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thermodynamic analysis of 
thermal convection based on 
entropy production
takahiko Ban & Keigo shigeta

Flow patterns have a tendency to break the symmetry of an initial state of a system and form another 
spatiotemporal pattern when the system is driven far from equilibrium by temperature difference. 
For an annular channel, the axially symmetric flow becomes unstable beyond a given temperature 
difference threshold imposed in the system, leading to rotational oscillating waves. Many researchers 
have investigated this transition via linear stability analysis using the fundamental conservation 
equations and the generic model amplitude equation, i.e., the complex Ginzburg-Landau equation. 
Here, we present a quantitative study conducted of the thermal convection transition using 
thermodynamic analysis based on the maximum entropy production principle. Our analysis results 
reveal that the fluid system under nonequilibrium maximizes the entropy production induced by the 
thermodynamic flux in a direction perpendicular to the temperature difference. Further, we show that 
the thermodynamic flux as well as the entropy production can uniquely specify the thermodynamic 
states of the entire fluid system and propose an entropy production selection rule that can be used to 
specify the thermodynamic state of a nonequilibrium system.

Evaluating the stability of nonequilibrium states and finding a transition point between two nonequilibrium 
states require the construction of governing equations and subsequent detailed and laborious analysis of the 
equations1–4. Variational principles are quite significant for the analysis of phase behavior under nonequilibrium 
processes because of their broad application and the ease with which they are handled. The results of theoret-
ical and experimental studies have suggested that nonequilibrium states maximize the entropy production of 
nonequilibrium processes (the so-called maximum entropy production principle (MEPP))5–11. The variational 
principles obtained from the MEPP5 yield well-established equations and various constitutive equations, such as 
the diffusion equation, Leslie–Ericksen equation, Nernst–Fokker–Planck equation, and constitutive equations 
describing complex phenomena, such as thin film hydrodynamics, colloid particles, kinetics of phase separation, 
deformation and diffusion in gels, nonlinear viscoelasticity of polymers, liquid crystals, and drying droplets12–16.

MEPP-based analysis has been extensively discussed for prediction of a transition point between two nonequi-
librium states in complex systems; for example, those found in the configurational changes of crystal growth 
and the mode changes in droplet oscillation, which involves the two nonequilibrium processes interfering with 
each other, i.e., mass transfer and heat conduction, and mass transfer and viscous dissipation, respectively6,7,11. 
Nonequilibrium processes can be divided into two types: compound and complex10. For compound processes, 
the uncoupled processes are decomposed into various elementary processes that are only dependent on the corre-
sponding thermodynamic flux, and not on all of the fluxes. All of the entropy production in compound processes 
can be represented as the sum of the functions of all of the elementary processes. For complex processes, various 
elementary processes are coupled and interfere with each other. Previous studies that attempted to disprove the 
MEPP are outside the range of MEPP applicability because the nonequilibrium systems investigated are com-
pound systems17–22. It is claimed that the MEPP is valid for complex systems and invalid for compound systems23. 
The MEPP indicates that the systems evolve such as to maximize their entropy production. However, it is unclear 
whether partial or total entropy production is an essential factor to determine the time course of the systems. 
Further, previous studies have not explained why a certain component of entropy production can provide a selec-
tion rule that determines the nonequilibrium states although different entropy production components orig-
inate from various irreversible processes occurring within a nonequilibrium system. The recent literatures on 
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convection experiments demonstrate that the realized convection patterns are not governed by principles like the 
MEPP24–26. Thus, it was stated that the MEPP has been applied in a largely ad hoc manner and its successes remain 
something of an unexplained curiosity27.

In this study, we evaluated the relationship between the flow patterns and entropy production via numerical 
simulation to develop an entropy production selection rule that can be used to specify the thermodynamic state 
of a nonequilibrium system. We consider the flow patterns driven by thermocapillary instabilities as a complex 
process involving two irreversible processes: viscous dissipation and heat conduction. The temperature difference 
imposed across the cell induces a surface tension gradient on the free surface of the fluid, leading to a surface 
flow towards the cold side. The resulting thermal convection induces a various flow patterns with an internal cir-
culation. In the case of an annular channel, the flow pattern is axially symmetric along the temperature gradient 
with an internal circulation. This axially symmetric flow (ASF) becomes unstable beyond a given temperature 
difference threshold and subsequently symmetry-breaking flow, i.e., rotational oscillating waves, appears. The 
oscillating waves propagate in a direction perpendicular to the temperature gradient applied to the system, i.e., in 
the circumferential direction, and the temperature changes periodically. This rotational oscillating flow is called 
hydrothermal wave (HTW)28–30. The research of the transition from ASF to HTW has been stimulated by numer-
ical experiments on the fundamental conservation equations, i.e., the Navier-Stokes equation and conservations 
of mass and energy, and the generic model amplitude equation, i.e., the complex Ginzburg-Landsu equation. 
Remarkable predictions concern the existence of various flow patterns and instabilities31,32. In this study, we first 
computed each component of thermodynamic flux and thermodynamic force in both ASF and HTW to calculate 
each component of entropy production. Then, we ascertained which component of thermodynamic flux can spec-
ify the system, and which component of entropy production can be maximized to predict the system behavior.

