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Excitation spectra in fluids: How to 
analyze them properly
Nikita P. Kryuchkov1, Lukiya A. Mistryukova1, Vadim V. Brazhkin2 & Stanislav O. Yurchenko   1

Although the understanding of excitation spectra in fluids is of great importance, it is still unclear 
how different methods of spectral analysis agree with each other and which of them is suitable in 
a wide range of parameters. Here, we show that the problem can be solved using a two-oscillator 
model to analyze total velocity current spectra, while other considered methods, including analysis 
of the spectral maxima and single mode analysis, yield rough results and become unsuitable at high 
temperatures and wavenumbers. To prove this, we perform molecular dynamics (MD) simulations and 
calculate excitation spectra in Lennard-Jones and inverse-power-law fluids at different temperatures, 
both in 3D and 2D cases. Then, we analyze relations between thermodynamic and dynamic features 
of fluids at (Frenkel) crossover from a liquid- to gas-like state and find that they agree with each other 
in the 3D case and strongly disagree in 2D systems due to enhanced anharmonicity effects. The results 
provide a significant advance in methods for detail analysis of collective fluid dynamics spanning fields 
from soft condensed matter to strongly coupled plasmas.

Knowledge of collective excitation spectra in condensed matter opens a way for proper interpretation and 
understanding of most phenomena and related properties, including elastic, thermodynamic, and transport 
ones1–3. Apart from condensed matter, excitation spectra provide a useful tool for the analysis of phenomena 
in strongly-coupled plasmas. For this reason, the calculation of excitation spectra in fluids is a problem of high 
significance and broad relevance to condensed matter, chemical physics, physical chemistry, physics of plasmas, 
materials science, and soft matter.

In crystals under conditions far from melting, harmonic theory of crystal lattice can typically be applied, since 
(e.g., at low temperature and/or high pressure) effects of anharmonicity are weak and collective excitations can be 
treated as a set of noninteracting harmonic plane waves, referred to as phonons2. With increasing temperature, 
the (typically weak) effects of anharmonicity lead to interactions between phonons. These interactions result in a 
finite lifetime and frequency shift of the phonons, which can be analyzed using perturbation theory2, except for 
strongly-anharmonic crystals4–7.

In contrast to crystals, the excitation spectra in liquids are less understood, since there is no small parameter 
related to anharmonicity8. Effects of interplay between oscillating and damped collective behaviors in fluids are 
often treated in the framework of generalized hydrodynamics9–16 or using the quasi-localized crystalline approx-
imation (QLCA) and its modifications17–31. However, both these approaches have fundamental disadvantages, 
since anharmonicity effects are taken into account phenomenologically. Recently, excitation spectra in fluids have 
become of great interest in context of studies concerning the thermodynamics and collective dynamics of flu-
ids8,26,32–62, and, in particular, crossover from fluid- to gas-like collective dynamics (Frenkel line)8,32,34–41,47,48,50–53,56,58  
and in the framework of inelastic X-ray or neutron scattering experiments63–76. Note that these experiments have 
already revealed a problem of mixing of longitudinal and transverse modes, which plays an important role in a 
proper analysis of excitation spectra as will be shown below. Dynamic and thermodynamic features attributed to 
the Frenkel line are typically considered using different methods to obtain excitation spectra of fluids from MD 
simulation results. However, it is still unclear which method for the calculation of excitation spectra (frequencies 
and damping rates) in fluids is the most suitable and provides the most accurate and consistent results, as well as 
how different widely-used approaches to this important problem are consisted with each other.

In this work, we analyze different methods for the calculation of excitation spectra in fluids, including the 
analysis of velocity current spectral maxima, its longitudinal and transverse components, and a method involving 
the two-oscillator model for the analysis of total velocity current spectra. We find that the most accurate and 
consistent results are provided by the two-oscillator model, while other approaches can be used only for rough 
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estimation of the low-frequency branch of dispersion relations at low temperatures, but become unsuitable even 
for this aim at high temperatures and wavenumbers. To confirm this conclusion, we analyze excitation spectra 
in fluids, using MD simulations of Lennard-Jones fluids and fluids of particles interacting with each other via 
inverse-power-law repulsive potentials (∝1/r12 and 1/r8) at different temperatures. Then, we analyze thermody-
namic, collective, and individual dynamic features associated with crossover from liquid- to gas-like dynamics 
of fluids (Frenkel line) in 3D and 2D fluids. In conclusion, we discuss how longitudinal and transverse current 
spectra are changed at the transition from collective to individual particle dynamic regime, corresponding to 
excitations with high wavenumbers.

