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Lei: A novel Allele frequency-
Based feature Selection Method 
for Multi-ancestry Admixed 
populations
Michael J. Wathen1,2, Yadu Gautam2, Sudhir Ghandikota2,3, Marepalli B. Rao1 & 
tesfaye B. Mersha2

next-generation sequencing technologies now make it possible to sequence and genotype hundreds 
of thousands of genetic markers across the human genome. Selection of informative markers for the 
comprehensive characterization of individual genomic makeup using a high dimensional genomics 
dataset has become a common practice in evolutionary biology and human genetics. Although 
several feature selection approaches exist to determine the ancestry proportion in two-way admixed 
populations including African Americans, there are limited statistical tools developed for the feature 
selection approaches in three-way admixed populations (including Latino populations). Herein, we 
present a new likelihood-based feature selection method called Lancaster estimator of independence 
(Lei) that utilizes allele frequency information to prioritize the most informative features useful 
to determine ancestry proportion from multiple ancestral populations in admixed individuals. the 
ability of LEI to leverage summary-level statistics from allele frequency data, thereby avoiding the 
many restrictions (and big data issues) that can accompany access to individual-level genotype data, 
is appealing to minimize the computation and time-consuming ancestry inference in an admixed 
population. We compared our allele-frequency based approach with genotype-based approach in 
estimating admixed proportions in three-way admixed population scenarios. our results showed 
ancestry estimates using the top-ranked features from Lei were comparable with the estimates using 
features from genotype-based methods in three-way admixed population. We provide an easy-to-use R 
code to assist researchers in using the Lei tool to develop allele frequency-based informative features to 
conduct admixture mapping studies from mixed samples of multiple ancestry origin.

Genome sequencing and genotyping technologies have generated millions of single nucleotide polymorphism 
(SNP) data capturing vast amounts of the genetic variations that characterize the individual differences in human 
populations including admixed ancestry proportions and continental origins in humans1. Such advances in high 
throughput technology enable us to apply multi-locus genomic data and estimate individual ancestry as a con-
tinuous trait instead of using self-reported binary racial groups. Knowledge of genetic ancestry of individuals in 
the sample beyond the self-reported race/ethnicity is warranted in many applications of genomic data including 
disease-gene mapping via case-control association or admixture mapping. Ancestral heterogeneity among the 
samples in a case-control association studies can induce spurious associations; hence the accurate characteri-
zation of the study population is needed in order to detect the true genetic association2–4. On the other hand, 
the admixture mapping methods are built upon the accurate comparison of the individual’s ancestry in specific 
genomic region with the individual genome proportion. Thus, the knowledge of individual genome proportions 
of an admixed population is critically relevant for assigning individuals to their continental ancestry in associa-
tion mapping as well as mapping the risk loci using admixture mapping5,6.
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The task of identifying and assigning an individual’s genomic regions to the correct ancestries can be diffi-
cult in admixed populations with multiple ancestral origins. It is estimated that 80–90% majority of the com-
mon genetic variants are shared among individuals globally, hence, are less informative of continental origins7,8. 
Though rare genetic variants are more likely to be restricted within a continental population and thus more 
informative of ancestry9, such variants are rarely captured or genotyped in study samples. Hence, prioritizing 
ancestry informative markers (AIMs) among the common genetic variants is of paramount importance in studies 
of population structure and disease genetics10. The number of markers required for the population assignment 
will depend on the population under consideration, its respective level of genetic differentiation, and on the 
desired stringency of the assignment11.

AIMs are SNPs that exhibit large variation in minor allele frequencies (MAF) among reference populations. 
Carefully selected AIM panels can delineate population structure efficiently by detecting variation in individual 
ancestry that can confound association analyses and forensic investigations in increasing false positive results or 
reducing power12. Although several methods exist to identify AIMs in admixed populations, specifically from 
two-ancestral groups, there are limited statistical tools to develop informative markers for three-way admixed 
populations, including Latino populations1,11,13. Current approaches for identifying AIMs in three-way admixed 
population such as Latino, utilize pairwise marker informative measures such as Delta or FST, and integrate the 
pairwise AIMs to define the multi-way AIMs14. Alternately, machine learning approaches such as Principal 
Components Analysis (PCA), Random Forest (RF), and Support Vector Machine (SVM) can be trained on a 
reference panel and evaluated post-hoc to perform feature selection. As a feature selection approach, these meth-
ods can be used to rank the informative SNPs, which serve as a classifier to discriminate populations based on 
continental ancestry. However, all these methods require the individual-level genotype data and the selection of 
subsets of informative SNPs from ever-increasing genomic datasets with over millions of SNPs can be very expen-
sive13,15. Additionally, individual level data are often unavailable or restricted for public use. It is thus desirable to 
find an efficient feature selection method, which not only identifies the AIMs to estimate the admixture propor-
tions in samples from admixed population with high accuracy, but is also computationally feasible, cost-effective, 
and applicable to multi-way admixture and summary level data.

This study aims to develop an efficient algorithm and a statistical tool to develop informative markers for 
three-way admixed populations, including Latino populations. In the present work, we introduce a maximum 
likelihood estimator, which was named as the Lancaster Estimator of Independence (LEI) after O. E. Lancaster 
who developed an estimator for probability distributions in 196916. Here, we extend the LEI application into 
genomics as a measure of marker informativeness with the unique ability to compare multiple ancestral popula-
tions using allele frequency summary statistics.

In implementing the LEI, we first construct an algorithm to extract ancestry informative marker subsets that 
accurately classify subject ancestral population membership using both individual level genotype data and sum-
mary level allele frequency data. We compare the performance of LEI-based approaches with standard machine 
learning approaches applicable for feature selection in three-way admixed population, including Principal 
Components Analysis (PCA), Random Forest (RF), and Support Vector Machine (SVM). Each feature selec-
tion approach is built upon by scoring SNPs that reflect their ability to classify the ancestral populations. Using 
the top ranked SNPs from each approach, we first compared the classification accuracy at continental level and 
showed that the allele frequency based LEI approaches performed equally with genotype based feature selection 
approaches for classifying 2-way and 3-way continental populations from the 1000 Genomes Project9. Next, we 
compared performance of top-ranked features from LEI-based approaches for estimating the ancestry proportion 
of admixed individuals in 2-way and 3-way admixture simulated data. Finally, we prepared an R code for the LEI 
method. The R-source code is freely available to download and included in the Appendix.