We assume that a linear relationship between the thermodynamic force and the thermodynamic flux holds 
for the two irreversible processes considered in this study. Then, for heat conduction, the thermodynamic force 
is XT = ∇(1/T), and the thermodynamic flux is JT = −λ∇T, where λ is the thermal conductivity and T is the 
temperature; for viscous dissipation of the fluid, they are XV,ij = σij/T and JV,ij = ∂ui/∂xj, respectively, where σij 
is the viscous stress tensor, ui is the i-th component of the fluid velocity vector u, and xj is the j-th component 
of coordinates. The entropy production of each elementary process can then be calculated as the product of the 
thermodynamic force and thermodynamic flux. We find that the ratio of both entropy productions, i.e., for heat 
conduction (σT) and viscous dissipation (σV), is σV/σT ≈ 10−7. The energy dissipation due to the viscosity is much 
less than the entropy production due to heat conduction; therefore, we ignore the energy dissipation in this study. 
Note that this question of ignoring the smaller entropy production requires careful consideration and will be dis-
cussed in a later work. Further, in the analysis presented below, we omit the subscripts T and V from the physical 
quantities because we focus on the entropy production due to heat conduction only.

We take the time-averaged values of the local thermodynamic flux during a certain period τ as 
∫τ λ| | = ∇

τ+J T dt1/ ( ) ,i t

t 2

o

o  and the local thermodynamic force as ∫τ= ∇
τ+X T dt1/ ( (1/ )) ,i t

t 2

o

o  where i = x, 
y, z, because the thermodynamic variables vary spatiotemporally in the nonequilibrium system. Most variables 
are measured at the point (x, y, z) = (30 mm, 0 mm, 3 mm). The x component of the heat flux is in the same direc-
tion as ΔT between the inner and outer walls. We calculate the absolute value of the local entropy production 
from the following relation,

∫σ τ= | || |
τ+

J X dt1/ ,
(1)i

t

t
i i

o

o

where JiXi denotes the simple product of Ji and Xi. Note that the entropy production is scalar, and σi represents the 
entropy production generated by the ith component of the heat flux. The total entropy production is the sum of 
the entropy production contributions for all components:

∑σ σ= .
i

itotal

Figure 1 shows the computed surface temperature fluctuation, δT, in the horizontal plane, which is defined by 
∫δ π θ= − .

πT t T t T t dx x x( , ) ( , ) 1/2 ( , )
0

2  When the temperature difference ΔT is less than 7 K, an axially sym-
metric flow (ASF) occurs. However, as ΔT increases above 8 K, traveling waves propagate in the direction perpen-
dicular to the temperature gradient applied to the system, i.e., in the circumferential direction, and the 
temperature changes periodically. This rotational oscillating flow is called an hydrothermal waves (HTW)28–30. In 
a temperature range for which an HTW is produced, the surface temperature started to vibrate at about 50–100 s 
after the start of the simulation. The amplitude of the temperature oscillation approached a constant value over 
time, and, after 400 s, the wave number of the transmission wave also became a constant value with the standard 
deviation of the amplitude being less than 0.01 K. However, even if the simulation was performed for 2500 s, the 
amplitude of the temperature oscillation did not become constant, and there was a standard deviation of 0.0008 K. 
Considering the calculation cost, we analyzed the two intervals of 200–300 s and 300–400 s in this study.