Results and Discussion
Separate mode analysis versus the two-oscillator model.  To compare different approaches to the 
calculation of excitation spectra in fluids, we performed MD simulations whose details are described in Methods. 
We considered several model systems at the same density and different temperatures, including a Lennard-Jones 
fluid, and fluids of particles interacting via inverse power law repulsion ∝1/r12 (IPL12), and a more soft variant 
∝1/r8 (IPL8), to analyze features arising in systems with different kinds of interactions. We used the Lennard-
Jones system as a representative and well-studied model describing noble gases5,36,39,77, while the inverse-power-
law fluids5–7,21,26 were considered to compare the results with the Lennard-Jones system and, hence, to reveal 
features associated with attraction and repulsion softness.

For the systems under consideration, after particle velocities were obtained from MD simulations, we calcu-
lated the velocity current spectra9

∫ω = 〈 − 〉ωC dt e tq j q j q( , ) Re ( , ) ( , 0) , (1)L T
i t

L T L T, , ,

where = ∑−t N t i tj q v qr( , ) ( )exp( ( ))s s s
1  is the velocity current; =


t tv r( ) ( )s s  is the velocity of the s-th particle; the 

summation is performed over all N particles in the system; = ⋅ qj q j q( )/L
2 and = ⋅ ⊥ ⊥j j e e( )T  are the longitudi-

nal and transverse components of the current, respectively; ⊥e  is a unit vector normal to q; the brackets 〈…〉 
denote the canonical ensemble average.

Since simple fluids are isotropic, velocity current spectra depend only on the frequency ω and wavenumber 
= | |q q . Therefore, we can average ωC q( , )L T,  over all directions of the wavevector q to suppress noise caused by a 

limited number N and finite simulation time,
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where Nq is the number of directions used for averaging. Note that this approach is not suitable at  πq 2 /L, 
where L is the size of the simulation box.

To obtain excitation spectra using ωC q( , )L T, , we assumed that the velocity current spectra corresponding to 
damped oscillating excitations are
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where ωL T,  and ΓL T,  are the frequencies and damping rates of longitudinal and transverse modes, respectively. 
Using Eq. (3), we obtain the double-Lorentzian form of velocity current spectra

ω
ω ω ω ω

∝
Γ

− + Γ
+

Γ

+ + Γ
.C q

q
q q

q
q q

( , )
( )

( ( )) ( )
( )

( ( )) ( ) (4)
L T

L T

L T L T

L T

L T L T
,

,

,
2

,
2

,

,
2

,
2

Fitting (separately) velocity current spectra (2) (obtained from MD) by the Lorentzian fit (4), we calculated the 
frequencies and damping rates of longitudinal and transverse excitations (single mode analysis).

Another approach to the same problem (which is, however, rarely used) is related to the joint mode analysis 
(two-oscillator model), at which the total velocity current spectrum ω ω ω= + −C q C q D C q( , ) ( , ) ( 1) ( , )L T  is 
fitted by the sum of high- and low-frequency double-Lorentzian terms
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where D is the space dimension.
In the both methods, using single mode analysis and two-oscillator model, we obtained dispersion relations 

ω q( )L T,  and damping rates Γ q( )L T, . To compare the methods, we present in Fig. 1 our results for the Lennard-Jones 
fluid that were calculated at temperatures (a)–(d) 1.83 and (e)–(h) 36.41 (in Lennard-Jones units).

Figure 1(a) presents the total velocity current spectra ωC q( , ) in a color-coded format (normalized to the max-
imum at each q). Blue rhombs correspond to the dispersion relations ω q( )L T,  calculated using single mode analysis 
of longitudinal (LM) and transverse (TM) modes. Results obtained using the two-oscillator model are shown by 
red circles for ω q( )L T,  and by triangles for ω ± Γq( )L T L T, ,  to illustrate a relation between damping rates and oscil-
lation frequencies. The damping rates obtained from single mode analysis are almost the same as those obtained 
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using the two-oscillator model and, thus, we do not show them in Fig. 1(a,e). Numerically-obtained profiles of 
ωC q( , ), as well as their longitudinal and transverse components ωC q( , )L T, , at different wavenumbers are shown 

in Fig. 1(b–d) by symbols, while the solid lines are fits by Eqs. (4) and (5). The description of the results shown in 
Fig. 1(e–h) is the same as in panels (a)–(d).