The availability of cheap genotyping and sequencing technology generated millions of data points, which 
makes it difficult to utilize the entire genotype data for ancestry inference especially for multi-ancestry admixed 
populations. As the summary level data becomes more accessible, LEI provides a methodological advancement 
in the feature selection process with wide applicability in multi-way admixture analysis which will become more 
common due to global admixture.

Materials and Methods
Data sets. Continental ancestry real datasets. To study the continental ancestry, we used the 1000 Genomes 
Phase 3 release with a total of 310 subjects belonging to the following populations: CEU (Utah residents with 
Northern and Western European ancestry: n = 99), CHB (Han Chinese in Beijing: n = 103), and YRI (Yoruba in 
Ibadan, Nigeria: n = 108)9. Pre-analysis data cleaning and formatting were performed using PLINK17.

Admixed ancestry simulated datasets. To study the admixture ancestry, we simulated two different admixture 
scenarios - one for two-way admixture and the other for three-way admixture, using the reference populations 
of CEU (n = 113), YRI (n = 113), and CHD (Chinese in metropolitan Denver, Colorado, USA; n = 85) from the 
HapMap phase III18. For the two-way admixture scenario, we chose the two reference populations - CEU and YRI 
samples and for the three-way admixture simulation, we further incorporated the CHD population with CEU 
and YRI populations. Our motivation behind the selection of CHD instead of CHB is that CHD is more plausible 
to get admixed in the future in mainland US. The number of samples and SNPs investigated were kept constant 
for both admixture types. The performance of the feature selection methods (i.e., LEI, PCA, RF, and SVM) were 
evaluated using the root mean square error (RMSE) computed from the inferred and true ancestry.

For the two-way admixture simulation, we randomly selected 200 chromosomes from CEU and YRI. Then, 
200 admixed chromosomes were created as a mosaic of randomly selected pair of CEU and YRI haplotype. We 
followed the simulation strategy similar to the method used in HAPMIX19. The admixture proportion of YRI 
from each chromosome was randomly generated from α β= =Beta( 12, 3) distribution, which resulted in an 
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average of 80% YRI proportion. To initiate the admixture process, we randomly selected one chromosome from 
CEU and one chromosome from YRI. Then, we randomly started with choosing the first marker from CEU or 
YRI chromosome with probability θ α β= =~Beta( 12, 3)1 . For the next marker, the ancestry was resampled 
with the Poisson probability − −e1 gl, where g is the number of generations since the admixture, and l = base pair 
difference/108 (approximates the genetic distance between the two markers). If the ancestry was found to switch, 
we chose the next allele from YRI with θ1 probability. We simulated all the 20,085 markers in chromosome 22. The 
200 simulated admixed chromosomes were randomly paired to generate 100 simulated admixed individuals. We 
used g = 8 in our two-way simulation which roughly matches the number of generations of admixture in the 
African American population20,21.

For the three way-simulation, we fixed the admixture proportion of CEU, YRI, and CHD to 60%, 30% and 
10%, respectively. We randomly selected one chromosome from each of the CEU, YRI, and CHD panels. We sim-
ulated admixed chromosomes by randomly selecting a segment of 100,000 base pairs from CEU, YRI, or CHD 
with probability (0.6, 0.3, 0.1). We simulated 200 chromosomes and randomly paired to generate 100 simulated 
admixed individuals.

feature selection methods. In this study, we refer feature selection as a process of finding the most 
informative subset of SNPs from a large panel of SNPs. The selected set of SNPs can be further used for down-
stream analysis such as population classification or ancestry inference. Feature ranking is one of the frequently 
used criteria in many feature selection methods that apply one or more ranking scores to separate the highly 
relevant features from the least relevant features22. In this study, we present five different measures of marker 
informativeness as the feature ranking criteria and compare their performance in three-way population classifi-
cation and ancestry inference.

Lancaster estimator of independence (LEI). We first define LEI between two categorical variables X and Y. Let 
= …X x x x( , , , )m1 2  and = …Y y y y( , , , )k1 2 , with joint probability distributions, = = =p P X x Y y( , )ij i j , i = 1, 

2, …, m and j = 1, 2, …, k. Then:

∑θ = −
+ +

p

p p
1,

(1)
i j

ij

i j

2
,

2

where = =+p P X x( )i i  and = =+p P Y y( )j j  are the marginal distributions of X and Y, respectively. θ2 is the 
measure of the magnitude of independence between the two categorical variables X and Y, with θ2 = 0 if X and Y 
are independent and θ≤ ≤ −m k0 min( , ) 12 , where = | |m X  and =k Y , respectively16.

LEI can use genotype frequency (LEI_Geno) or allele frequency (LEI_Freq) information from SNPs data. 
Figure 1 shows the flow chart for genotype and allele frequency-based LEI computation algorithm, with the 
assumption of HWE (random mating, absence of selection and mutation, and infinite population)23.

Lancaster Estimator of Independence based on Genotype Data (LEI_Geno). LEI_Geno is based on SNP gen-
otype data. Assume a fixed number of populations where each individual is assigned to one of k populations. We 
take Y as the variable of population membership of the subjects, while X represents a given marker locus coded 0, 
1, 2 with respect to the number of reference alleles. Let nij (i = 0, 1, 2; j = 1, 2, …, k) be the number of individuals 
with genotype i (i = 0, 1, 2) in population j (j = 1, 2, …, k), and = ∑ ∑n nj i ij be the total sample size. We estimate 
pij in Equation (1) as =p̂ij
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Lancaster Estimator of Independence based on Allele Frequency Data (LEI_Freq). LEI can also be constructed 
from population allele frequency statistics. It is here referred to as LEI_Freq. For a given marker, let fj represent 
the population reference allele frequency in the jth population with cj indicating the number of individuals in the 
jth population. Then, under the assumption of HWE, the expected genotype counts of genotype 0, 1, and 2 in the 
jth population are = − = −ˆ ˆn c f n c f f(1 ) , 2 (1 ),j j j j j j j0

2
1  and =n̂ c fj j j2

2, respectively. If = + + … +n c c ck1 2  is 
the sample size, then, as in LEI_Geno, we estimate pij in Equation (1) as =

ˆ
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Since = =m X 3 and =k Y , θ θ≤ ≤ −
ˆ min k0 , (3, ) 1

2 2 . Note that, when the sample constitutes three 
or more populations (i.e., ≥k 3), θ θ≤ ≤

ˆ0 , 2
2 2 .

