan, the film thickness and the surface tem-
perature of the top is averaged over the entire exposed area. The system is heated by regulating the power input 
through the heater. The resistance of the electric heater is 37.5 ± 0.5 Ω. At a specific power, the system is let to 
evolve over time such that the mean bulk-temperature stops fluctuating. Once the system reaches a steady-state 
(after approximately two hours), the mean temperature of the top surface is denoted by Ttop.

It is important to note that the apparatus was not intended for high control of convection cells. Rather, the 
goal was to have convection cells over as wide as an area possible for the thermal imaging to yield significant 
temperature statistics, both temporally and spatially. The criteria was then for a large diameter to thickness ratio 
of the apparatus (225 mm/7 mm) that yielded a stable convection cell pattern at least or greater than 150 mm in 
diameter and stable for as long as the power is applied63–65. To the best of our knowledge, this has not been done 
before. Therefore, the thrust is to shed light onto the relationship between the emergence of structure in driven 
out-of-equilibrium systems and the far-from-equilibrium definition of temperature.

In Fig. 9a we plot the steady-state thermal images of the convection patterns for two film thickness 
(lz = 4.74 mm and 5.02 mm) with increasing power, along x–axis. Each image has a color scheme that is a func-
tion of its independent thermal scale (recorded by the calibrated Infra Red camera). As every steady-state image 
is embedded with its own calorimetric information, the temperature at each pixel location can be computed 
through a simple linear interpolation that transforms the grey-scale bit value to a corresponding temperature. 
In Fig. 9b we present a graphical representation of the time-evolution of the patterns for the film thickness, 
lz = 4.74 mm at 95.0 W (highlighted in Fig. 9a). The images are placed logarithmically along the x–axis to bring 
out the clear difference in time taken by the system before and after the onset of patterns. In the pre-pattern (or no 

Figure 10. (a) Figure illustrates the temporal analysis of an arbitrary region of interest on the images as a 
function time as the system evolves from room temperature equilibrium to an out-of-equilibrium steady-state. 
(b) Figure shows the regions of interest for the spatial analysis on the steady-state image of a Rayleigh-Bénard 
convection. The complete image is denoted by I, the annular region without any structures by R, the circle at the 
center by P, the upward (bright spots) and downward plumes (dark spots) by Phot and Pcold respectively.
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pattern) stage, the dynamics of the system is very fast, specially during the first quarter of the hour. However, once 
structures start emerging the dynamics of the system slows down drastically, and during the last hour it barely 
shows any measurable dynamical changes as is clearly visible in Fig. 9b.

Analysis. A sample of the raw images that were recorded by the Infra Red camera are shown in Fig. 9a,b. 
These raw images (I) are then converted into a ×N N  matrix of temperature, where each entry of the matrix 
element (Iij) corresponds to the temperature of each pixel (Tij) on the image. These images are then statistically 
analyzed both spatially and temporally. In Fig. 10 we depict the two types of analysis that are performed on these 
images. In Fig. 10a we perform a temporal analysis of the images as the system evolves to a steady state. An arbi-
trary region of interest is identified and is then followed in time. The statistics that are obtained, are then analyzed 
a function of time or are averaged over time. In Fig. 10b, we spatially analyze the steady-state images as obtained 
from the thermal camera. The analysis of this type gives us insights about the spatial aspects of the system once 
steady-state has been achieved and structures have emerged. The two primary regions of interest in this type of 
analysis are the patterned region (P) and the non-patterned region (or the ring region) R. Within the patterned 
region, P, the brighter spots represent upward plumes and are denoted by Phot, while the darker spots represent 
downward plumes, and are denoted by Pcold.
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