It is noteworthy that the both approaches yield close results, if the total current spectrum ωC q( , ) has two 
pronounced maxima (at lower and higher frequencies, which are typically associated with longitudinal and trans-
verse excitations, respectively). This corresponds to lower temperatures and wavenumbers corresponding to the 
first Brillouin pseudo-zone. Discrepancy between dispersion relations obtained using different methods increases 
with the temperature, as seen in Fig. 1(a,e). One can see in Fig. 1(b–d,f–h) that the current spectra obtained from 
MD simulations are described well by theoretical fits (4) and (5). The worst results are observed for excitations at 
high temperatures and short wavelengths, as indicated in Fig. 1(h). This is related to change in the shape of veloc-
ity current spectra in the high-q limit (see corresponding discussion below). Results of analysis using maxima of 

ωC q( , )T  is presented in the next section.
Note that the single mode analysis becomes unsuitable if longitudinal and transverse modes cross, as can be 

seen at π .−
qn / 1 91/3  in Fig. 1(a). This is because structural disorder in a fluid mixes longitudinal and transverse 

modes66,67, leading to an effective interaction between the modes and resulting in their anticrossing accompanied 
by the strong redistribution and hybridization of spectra78. Strictly speaking, due to the mode anticrossing, high- 
and low-frequency hybridized modes with mixed polarizations appear instead of longitudinal and transverse 
modes. Mode anticrossing should be properly taken into account in the q-region where the modes cross each 
other, and the detailed analysis of this problem stands beyond the scope of this work. However, we should stress 
that the mode mixing cannot be taken into account properly using single mode analysis in principle, comparing 
to the two-oscillator model.

q-gap, overdamped, and nonoverdamped excitations.  At small q-values, the low-frequency branch 
of excitations can have zero oscillation frequency ω = 0T , that means the complete absence of oscillating excita-

Figure 1.  Velocity currents and excitation spectra in a 3D Lennard-Jones fluid. (a) Velocity current spectrum 
ωC q( , ) shown in color-coded format (normalized to maximum for each q) at = .T 1 83 and =n 1, dispersion 

relations ω q( )L T,  obtained using single mode analysis (blue rhombs corresponding to longitudinal (LM) and 
transverse (TM) modes) and the two-oscillator model (red circles), while triangles correspond to ω ± ΓL T L T, , . 
The grey zone corresponds to the region of π<−qn L2 /1/3  (L is the size of considered system). Panels (b–d) 
demonstrate sections of the velocity current spectrum at π = .−qn / 0 51/3 , 1.0, and 1.5 obtained from MD 
simulations (symbols) and their fits using the two-oscillator model (5) and single mode analysis with Eq. (4), 
shown by the solid red and dashed blue lines, respectively. (e–h) Results obtained at = .T 36 41 and =n 1, 
description is the same as in panels (a–d), respectively.
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tions in thermodynamic equilibrium. The corresponding wavenumber range forms a gap in the q-space, which is 
referred to as the q-gap and is already clearly seen in Fig. 1(a,e). The long-standing problem of the calculation of 
the q-gap has recently attracted considerable interest in view of crossover between liquid- and gas-like collective 
dynamics in fluids with change in temperature and pressure8,26,32,34–45,47–58. Here, we present the calculated excita-
tion spectra near the q-gap and compare the dispersion relations obtained using the two-oscillator model to the 
results based on the analysis of transverse current spectra.

Analysis of ωC q( , )L T,  maxima at given q-values is widely used to obtain dispersion relations ω q( )L T,  in crystals 
(see, e.g., refs 8,32–36,38–41,52,53,58). Such an approach is suitable in this case, since the current spectra CL,T in crystals 
typically consist of narrow bands on the ωq( , ) plane, while the damping rates are negligible and, thus, are 
assumed to be equal to zero. On the contrary, the high- and low-frequency branches of the current spectra 

ωC q( , )L T,  in fluids21,26,66,67 or crystals with developed anharmonicity7 are significantly broaden and overlapped 
with each other. For this physical reason, we should use the two-oscillator model to calculate excitation spectra, 
since other approaches become unsuitable.

As seen, the two-oscillator model enables in-depth analysis of excitations spectra. For instance, using model 
(4) for the transverse part of velocity current spectra, we readily derive the frequency ωm corresponding to the 
maximum of ωC q( , )T  at a given q value (the dispersion relation based on the analysis of ωC q( , )T  maxima)
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It follows from Eq. (6) that, with an increase in ΓT/ωT, the ratio ωm/ωT decreases to zero at ΓT/ω = 3T , even 
at ω ≠ 0T .