Using LEI_Geno or LEI_Freq, we determine the distribution of LEI values across M genotyped markers. The 
closer the LEI value to 2, the greater the marker informativeness is. A relatively large LEI value indicates that the 
marker is highly dependent among the k ancestral populations.

Principal Components Analysis (PCA). PCA reduces the dimensionality of a set of variables by transforming the 
data to a smaller set of uncorrelated variables, called principal components (PCs). PCs are computed from the 
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eigenvalue decomposition of the data matrix X consisting of N rows and L columns. The first principal compo-
nent (PC1) contains the highest overall variance, and each of the successive components (PC2, PC3, etc.) contains 
the highest residual variance. Corresponding to the ith PC is the ith eigenvector = …a a a a( , , , )i i i iL1 2 . The features 
with the highest magnitudes of coefficient aij are the most associated features with the variation in the corre-
sponding ith PC. Thus, the coefficient | |aij  can be viewed as the weight associated with the feature j corresponding 
to the ith PC.

We apply PCA on the data matrix X with N samples (rows) genotyped on L SNPs (columns) coded 0, 1, or 2 
based on the reference al lele counts.  We choose two eigenvectors = …a a a a( , , , )L1 11 12 1  and 

= …a a a a( , , , )L2 21 22 2  that correspond to the first two principal components PC1 and PC2 for the feature selec-
tion. Each marker is assigned a score of = ( )b Max a a,j j j1 2 , and the markers are ranked based on the scores. 
PCA feature selection method was executed in Python using Scikit-learn24.
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Figure 1. Construction of Lancaster Estimator of Independence (LEI): Analysis flow chart to illustrate LEI_
Geno and LEI_Freq analysis scheme.
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Random Forest (RF). A random forest classifier is an ensemble of independently constructed classification and 
regression decision trees (CART) on various bootstrap samples drawn from the input training data, and it uses 
averages to improve predictive accuracy and control overfitting25,26. The method is supervised in the sense that 
prior knowledge of the classification of the samples is used to train each model in the ensemble. Training a ran-
dom forest classifier implicitly computes a feature importance measure, called the Gini importance measure, for 
each feature used in the training data. A larger Gini measure indicates a higher overall discriminative value of the 
feature for the classification problem27. We trained a random forest classifier on the reference genotype data and 
ranked the markers based on the Gini importance measure. RF was executed in Python with default values to 
determine the best split with the construction of 500 trees24.

Support Vector Machine (SVM). SVM incorporates a weighting method designed to extract and rank features 
within each SVM class predictor28,29. As a supervised learning method, linear SVM trains the classifier by con-
structing the maximum-margin hyperplane with weight vectors in the data space m resulting in a weight 

α= ∑w y xi ii i; where α is the vector of Lagrange coefficients, yi is the response, and xi is the input vector of m 
features in the data. We extend SVM to a multiclass environment using linear kernel with a one-versus-the-rest 
approach. Using this approach for k distinct populations, we obtain k different weight vectors 

∈ = …w i k, 1, 2, ,i
m . To construct the feature selection method, we take the average of absolutes, 

ω = ∑
| |

m i
w
k

i . Each element of wm is a score for the corresponding marker; the markers are ranked in the decreas-
ing order of the score. The majority of the values will be close to zero and of little importance, whereas the values 
that will be large tend to discriminate well. SVM was executed using Python with default setting24.

Comparison of feature selection methods: classification accuracy. We implemented a multinomial 
logistic regression model for the population classification using top-ranked markers selected from LEI, PCA, RF, 
and SVM. Let k be the number of populations, n =  the number of top-ranked markers, and 

= = = …p P Y i i k( ), 1, 2, ,i  be the probability that a given subject belongs to the ith population, the multino-
mial logistic regression model is given by:
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the ith individual at the jth marker in the ranked list of n markers. The genotype is coded 0, 1, or 2 based on the 
count of reference allele.

To compare the feature selection methods (LEI_Geno, LEI_Freq, PCA, RF, and SVM), we assembled the sets 
= …M r, 1, 2, 3, , 40r , of the top-ranked r markers from each method and fitted the regression model based 

on the selected markers. The prediction probabilities of each subject to the k populations were computed using 
the leave-one-out cross-validation (LOOCV) approach. Then, the subjects were classified to one of the kth popu-
lation based on the maximum of predicted probability pi using the model. The confusion matrices for the models 
were constructed to compute the classification accuracy for each feature selection method. We used the R package 
caret for fitting the multinomial logistic regression model with LOOCV approach30.

We further evaluated the classification performance of the features selection methods using the multinomial 
version of the area under the receiver operating curve (AUC) statistics31. AUC is the probability that a random 
true positive is ranked higher to be identified as a positive than a true negative32. It is a quantitative measure of 
performance of a classifier and useful in comparing the performance of different classifier. In a two-class classifier 
problem, a single numerical value will be computed as -

AUC x
n

e x
m

1 0 5= − .


 +

− 



where n = true negatives, m = true positives, e = classification errors, and x = false positives31. For the multiclass 
classification problem (3-way population classification in our case), a multinomial version of AUC can be com-
puted. Suppose we have a classification problem with c classes (c ≥ 3). Assuming each class as a true positive class 
and rest as true negative, AUCi for each class i can be computed as above. Then multinomial AUC (mAUC) of the 
classifier can be computed as the weighted sum of the AUCi across all classes, i.e.,

∑= ×=mAUC AUC p , (3)i
c

i i1

where the weight pi is the proportion of the class i31.

comparison of feature selection methods for admixture: root mean square error (RMSe). To 
evaluate the performance of the LEI against PCA, RF, and SVM, we ran each of these feature selection methods 
on the reference datasets and the top-ranked marker sets Ar of varying size = … …r 5, 10, , 100, 150, , 1000. 
The subsets were then run using ADMIXTURE with the reference populations for estimating the individual’s 
admixture proportion q33,34.

To assess the accuracy of the admixture proportion estimates, the root mean square error (RMSE) was used as 
defined below for each of the 2-way and 3-way admixture35:
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(4a)i
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2

= Σ Σ −ˆ ‐RMSE Q
nK

q q( ) 1
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(4b)i k ik ik3
2

where n is the number of individuals in the sample, K is the number of ancestral populations, qi (and qik) repre-
sents the true ancestry proportion (known simulated ancestry), and q̂i(and q̂ik) defines the estimated ancestry 
proportion for each subject i. ADMIXTURE software was used to analyze the data33.

Results
Distribution of Lei. We first assembled the LEI values based on genotype and allele frequency data (LEI_
Geno and LEI_Freq). For the three populations of CEU, YRI, and CHB, the resulting distributions for both 
LEI_Geno and LEI_Freq are similarly skewed to the right (Fig. 2A,C). The distribution of the top 100 LEI scores 
(Fig. 2B,D) shows that the top scores from LEI_Geno are skewed to the right further from LEI_Freq. Over 90% 
of the LEI values fall near zero, indicating independence between markers and populations; thus, the majority of 
the markers are not informative for ancestry. The maximum score for LEI_Geno (maximum = 1.217) is slightly 
greater than that for LEI_Freq (maximum = 1.141). The median and other quartiles of LEI_Geno are also slightly 
greater than those of LEI_Freq (LEI_Geno: median = 0.1447, first quartile = 0.074, third quartile = 0.2573; LEI_
Freq: median = 0.1418, first quartile = 0.070, third quartile = 0.255). For both LEI_Geno and LEI_Freq, SNPs 
with value greater than 0.532 appeared to be outliers and can be regarded as SNPs with the highest discriminative 
power among the three continental populations (Fig. 2A,B).

The two LEI measures (i.e., LEI_Geno and LEI_Freq) are highly correlated with Pearson’s correlation coeffi-
cient (r = 0.9955). The top-ranked markers overlap between the two methods. Seventy-three markers among the 
top-ranked 100 SNPs from LEI_Geno and LEI_Freq are common. Similarly, 793 among the top-ranked 1000 mark-
ers from LEI_Geno and LEI_Freq are overlapping markers. In addition, two SNPs (rs1325421 and rs11085023) 
among the top 100 LEI_Geno SNPs show the strongest discriminative signal among populations (Fig. 2B).

Figure 2. Distribution of LEI values. Distribution of Lancaster Estimator of Independence (LEI) across 
857112 SNPs from 1000 Genomes Phase 3 with a total of 310 subjects belonging to the following populations: 
CEU (Utah residents with Northern and Western European ancestry: n = 99), CHB (Han Chinese in Beijing: 
n = 103), and YRI (Yoruba in Ibadan, Nigeria: n = 108). (A) Distribution of LEI scores based on the genotype 
data (LEI_Geno). (B) Distribution of the top 100 LEI_Geno scores. (C) Distribution of LEI scores based on the 
allele frequency data (LEI_Freq). (D) Distribution of top 100 LEI_Freq scores.
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informative markers selection and overlap analysis. For LEI_Geno and LEI_Freq, we ranked the 
markers based on the respective scores. In PCA, we used the first two PCs for feature selection and ranked the 
markers based on the maximum magnitude of the coefficients of the corresponding first and second eigenvectors 
(see the Method section). The first PC accounted for 13.6% of the variation in the data, the second PC for 6.4%; 
and thereafter, each PC accounted for less than 1%. For SVM, we ranked each marker using the absolute average 
weight wm for each marker. For RF classifier, we ranked the markers based on the Gini importance measure.

Figure 3. Top ranked markers allele frequency variation among feature selection methods. The top 40 
markers from each feature selection were ordered by allele frequency difference for each of the three reference 
populations: CEU (Utah residents with Northern and Western European ancestry from the CEPH collection), 
CHB (Han Chinese in Beijing, China), and YRI (Yoruba in Ibadan, Nigeria). (A) Lancaster Estimator of 
Independence based on genotype data. (B) Lancaster Estimator of Independence based on population allele 
frequencies. (C) Principal component analysis. (D) Random forest (E) Support vector machine.

Figure 4. Comparison of predictive accuracy estimates for continental ancestry. Multinomial logistic 
regression models –based on top-ranked 40 SNPs using Lancaster Estimator of Independence constructed from 
genotype subject data (LEI_Geno), constructed from SNP/Population summary statistics (LEI_freq), Principal 
Components Analysis (PCA), Random Forest (RF), and Support Vector Machine (SVM) feature selection 
methods.
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Figure 3 shows the difference in allele frequencies of 40 top-ranked SNPs selected from each method, ordered 
by the maximum of the pairwise allele frequency differences among the three populations CEU, YRI, and CHB. 
These markers showed large allele frequency differences among the three populations. The maximum of the pair-
wise allele frequency differences for LEI_Freq range from 0.94 to 0.99 with a mean of 0.96, whereas for LEI_Geno, 
they range from 0.91 and 0.99 with a mean of 0.95. The PCA, RF, and SVM all ranked SNPs with relatively smaller 
allele frequency differences, with the narrowest differences found in the RF markers whose average maximum 
is 0.794, followed by SVM with mean 0.846, and PCA with mean frequency differences 0.923. For RF, the allele 
frequency differences range between 0.59 and 0.99 while for SVM, the differences are between 0.76 and 0.99.

comparison of feature selection methods for continental ancestry. For each feature selection 
method, we select top-ranked markers n = 1, 2, …, 40 and fit the multinomial logistic regression model to build 
predictive classification models with leave-one-out cross-validation (LOOCV). The subjects are classified to one 