Near ΓT/ω = 3T , where overdamped excitations become non-overdamped, one can expand ωm
2 in a q-series 

and obtain
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where q* is the wavenumber at which ΓT/ω = 3T  and * means the values at = ⁎q q . However, a posteriori analy-
sis of the excitation spectra in fluids justifies that it is sufficient to use the first-order terms in the expansions for 
ωT and ΓT, since the second q derivatives are small at = ⁎q q  and can be neglected.

Figure 2 presents the low-frequency branches of dispersion curves in the 3D Lennard-Jones fluid at the den-
sity =n 1 and temperatures (a) 2.85 and (b) 6.03. The curves were obtained using the two-oscillator model 
(orange circles), maxima of the transverse part of current spectra ωC q( , )T  in the two-oscillator model (black 
pentagons), and maxima of transverse current spectra ωC q( , )T  (blue rhombs). The black solid and dashed lines 
correspond to Eq. (7) and its linearized variant with β ≡⁎ 0, respectively, while the frequencies, damping rates, 
and q-derivatives were provided by the two-oscillator model (5).

Figure 2 demonstrates the following three domains in the q-space: (i) q-gap ( <q qg ) with ω = 0T , i.e., the 
range of missing oscillating excitations, and domains of (ii) overdamped excitations ( < < ⁎q q qg ) with ω = 0m  at 
ω ≠ 0T  and (iii) non-overdamped excitations ( > ⁎q q ) with ω ≠ 0m  and ω ≠ 0T . The (transition) region of over-
damped oscillating excitations is shown in Fig. 2 by the gradient blue area.

At low temperatures, ω q( )T  obtained using maxima of the ωC q( , )T  part of the two-oscillator model is close to 
that obtained from the analysis of transverse current spectra, as shown in Fig. 2(a). At high temperatures, the 
two-oscillator model still yields dispersion curves ω q( )T  with a clear q-gap, while the method based on ωC q( , )T  
maxima provides irregular points and becomes inappropriate. The observed irregular behavior is related to the 
flat form of ωC q( , )T  at large ωΓ /T T values, at which even weak data noise (due to thermal fluctuations and limited 
statistics) can strongly affect a position of the detected maximum of ωC q( , )T  (e.g., it is clearly seen in ref.53). 
Second, the high-frequency branch of excitations is significantly broaden and, therefore, also affects the positions 
of the ωC q( , )T  maxima due to the mode mixing.

Figure 2 proves that approaches based on maxima are unsuitable for the proper analysis of the true q-gap 
where ω = 0T . Comparing results represented by orange- and black-colored symbols, one can see that the dis-
crepancy between ωT and ωm is maximal near the q-gap and exhibits a systematic difference of about 50% between 
qg  and q*. Therefore, it is crucially important to properly include damping in the analysis of excitation spectra 
when the frequency and damping rate are comparable with each other. To accurately calculate qg, using discrete 
values of ω q( )T  obtained within the two-oscillator model, we fitted ω q( )T  in the region near the gap boundary by 
the linear dependence:

https://doi.org/10.1038/s41598-019-46979-y
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ω θ= − −( ) ( )q c q q q q( ) , (8)T T g g

where θ q( ) is the Heaviside step function and cT characterizes the velocity of the overdamped low-frequency 
excitations. Results of q-gap calculations in the Lennard-Jones, IPL12, and IPL8 fluids at different temperatures 
are presented and discussed below.

Concluding this section, note once again that the two-oscillator model can be used to obtain accurately the 
parameters of the square root relation ω q( )m  (7) near the transition between overdamped and non-overdamped 
domains of excitations. Namely, the square root relation has been typically discussed in the context of collective 
excitations in fluids (see, e.g.27,53 and references therein).

Excitation spectra at high temperatures.  To elaborate the results of previous sections, we studied in 
detail the dynamics and specific heat of the 3D Lennard-Jones fluid at the density =n 1 in a wide range of tem-
peratures. Using different approaches to analyze excitations spectra, we aimed to analyze changes in thermody-
namics of the system, as well as collective and individual dynamics of particle motion. The results are summarized 
in Fig. 3.

Figure 3(a–c) present the dispersion relations of the excitation spectra at temperatures = .T 17 2, 20.0, and 
23.2, respectively. The results are shown in the same manner as in Fig. 2, together with the linear asymptotic curve 
for the high-frequency (acoustic) branch:
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where P is the pressure and CV and CP are the specific heats at constant volume and pressure, respectively. The 
specific heat at constant pressure can be calculated from MD data as:
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According to Fig. 3(a–c), Eq. (9) accurately describes the long-wavelength behavior of the high-frequency 
branch of excitations, typically associated with sound propagation. Calculated adiabatic indices γ = C C/P V  used 
in Eq. (9) are shown in Table 1. Trends in discrepancies between different approaches to the analysis of excitation 
spectra are the same as in the previous section.