Figure 5. Overlap of top ranked markers selected by different feature selection methods. (A) N = 40, (B) 
N = 100, (C) N = 200, (D) N = 300, (E) N = 500, (F) N = 1000. A 5-digit binary vector was assigned to each 
marker, where each digit represents one of the five feature selection methods, with the first digit indicating the 
marker was selected (or not) by Lancaster Estimator of Independence constructed from genotype subject data 
(LEI_Geno), followed by LEI constructed from SNP/Population summary statistics (LEI_freq), PCA, RF, and 
SVM. The 1 digit indicates the SNP was selected by method as one of the top N markers. Bars are clustered 
based on the total number of methods represented by the bar with varying color gradients (red color bars = bars 
correspond to the five individual methods, blue color bars = bars correspond to a pair of methods, and so on).
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of the three populations based on the predicted probability pi using the fitted model and the classification accu-
racy is assessed. The singleton top ranked marker from LEI_Geno produced the highest classification accuracy 
(0.84) followed by LEI_Freq (0.80), SVM (0.68), PCA (0.68) and RF (0.67) (Fig. 4). The prediction accuracy 
for both LEI_Geno- and LEI_Freq-derived markers reached ~97% when four top ranked markers were used. 
Six markers from RF approach achieved similar accuracy while 11 and 31 markers were required to achieve 
similar accuracy under SVM and PCA-based selection approaches (Fig. 4). As expected, the classification accu-
racy increases with the number of markers. Seven and nine markers selected respectively from LEI_Geno and 
LEI_Freq produced 100% classification rate whereas 11 markers selected from RF, 21 markers from SVM, and 
36 markers from PCA produced similar accuracy. The 95% confidence interval of accuracy rate showed no sig-
nificant differences in the accuracy rate between the two LEI-based approaches but showed significantly better 
classification accuracy than that from PCA and SVM based markers (Supplementary Table 1). The difference in 
accuracy rate between RF and LEI based classifiers was significant when less than 6 markers were used but insig-
nificant for 6 or more markers. Similarly, mAUC (multinomial AUC) value of the classifiers with n = 1, 2, …, 10 
top features from each method support similar insights that when fewer markers were used LEI-based markers 
performed better than other methods. The results show that the performance of LEI_Geno, LEI_Freq, RF, and 
SVM are similar, whereas PCA method requires more markers to achieve comparable classification accuracy.

Figure 5 shows the overlap analysis of top-ranked markers separating the CEU, YRI, and CHB conti-
nental populations among the five methods. The list of top 1000 markers from each method are provided in 
Supplementary Table 2. Among the top 40 markers, LEI_Geno and LEI_Freq shared the largest overlap between 
any two methods with 26 shared markers, of which 19 were shared only between the two methods. There were 
6 markers shared among LEI_Geno, LEI_Freq, and PCA (Fig. 5A) and one marker was shared among LEI_
Geno, LEI_Freq, RF, and SVM. From the top-ranked 40 markers selected by each method, no marker was found 
common in all methods. The top-ranked SNP rs1325421 (selected by LEI) has been reported among the highly 
informative marker for multiple ancestry36. We further checked for SNPs in high LD (r2 >0.8) with rs1325421 
in CEU, YRI, and CHB populations using the 1000 Genomes project reference panel. No SNPs with rs1325421 
(within 500 kb region) were in LD among the top 1000 SNPs from PCA, RF, and SVM. This shows that the LEI can 
pick SNPs with the highest discriminative power among multiple populations. One SNP (rs2675345) was shared 
among LEI_Geno, LEI_Freq, RF, and SVM. This SNP has been cited in multiple studies related to skin color37,38. 
However, rs2675345 or its LD (r2 >0.8) SNPs were not selected by PCA. The overlap analysis conducted for the 
top 1000 markers show an overall trend where SVM selects the largest number of unique markers, followed by RF 
and PCA. LEI_Geno and LEI_Freq consistently selected the most overlapping top ranked marker sets (793 from 

Figure 6. Root mean square error (RMSE) for 2-way and 3-way admixture simulation. Comparisons of 
ancestry estimation using the top-ranked markers. Lancaster Estimator of Independence constructed from 
genotype subject data (LEI_Geno), LEI constructed from SNP/Population summary statistics (LEI_Freq), 
Principal Components Analysis (PCA), Random Forest (RF), and Support Vector Machine (SVM) feature 
selection methods. Ancestry proportions are estimated using ADMIXTURE for sets of top-ranked markers 
from each feature selection method. (A) Two-way admixture RMSE, 100 simulated individuals from reference 
populations: CEU (Utah residents with Northern and Western European ancestry from the CEPH collection), 
and YRI (Yoruba in Ibadan, Nigeria) using true proxy (n = 20,085 SNPs). (B) Three-way admixture RMSE, 100 
simulated individuals from reference populations: CEU (Utah residents with Northern and Western European 
ancestry from the CEPH collection), YRI (Yoruba in Ibadan, Nigeria), CHD (Chinese in Metropolitan Denver, 
Colorado) using true proxy (n = 19,982 SNPs).
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the 1000 markers). From the top 1000 markers, only one marker rs3935973 was overlapped among all five feature 
selection approaches.

comparison of feature selection methods for admixture proportion. Root mean square error 
(RMSE) in admixed ancestry estimation. RMSE was used to measure the variation (or accuracy) from estimated 
individual admixture and true ancestry35. The RSME for two-way and three-way admixture analyses were com-
puted using (4a) and (4b), respectively. We obtained estimates of individual ancestry proportion (qi estimates) 
for the admixed groups by running ADMIXTURE using different sets of top-ranked marker genotype data from 
each of the feature selection methods33. Ancestry proportion estimates were obtained by running ADMIXTURE 
with all the SNPs as the true proxy. Figure 6 shows the RMSE of ancestry proportion from two-way and three-way 
admixture analyses. The RMSE for two-way analysis is less than 0.05 with the top-ranked 85 markers and results 
are comparable among all five methods (Fig. 6A). The RMSE stayed almost constant when the number of mark-
ers reached 1000. The RMSE is higher for three-way admixture analysis, and the error is higher for PCA-based 
markers while the other four approaches produce similar results. When the number of markers reached 1000, the 
RMSE for all methods stabilize around RMSE = 0.09 for PCA and 0.05 for the other four approaches (Fig. 6B). 
Note that all five methods use the reference populations simultaneously to rank the ancestry informative variants 
and do not rely on pairwise population comparison. Our results showed that markers based on PCA produce the 
least accurate ancestry estimates in the three-way admixture while all five methods produce comparable results 
for two-way admixture.