The results in Fig. 3(a–c) are shown for temperatures chosen to discuss crossover from liquid- to gas-like 
dynamics of fluids with increasing temperature (which is referred to as “Frenkel line8”). There is a set of features 

Figure 2.  Dispersion relations in the 3D Lennard-Jones fluid at the temperature (a) 2.85 and (b) 6.03. Orange 
circles correspond to ωT obtained with the two-oscillator model (5), black pentagons are maxima of the 
transverse part of current spectra in the two-oscillator model. Blue rhombs represent maxima of transverse 
current spectra ωC q( , )T  at different q values. The wavelength range highlighted by the gradient blue area 
corresponds to the transition from overdamped to non-overdamped excitations. The black solid and dashed 
lines are theoretical expansions Eq. (7) and its version with β ≡⁎ 0, respectively, with the coefficients taken from 
the two-oscillator model.
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used in different previous works and attributed to the transition from the liquid- to gas-like state of fluids8: (i) 
individual dynamics feature: the velocity autocorrelation function (VAF) becomes monotonically decreasing 
rather than oscillatory, (ii) collective dynamics features: positive sound dispersion vanishes, transverse excitations 
extend beyond the first Brillouin pseudo-zone in the fluid, and (iii) thermodynamic feature: due to the absence of 
transverse excitations, the specific heat per particle at constant volume (in the quasi-harmonic approximation) 
becomes = +C D( 1)V /2. To discuss relations between these features, we presented in Fig. 3(d–f) results for the 
specific heat, velocity autocorrelation functions, and calculated q-gaps at different temperatures, respectively. 
Note that, since an unambiguous definition of the first Brillouin pseudo-zone in fluids is absent, its boundary can 
be estimated in the range π π< <−qn1 / (6/ )1/3 1/3 in the 3D case shown in Fig. 3(f) by dashed black lines.

Analysis of Fig. 3(a–c) shows that π−
⁎q n / 11/3  at =T 20, meaning that all non-overdamped excitations 

( ωΓ </ 3T T  or, equivalently, ω ≠ 0T  and ω ≠ 0m ) extend beyond the first Brillouin pseudo-zone with a farther 
increase in the temperature. Positive sound dispersion vanishes at the same temperatures, since orange symbols 
at = .T 17 2 lie slightly above the red line (9), while this is not the case at ≥ .T 20 0. Moreover, these results agree 
with the analysis of velocity autocorrelation functions shown in Fig. 3(e).

Figure 3.  Dynamics and thermodynamics in the 3D Lennard-Jones fluid. (a–c) Dispersion relations ω q( )L T,  at 
temperatures = .T 17 2, 20, and 23.2, respectively, calculated using the two-oscillator model (5) (orange circles), 
maxima of its transverse part ωC q( , )T  (black pentagons), and maxima of the longitudinal (LM) and transverse 
(TM) current spectra ωC q( , )L T,  (blue rhombs). The solid red lines are theoretical asymptotic curves ω = cq 
given by Eq. (9). Grey zones show the regions π<q L2 /  (L is the size of the considered system). (d) Temperature 
dependence of the specific heat C T( )V . (e) Velocity autocorrelation functions (VAFs) at =T 20 and 23.2 
(corresponding to the vicinity of =C 2V ). The inset presents a zoom of the region in the grey frame to highlight 
the change in the VAF with an increase in the temperature. (f) Temperature dependencies of qg and q* obtained 
using the two-oscillator model (orange circles) and maxima of its transverse part ωC q( , )T  (black pentagons), 
while triangles indicate confidence intervals. The blue region corresponds to the temperature range where the 
VAF becomes monotonic rather than oscillatory. The vertical blue dashed line is ≈ .T 21 1 (at which =C 2V ), 
while the horizontal black dashed lines are the positions of the first pseudo-Brillouin zone boundary 
determined by different ways.