Ancestry proportion estimates based on top-ranked markers. Figure 7 shows the estimates of ancestry propor-
tions of samples based on 100, 300, and 1000 top-ranked SNPs for two-way simulation. The true proxy estimates 

Figure 7. Graphical output for two-way admixture analysis. Inferred ancestry estimates for the 100 simulated 
admixed individuals using ADMIXTURE. Two references population CEU (Utah residents with Northern 
create simulate and Western European ancestry from the CEPH collection), and YRI (Yoruba in Ibadan, 
Nigeria) were used to simulate 2-way admixed population. Each individual is represented by a vertical line. Top 
most plot represents true proxy (n = 20,085 SNPs) plot for admixed individuals. Each subsquent row represents 
the plots for 100, 300, and 1000 top-ranked markers coming from Lancaster Estimator of Independence 
constructed from genotype subject data (LEI_Geno), followed by LEI constructed from SNP/Population 
summary statistics (LEI_Freq), Principal Components Analysis (PCA), Random Forest (RF), and Support 
Vector Machine (SVM) feature selection methods.
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were obtained using all markers. As the number of markers increases, slight differences are observed among the 
methods. Figure 8 shows the estimates of ancestry proportions based on 100, 300, and 1000 top-ranked SNPs for 
three-way simulation, with the top-panel representing the true proxy of the ancestry proportion. In 3-way admix-
ture, the distinctions between the methods are evident, even if the number of markers increases. The ancestry 
proportion estimates are similar among the LEI_Geno, LEI_Freq, RF, and SVM, but they differ markedly from 
the PCA estimates.

Using the simulated data, we also compared the distribution of the estimated ancestry proportions for 
two-way and three-way admixture (Fig. 9). The distributions of the estimates based on the top 85 informative 
markers in 2-way simulation demonstrate that all the feature selection methods performed comparably well with 
the true proxy in 2-way admixture analysis. The distributions of the estimates based on the top 1000 informative 
markers for the three-way simulation show a larger variation of estimated ancestry proportions among all five 
methods in comparison to those from the true proxy estimates (Fig. 9B). The ancestry proportion estimates based 
on RF and SVM methods were appeared to perform marginally better than LEI-based approaches. However, 
both RF and SVM were based on the individual level genotype data whereas LIE_Freq was based on the summary 
level data. Note that, in two-way admixture, eighty-five markers were required for each feature selection method 
for the RMSE to fall below 0.05 (Fig. 6A); in contrast, for 3-way admixture analysis, 1000 markers were required 
for the RMSE to fall below 0.05 except for PCA (Fig. 6B). Figure 6B showed the RMSE for PCA was higher 
(RMSE = 0.09) as compared to the other feature selection methods. The difference in performance of the RMSE 
for two-way (Fig. 6A) vs. three-way (Fig. 6B) admixture analysis could be due to noise in estimating ancestry 
variations contributed from two vs. three sources of ancestral population.

Figure 8. Graphical output for three-way admixture analysis. Inferred ancestry estimates of the 100 simulated 
admixed individuals using ADMIXTURE. Three reference populations, CEU (Utah residents with Northern 
and Western European ancestry from the CEPH collection), CHD (Chinese in Metropolitan Denver, Colorado), 
and YRI (Yoruba in Ibadan, Nigeria) were used to simulate 3-way admixed samples. Each individual is 
represented by a vertical line. Simulation was based on true proxy (n = 19,982 SNPs). Top most plot represents 
estimates using the true proxy SNPs for the admixed individuals, followed by the CEU (n = 113), CHD (n = 85) 
and the YRI (n = 113) reference individuals. Each subsequent row represents the q-plots for 100, 300, and 1000 
top-ranked markers coming from Lancaster Estimator of Independence constructed from genotype subject 
data (LEI_Geno), followed by LEI constructed from SNP/Population summary statistics (LEI_Freq), Principal 
Components Analysis (PCA), Random Forest (RF), and Support Vector Machine (SVM) feature selection 
methods.
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We further compared the absolute difference of the African ancestry proportion between the estimates using 
the selected top-ranked markers and the estimates using all the markers (true proxy). In two-way analysis, the 
number of individuals within the difference of 0.05 from the true proxy ranged from 65 for LEI_Freq to 66 for RF 
with LEI_Geno capturing 71 (Table 1A). Similarly, for three-way admixture, the numbers of individuals within 
the difference of 0.05 from the true proxy were 54, 59, 28, 60, and 69 for LEI_Geno, LEI_Freq, PCA, RF, and SVM, 
respectively (Table 1B). Further, Table 1 showed the 95% confidence intervals for the African ancestry proportion 
estimated from the five methods for both two-way and three-way admixtures. The confidence intervals for each 
method contained the mean true proxy estimate.

Correlations among feature selection methods in admixed samples. We compared estimates of individual African 
ancestry for both two-way and three-way simulated samples. Figure 10 shows the pairwise correlations matrix 
between the feature selection methods for simulated two-way admixed population and the scatter plot (true vs. 
the estimates) on each feature selection method. The estimates of African ancestry proportion from the differ-
ent feature selections were highly correlated with correlation ranging from r = 0.888 between the RF and SVM 
to r = 0.9695 between LEI_Geno and LEI_Freq (Fig. 10). The two-way admixture correlation for each method 
against the estimates based on the true proxy ranged from r = 0.8927 for SVM to r = 0.9066 for RF, and r = 0.9042 
for LEI_Freq (Fig. 10). The ancestry estimates from LEI_Freq were highly correlated with the estimates from 
LEI_Geno with r = 0.9695.

For three-way admixture analysis, we focused on the estimates of African ancestry proportions. Figure 11 
shows the pairwise correlations matrix between the feature selection methods for simulated three-way admixed 
population and the scatter plot (true vs. the estimates) on each feature selection method. The scatter plots consist 
of true vs. the estimates based on each feature selection method (Fig. 11). Among the pairwise comparison, the 
ancestry estimates based on PCA and SVM were the least correlated with r = 0.6169, and the estimates from LEI_
Geno and LEI_Freq were the most correlated with r = 0.9834. The correlation for each method against the esti-
mates based on all the markers (true proxy estimates) ranged from r = 0.5048 for SVM to r = 0.6847 for LEI_Freq. 