3D 2D

T 17.2 20.0 23.2 9 12 15

γ 1.43 1.44 1.44 1.50 1.51 1.52

Table 1.  Adiabatic indices γ = CP/CV of Lennard-Jones fluid at different temperatures.
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However, the situation with all excitations, including overdamped ones, is different, since Fig. 3(a–c) exhibit 
the regions of wavenumbers corresponding to overdamped excitations ( ωΓ >/ 3T T  or, equivalently, ω ≠ 0T  and 
ω = 0m ) which still exist at >T 20. To explain this statement, we showed in Fig. 3(f) the temperature dependen-
cies of q* (black pentagons) and qg (orange circles). Here, the vertical dashed blue line corresponds to the temper-
ature at which =C 2V , while the blue region marks the temperature range where the form of velocity 
autocorrelation function becomes monotonic instead of oscillating. The main conclusion here is that different 
features attributed to the Frenkel line agree with each other in general, but the collective dynamic features should 
be reformulated only for non-overdamped excitations, since stable transverse excitations from the first-pseudo 
zone do not necessarily vanish.

We found that the discussed trends are fairly generic and qualitatively the same results, as in Fig. 3, 
are observed for fluids with other interactions between particles. In particular, we considered fluids with 
inverse-power-law (IPL) repulsions ∝1/r12 (IPL12) and ∝1/r8 (IPL8). The IPL12 fluid is a Lennard-Jones fluid 
without the attractive branch ∝1/r6, which makes it possible to understand the role of the attractive branch of the 
potential in excitations of fluids. Then, comparison of results for the IPL12 and IPL8 fluids allows us to analyze 
trends when repulsive interactions become softer.

Figure 4 shows our results for the (a) Lennard-Jones, (b) IPL12, and (c) IPL8 fluids, presented in the same 
manner as in Fig. 3(f) (details of the description are the same). Figure 4(a) coincides with 3(f) and is reproduced 
here to highlight the trends appearing under the variation of the interaction. The comparison of Fig. 4(a,b) indi-
cates that the absence of the attractive branch of interactions leads to discrepancy between thermodynamic and 
individual dynamic features at the Frenkel line ( =C 2V  and change in the form of the velocity autocorrelation 
function). When the repulsion becomes softer, agreement is recovered, but all low-frequency excitations leave the 
first Brillouin pseudo-zone much before the velocity autocorrelation function becomes monotonic, as seen in 
Fig. 4(b,c). It is remarkable that the form of temperature dependencies of the q-gap, q T( )g , obtained from the 
analysis of excitations within the two-oscillator model, are weakly sensitive to the kind of interaction. 
Correspondence between different approaches to the Frenkel line identification requires additional detailed study.

Excitations in 2D fluids: Enhanced anharmonicity at work.  Discrepancy between different dynamic 
and thermodynamic features attributed to the Frenkel line increases dramatically in 2D systems due to the 
enhanced role of anharmonicity. To illustrate this, we simulated the 2D Lennard-Jones fluid in a wide range of 
temperatures (see details in Methods). Then, the velocity currents, excitation spectra, specific heat, and velocity 
autocorrelation functions at different temperatures were analyzed in the same manner as in the case of the 3D 
Lennard-Jones system. The results color-coded in the same manner as in Fig. 3, are shown in Fig. 5.

We focused on the temperature region around =C 3/2V  ( = +C D( 1)/2V  with =D 2), which is observed at 
.T 12 15, as seen in Fig. 5(d). However, the excitation spectra shown in Fig. 5(a–c) clearly prove that a lot of 

non-overdamped excitations still exist in the first pseudo-zone at =T 12, while positive sound dispersion indeed 
disappears near the temperature corresponding to =C 3/2V . The same conclusions are confirmed by the temper-
ature dependencies of q* and qg shown in Fig. 5(f). Figure 5(e) justifies an oscillatory behavior of the velocity 
autocorrelation functions at =T 12 and 15, while it becomes monotonic only at T 40 (not shown here). Thus, 
in contrast to the 3D Lennard-Jones system, where thermodynamic, collective, and individual dynamic features 
of Frenkel crossover agree with each other, the situation in 2D fluids is essentially different.

This discrepancy has clear physical reasons related to anharmonicity and can be explained as follows. 
Fluctuations in 2D systems play a much more significant role than in 3D ones. In particular, these fluctuations 
lead to the independent behavior of translational and orientation order parameters and rich scenarios of melt-
ing79. Enhanced fluctuations enlarge the amplitudes of particle motions in 2D systems, increasing the anhar-
monicity of direct interactions between the nearest particles. For this reason, the potential part of the interaction 
energy (per degree of freedom) becomes significantly smaller than 1/2. As a result, the thermodynamic feature 

=C 3/2V , which was derived in the quasi-harmonic approximation for the analysis of 3D systems8, becomes 
unsuitable for 2D fluids.

Figure 4.  Temperature evolution of the q-gap in the following 3D fluids. (a) Lennard-Jones, (b) IPL12, and (c) 
IPL8 fluids at the density =n 1. Details of the description are the same as in Fig. 3(f).
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In some sense, 2D fluids of softly interacting particles behave similarly to 3D fluids of hard-sphere parti-
cles, where they move mainly beyond the interparticle interaction potential. Developed anharmonicity leads 
to a rapid decrease in the specific heat with increasing temperature, which is similar to that observed in 
strongly-anharmonic crystals7. However, the analysis of the behavior of the q-gap in 2D systems shows that it 
exhibits an opposite trend, which is similar to 3D fluids with soft interactions between particles. The comparison 
of different features associated with the Frenkel line is beyond the scope of this work and should be considered 
in future.

Excitations at large q values: Getting back to individual dynamics.  To complement our results 
previously obtained for long-wavelength collective fluctuations in 3D Lennard-Jones fluids shown in Figs. 1 and 
3, we considered velocity currents in a regime associated with individual particle dynamics, i.e., at high q values65. 
To illustrate change in velocity currents at the transition from collective to individual dynamics, we considered 
excitations at the temperature = .T 36 41 and density =n 1. Figure 6 presents the sections of longitudinal (LM) 
and transverse (TM) modes of velocity currents ωC q( , )L T,  at π =−qn / 81/3 .

The dispersion relation for a free particle is ω = vq, where v is the particle velocity. In thermodynamic equi-
librium, the velocity distribution has a Maxwellian form and, hence, for the velocity squared (corresponding to 
free particle dynamics), we have

ω ω ω
∝
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where m is the particle mass. Note that the maximum of the distribution (11) at each fixed q value is reached at 
ω = v qT , where =v T m2 /T  is the most probable velocity26,58.

Transverse current spectra in the regime of individual particle dynamics correspond to particles that can be 
treated as independent oscillators. As a result,

ω
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Figure 5.  Dynamics and thermodynamics of the 2D Lennard-Jones fluid. (a–c) Dispersion relations ω q( )L T,  at 
temperatures =T 9, 12, and 15, respectively, calculated using the two-oscillator model (orange circles), maxima 
of its transverse part ωC q( , )T  (black pentagons), and maxima of the longitudinal (LM) and transverse (TM) 
current spectra ωC q( , )L T,  (blue rhombs). (d) Temperature dependence of the specific heat C T( )V . (e) Velocity 
autocorrelation functions (VAFs) at =T 12 and 15 corresponding to ≤C 3/2V  in panel (d). (f) Temperature 
dependencies of qg and q* calculated using the two-oscillator model (orange circles) and maxima of its 
transverse part ωC q( , )T  (black pentagons), respectively.
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Figure 6 presents the MD results for ωC q( , )L T,  (orange triangles and circles show longitudinal (LM) and trans-
verse (TM) modes, respectively) and theoretical profiles (11) and (12). Remarkable agreement is seen between 
MD and theoretical results for longitudinal and transverse velocity current spectra, justifying our assumption 
about the individual regime of particle motion in the high-q limit.

The comparison of Figs 1 and 6 indicates that an increase in q is accompanied by the transition from collec-
tive to individual dynamics whose fingerprints are clearly seen in the form of velocity current spectra. At high q 
values, the Lorentzian profiles (4) and (5) become inaccurate and profiles (11) and (12) should be used instead 
of them.

Conclusions
In conclusion, we have compared different methods for calculating excitation spectra in fluids, including the anal-
ysis of maxima of current spectra, its longitudinal and transverse components, and the joint mode analysis using 
the two-oscillator model to fit the total velocity current spectra. Performing MD simulations, we have studied the 
excitations at low- and high-temperatures in fluids of particles interacting with each other via the Lennard-Jones, 
IPL12, and IPL8 potentials, to understand trends arising due to potential softness and in the presence of attrac-
tion. Then, we have analyzed excitations at high temperatures corresponding to crossover from liquid- to gas-like 
dynamics in fluids (Frenkel line) and have studied the form of velocity current spectra in the regime of individual 
dynamics corresponding to excitations with high q-values.

We have found that the method based on the two-oscillator model provides the most accurate and compre-
hensive results for the frequencies and damping rates of both high- and low-frequency branches of the excitation 
spectra. Other considered approaches, including those based on the analysis of the transverse part of the total 
velocity current spectrum and on the analysis of maxima of the transverse current spectrum, can be used only for 
rough estimation of dispersion relations at low temperatures (not far from the melting line) and become unsuita-
ble at higher temperatures.