Figure 9. Ancestry proportions for 2-way and 3-way admixture simulation. Comparisons of ancestry 
estimation using true proxy (All) and top-ranked markers for Lancaster Estimator of Independence constructed 
from genotype subject data (LEI_Geno), LEI constructed from SNP/Population summary statistics (LEI_Freq), 
Principal Components Analysis (PCA), Random Forest (RF), and Support Vector Machine (SVM) feature 
selection methods. Ancestry proportions are estimated using ADMIXTURE. (A) Two-way admixture boxplots, 
100 simulated individuals from reference populations: CEU (Utah residents with Northern and Western 
European ancestry from the CEPH collection), and YRI (Yoruba in Ibadan, Nigeria). Ancestry estimates using 
true proxy (n = 20,085 SNPs) and 85 top-ranked SNPs from each feature selection method. (B) Three-way 
admixture boxplots, 100 simulated individuals from reference populations: CEU (Utah residents with Northern 
and Western European ancestry from the CEPH collection), YRI (Yoruba in Ibadan, Nigeria), CHD (Chinese in 
Metropolitan Denver, Colorado). Ancestry estimates using true proxy (n = 19,982 SNPs) and 1000 top-ranked 
SNPs from each feature selection method.
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The three-way admixture correlation between the estimates based on LEI_Geno and LEI_Freq was r = 0.9834. 
The LEI-based approaches were the most correlated with the true proxy (r = 0.6826 for LEI_Geno and r = 0.6847 
for LEI_Freq) while SVM was the least correlated (r = 0.5048). Figure 11 further showed that SVM was the least 
correlated with the other four methods.

Discussion
The main objective of this study was to develop an efficient algorithm that can select the most informative mark-
ers to infer multi-level ancestry proportions in admixed populations from summary-level allele frequency data 
without using the entire individual-level genotype data. We presented Lancaster Estimator of Independence (LEI) 
as a novel feature selection algorithm in multi-ancestry populations.

The availability of fast and efficient algorithms for ancestry inference and admixture proportion facilitates the 
analysis of big omics data. However, the selection of informative markers that are useful in assigning individuals 
to the correct continental origins or in estimating the ancestry proportions in admixed samples remains a com-
putational challenge. In this study, we compared the performance of LEI in selecting informative markers with 
existing machine learning approaches including PCA, RF, and SVM using real and simulated data in a logistic 
regression framework. The number of informative markers required to build an efficient classifier was found to be 
similar among these methods with the exception of PCA, which requires a larger number of markers to attain a 
comparable accuracy (Fig. 4). Using 2-way admixed simulated data, we further showed that markers selected for 
ancestry proportion estimation based on LEI_Freq performed equally to RF and SVM and better than the PCA 
(Fig. 6A). From the three-way admixed simulation data, we found that RF-based markers resulted in the best 
RSME followed by SVM while both LEI_Geno and LEI_Freq performed marginally similar to the RF and SVM 
(Fig. 6B). In random forest, the top-ranked SNPs contribute the most independent information in prediction of 
the population classes and hence ancestry inference in three-way admixture. However, the machine-learning 
approaches including RF, PCA, and SVM require individual-level genotype data which can be computationally 
expensive when applied to the whole genome-wide genotyped data. For example, training SVM is computation-
ally costly as it depends on the number of input variables, especially when applying to human genotype data39. In 
contrast, one of the advantages of LEI is that it can be applied to the population-level allele frequency data instead 
of the individual-level genotype data and provides a more efficient alternative to the existing computationally- 
and time-consuming genotype-based AIMs selection for multi-ancestry inference. Population-level allele fre-
quency data are more convenient to store, share, and compute and are often more readily available than the 
individual-level genotype data. In random forest, subsets of features are randomly selected to build decision trees, 

Feature selection 
method

Range (African 
ancestry proportion)

Mean (average African 
ancestry proportion)

95% CI (95% 
confidence interval)

#Subjects within difference 0.05 
(estimated vs true proxy ancestry)

A. Simulated two-way Admixture

True proxy [0.5806, 0.9376] 0.7997 [0.7829, 0.8165] NA

LEI_Geno [0.5546, 0.9773] 0.7994 [0.7813, 0.8175] 71

LEI_Freq [0.5594, 0.9509] 0.7986 [0.7808, 0.8164] 65

PCA [0.5118, 0.9888] 0.7987 [0.7805, 0.8169] 66

RF [0.4872, 0.9858] 0.7990 [0.7798, 0.8182] 66

SVM [0.5665, 0.9737] 0.7997 [0.7820,0.8174] 72

B. Simulated three-way Admixture

True proxy [0.5165, 0.7163] 0.6164 [0.6079, 0.6248] NA

LEI_Geno [0.3753, 0.7975] 0.5972 [0.5809, 0.6135] 54

LEI_Freq [0.3413, 0.7937] 0.5949 [0.5786, 0.6112] 59

PCA [0.1537, 0.8154] 0.5820 [0.5544, 0.6096] 28

RF [0.4647, 0.7478] 0.5982 [0.5858, 0.6106] 60

SVM [0.4758, 0.7934] 0.6062 [0.5934, 0.6190] 69

Table 1. African ancestry proportion comparison in 2-way and 3-way admixture simulation scenario. African 
Ancestry proportions estimated using ADMIXTURE. (A) Simulated two-way admixture. (B) Simulated 
three-way Admixture. For both two-way and three-way admixture analysis, 100 subjects were simulated using 
markers common to the reference populations on chromosome 22 from HapMap III. Two-way admixed 
subjects were simulated from reference populations CEU and YRI and three-way were simulated from CEU, 
CHD, and YRI. African ancestry proportion estimates for two-way and three-way admixture were based on 85 
top-ranked SNPs and 1000 top-ranked markers, respectively and from each feature selection method: Lancaster 
Estimator of Independence constructed from genotype subject data (LEI_Geno), LEI constructed from SNP/
Population summary statistics (LEI_Freq), Principal Components Analysis (PCA), Random Forest (RF), and 
Support Vector Machine (SVM) feature selection methods. Columns: Feature selection method, Range = range 
of African ancestry proportion estimates for 100 subjects, Mean = average African ancestry proportion estimate 
for 100 subjects, 95% CI = 95% confidence interval, #Subjects within difference 0.05 = number of subjects with 
the absolute value of the difference between the estimated ancestry proportion and the true proxy estimate is 
less than or equal to 0.05; NA = not applicable. True proxy are the admixture proportion estimates based on all 
the markers used in each simulation. CEU (Utah residents with Northern and Western European ancestry from 
the CEPH collection), YRI (Yoruba in Ibadan, Nigeria), CHD (Chinese in Metropolitan Denver, Colorado).
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and the feature importance measure (the Gini impurity index) changes between the different runs of RF. Also, the 
Gini impurity index depends on the number of trees assembled in the RF. Therefore, assigning a unique ranking 
score for each feature using RF may not be appropriate. PCA is a computationally efficient approach resulting 
low-dimensional principal components that cluster individuals based on ancestry without specifying the number 
of ancestral populations in the study. However, in PCA, the choice of the number of PCs is always subjective, and 
there is no unique way to assign a ranking score that accounts for all the PCs even when the same number of PCs 
is used40. In contrast, our likelihood-based method, LEI, explicitly focuses on summary level allele frequencies 
without requiring individual level genotype data. LEI provides an efficient alternative to the existing computa-
tionally and time-consuming genotype-based analysis for ancestry inference.