The comparison of approaches based on the two-oscillator model and maxima of its transverse part has 
allowed us to distinguish three regions in the q-space corresponding to q-gap, as well as ranges of overdamped 
and non-overdamped low-frequency excitations. We have demonstrated that the results based on the analysis 
of the maxima of transverse current spectra can be obtained with the parameters of spectra calculated using the 
two-oscillator model. We have derived corresponding expansions near the transition between overdamped and 
non-overdamped regimes of low-frequency excitations.

We have analyzed the excitation spectra, specific heat, velocity autocorrelation functions, and temperature 
evolution of the q-gap in the 3D Lennard-Jones fluid at high temperatures and considered different features 
attributed to crossover from the liquid- to gas-like state of the fluid (Frenkel line). Considering this crossover, we 
observed that only non-overdamped low-frequency excitations rather than all of them leave the first pseudo-zone. 
However, the dynamic and thermodynamic features of the Frenkel crossover agree with each other in terms of 
low-frequency non-overdamped excitations instead of excitations in a broad sense (which include overdamped 
ones). In the case of 2D fluids, the dynamic and thermodynamic features strongly disagree with each other in 
general due to the increased role of anharmonicity.

We have found that the method based on the two-oscillator model is suitable for analysis of excitations in the 
regime of collective dynamics in 3D and 2D fluids with different interaction potentials. However, in the limit of 
fluctuations with high q values, we observed the return to the regime of individual particle dynamics, at which 
longitudinal and transverse current spectra are determined by Maxwellian distributions of particle velocities.

In addition to MD simulations, a powerful approach to experimental studies of fluid dynamics is provided 
by complex (dusty) plasmas, i.e., microparticles in a plasma discharge that acquire a negative charge and exhibit 
weakly damped individual particle dynamics, which can be imaged using video recording80,81. Particle-resolved 
experiments with complex (dusty) plasmas make it possible to analyze collective dynamics in strongly coupled 
many-body systems and, in particular, in a fluid state82–86. Although we considered only simple fluids in this work, 
we expect that the results can be applied to analyze excitations in fluid complex (dusty) plasmas.

The results of this work pave the way for detailed analysis of excitations in fluids of different natures, from 
simple fluids and noble gas fluids to liquid metals, molecular and complex fluids, complex (dusty) plasmas and 

Figure 6.  Current spectra in 3D Lennard-Jones fluids in the regime of individual dynamics of particles: at the 
temperature = .T 36 41 and wavenumber π =−qn / 81/3 . Symbols are MD results and the solid red lines are 
theoretical profiles (11) and (12) for longitudinal (LM) and transverse (TM) modes, respectively. The spectra are 
normalized to the maximum of transverse component.
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related systems. We believe that our results will be of interest in context of various problems in condensed matter 
physics, chemical physics, physical chemistry, plasma physics, materials science, and soft matter.

Methods: Details of MD Simulations
We considered systems of particles interacting via the Lennard-Jones (LJ) and inverse power law (IPLk) pair 
potentials1:

ϕ ε σ σ ϕ ε σ
= − =r

r r
r

r
( ) 4 (( ) ( ) ), ( ) ( ) , (13)

k
LJ

12 6
IPLk

where r is the distance between a pair of particles; ε and σ are the energy and length scale of the interaction, 
respectively; and k is the exponent.

We have studied 3D and 2D fluids consisting of =N 104 particles in an NVT ensemble with a Nose–Hoover 
thermostat. The cutoff radius of interaction was chosen as = . −r n7 5c

D1/ , where =n N V/  is the numerical density 
and D is the space dimension. The numerical time step was chosen as σ ε∆ = × −t T m T5 10 /( )3

0
2  and 

ε = .T / 0 010 . All simulations were performed in a cube (a square in 2D case) with a size = .L 21 5 ( =L 100 in 2D 
case) with periodic boundary conditions for ×2 106 time steps, where the first ×5 105 steps were used to equil-
ibrate the system and the rest, to calculate the properties. Simulations were performed within the LAMMPS87 and 
HOOMD-blue88,89 packages.

In liquids, due to the isotropy, absence of translational order, and strong damping of excitations (especially with 
short wavelengths), a small part of the fluid inside the total volume (simulation box) can be considered as an inde-
pendent subsystem. Due to this, the spectra can be calculated with fine q-resolution and in different directions 
(providing statistically the same results). We used this for spatial averaging of the spectra and for obtaining fine 
q-resolution at short wavelengths, while, in the long-wavelength region, the q-resolution was determined by 2π/L.
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