Our results show that by applying LEI_Freq build upon the population allele frequencies, the performance is 
not compromised at both the continental population classification and ancestry proportion inference in admixed 
populations. In addition, the LEI method could potentially be applied to develop ancestry informative markers 
for admixed samples with more than two ancestral populations such as Latino/Hispanic (work in progress). 
Existing approaches of selecting AIMs in three-way admixed populations utilize the pairwise measures of marker 
informativeness and aggregate the pairwise informative markers into a single set of ancestry informative mark-
ers14. The Wright’s fixation index (FST), although commonly used as a pairwise measure of marker informative-
ness, can be applied for selecting AIMs from multiple ancestral population using the population allele frequencies 
(Supplementary Text S1)41–43. We have compared the performance of top ranked markers selected based on the 
global FST with LEI, PCA, RF and SVM using CEU, CHB, and YRI ancestral populations (Supplementary Table 1). 
The classification accuracy rate of the global FST based the top-ranked marker was 0.6806, which was similar to 
the results obtained from SVM and PCA, but lower than the LEI based approaches (LEI_Freq: 0.8032). As we 
increase the informative SNPs to 10, the global FST based markers still yield lower prediction accuracy (0.8065, 
95% CI: 0.758–0.8489) than other methods (including LEI, SVM) but comparable to the PCA-based approach 

Figure 10. Correlation matrix plot comparisons between feature selection method estimates for simulated 
2-way admixed population. Numbers indicate the correlation coefficients and the lines indicate linear fitting for 
the 100 simulated data point from two reference populations: CEU (Utah residents with Northern and Western 
European ancestry from the CEPH collection), and YRI (Yoruba in Ibadan, Nigeria). The correlation plots are 
constructed for individual estimates of African ancestry proportion from ADMIXTURE using 85 top-ranked 
SNPs based on Lancaster Estimator of Independence constructed from genotype subject data (LEI_Geno), 
Lancaster Estimator of Independence constructed from the population allele frequency data (LEI_Freq), 
Principal Components Analysis (PCA), Random Forest (RF), Support Vector Machine (SVM) as well as the true 
proxy estimates based on n = 20,085 SNPs.
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(0.8645; 95% CI: 0.8213–0.9006; Supplementary Table 1). The prediction accuracy for both PCA and FST reached 
0.98 when the top 30 informative markers were used.

In critically evaluating our method development and comparison, it is important to note that our analy-
sis, results and hence interpretations have some important limitations. The performance of the feature selection 
approaches is tightly linked with the heuristic function used in the feature selections. For instances, PCA loadings 
from the first two principal components is largely an empirical approach and may not be the optimal approach 
to select features. We compare LEI with the most commonly used machine learning approaches, and comparison 
with other specialized machine learning approaches such as sparse PCA44 and sparse SVM45 warrant further 
evaluation. We have developed and compared the top informative markers from the different approaches and 
no LD filtering was applied in the selection process. Consequently, a better subset of independent AIMs may 
exist. Selecting AIMs is a two-step process: First, assign a measure of marker informativeness for all the availa-
ble markers using measures of marker informativeness and appropriate reference panels, and second, select top 
informative markers after appropriate filtering criteria such as pruning based on the LD or genetic distance for 
the study population. Additionally, our results are based on biallelic SNPs allele frequencies which are the most 
common type in human genome. However, the LEI approach is generalizable to infer population structure from 
multi-allelic markers. Nevertheless, the ability of LEI to develop informative feature selection panel and deter-
mine ancestry proportion in multi-ancestry admixed populations by leveraging allele frequency data without 
requiring the individual level genotype data from ever-increasing genomic resources is appealing to most biolo-
gists with limited computer programming background.

In summary, we developed an allele frequency-based LEI method to identify smaller subsets of SNPs for 
population classification and ancestry analysis in admixed populations. LEI is an efficient feature selection 
method that has the potential to select informative markers in continental populations as well as multi-ancestry 
admixed populations from allele frequency data. Building LEI based on allele frequency data without requiring 
the individual-level genotype data is appealing in the big data era.

Figure 11. Correlation matrix plot comparisons between feature selection method estimates for simulated 
3-way admixed population. Pearson correlation and scatter plots of 100 simulated individuals from three 
reference populations: CEU (Utah residents with Northern and Western European ancestry from the CEPH 
collection), CHD (Chinese in Metropolitan Denver, Colorado), and YRI (Yoruba in Ibadan, Nigeria). The 
correlation plots are constructed for individual estimates of African ancestry proportion from ADMIXTURE 
are using 1000 top-ranking SNPs and feature selection methods Lancaster Estimator of Independence 
constructed from genotype subject data (LEI_Geno), Lancaster Estimator of Independence constructed from 
population allele frequency data (LEI_Freq), Principal Components Analysis (PCA), Random Forest (RF), 
Support Vector Machine (SVM) as well as the true proxy estimates based on n = 19,982 SNPs.

https://doi.org/10.1038/s41598-019-47012-y


1 6Scientific RepoRtS |         (2019) 9:11103  | https://doi.org/10.1038/s41598-019-47012-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Data Availability
LEI is implemented in the R programming language and R-source code is freely available to download and in-
cluded in the Appendix. The R-codes can also be assessed freely from the github page https://github.com/Mer-
shaLab/LEI.
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