Results and Discussion
First, we investigated the relationship between |Ji| and |Xi| (Fig. 2a). The relationship is a single line through the 
origin, although the flow pattern changes from ASF to HTW. Moreover, the relationship between each entropy 
production component σiand |Xi| is a single quadratic curve, σ = . × X1 83 10i i

8 2 (Fig. 2b). If the entropy produc-
tion can be described by the Fourier law as due to heat conduction only, it can be expressed as σ = λT Xi i

2 2. 
Hence, we obtain σi = 1.82 − . × X1 84 10 i

8 2 (we respectively used the minimum and maximum values of temper-
ature for calculation because the temperature oscillates). This relation is consistent with the fitting curve in 

https://doi.org/10.1038/s41598-019-46921-2


3Scientific RepoRts |         (2019) 9:10368  | https://doi.org/10.1038/s41598-019-46921-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Fig. 2b. The results indicating that the single curves describe these relationships are justified by the fact that the 
thermodynamic flux is defined on the basis of a linear function of the thermodynamic force. Thus, for the entropy 
production expressed as a function of Xi, the MEPP is inapplicable for specifying the thermodynamic states and 
for predicting the transition point from an ASF to an HTW.

We must therefore query how the MEPP successfully predicted the transition points of the nonequilibrium 
states in the experiments reported in refs11,16,17. In those experiments, instead of a local thermodynamic force, 
a driving force adjusted by the energy supplied from the surroundings was used as a thermodynamic force; for 
example, the degree of supersaturation, the degree of supercooling, and a pressure gradient were used. The driv-
ing force, which is constant in time, serves to prevent the internal system state from achieving thermal equilib-
rium. As the driving force increases, the system state changes. Thus, the driving force serves as a measure of the 
nonequilibrium degree. For our system, we next analyze the system’s behavior using the thermodynamic variables 
as functions of the driving force, which is determined by the temperature gradient between the inner and outer 
walls, i.e., F = (1/Tc − 1/Th)/(Ro − Ri). Note that F has the same dimension as a thermodynamic force owing to 
heat conduction.

Figure 3 shows the relationships between the driving force and each component of the local thermo-
dynamic flux. The flow pattern changes from an ASF to an HTW with a jump in |Jy| at a driving force of 
F = 70–80 × 10−6 m−1K−1, corresponding to ΔT ≈ 7–8 K. Quantitative analysis reveals that for an ASF, the first 
derivative of |Jy| remains constant at the value of (3.07 ± 0.00(4)) × 106 Jm−1s−1K−1, whereas for an HTW, the 

Figure 1. Schematics of the annular container (upper panel). Surface temperature difference at various 
temperature differences and at t = 150 s (lower panels).
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value is (74.0 ± 27.3) × 106 Jm−1s−1K−1. In each flow pattern, |Jy| can be expressed by two straight lines with sig-
nificantly different slopes as functions of F. For Jx, regardless of whether the flow pattern is an ASF or HTW, this 
term increases monotonically with respect to F. The values can be expressed using the theoretical relation Jx = λT
cTh(Ro − Ri)F/Rln(Ro/Ri), where R(=30mm) is the measurement point. Finally, Jz slightly changes its derivatives, 
although it is not as well determined as Jy. From a quantitative analysis conducted, we found that for Jz, the slope 
of its derivative of an ASF region decreases by 41.8% in comparison with that of an HTW region. Interestingly, Jy 
and Jz are in a direction perpendicular to F and they exhibit a nontrivial change with F. HTW occurs owing to the 
symmetry-breaking of heat conduction. The thermodynamic fluxes perpendicular to F may provide a clue to a 
signature of the change in the flow patterns. According to the MEPP, a jump in the thermodynamic flux is the sig-
nature of a first order transition33. Therefore, we can distinguish one nonequilibrium state from another in terms 
of the thermodynamic fluxes with respect to the driving force. As Jy can be expressed by the linear function of F, 
the absolute value of entropy production calculated from Eq. (1) can be fitted by the following quadratic function:

σ θ= −F L F( ) ( ) , (2)i i i
2

where Li and θi are phenomenological coefficients6,11,33. The entropy production in each state can be expressed by 
different quadratic curves, i.e., for an ASF and HTW. We can also fit the experimental values of Jy using 

θ= −( )J F LL F( ) ,y y y  calculated from the relation σ λ= = =J X J L L T/ , ( )y y y y
2 2 .

The relationship between σy and F is shown in Fig. 4a. In the low-thermodynamic-force region, the ASF entropy 
production curve lies above that of the HTW, whereas the opposite is true for the high-thermodynamic-force 
region. The intersection point of the two curves is at Fc = 76.2 × 10−6 m−1K−1, which corresponds to ΔTc = 7.59K 
when the fitting range for the HTW entropy production is 8–11 K (ΔTc = 8.15 K for the 8-14-K range). We can 
interpret the system behavior according to the MEPP. That is, the ASF appeared below the point of intersec-
tion because the entropy production for the ASF exceeded that for the HTW. Above the point of intersection, 
the entropy production for the HTW became greater. The system changed to maximize the entropy production 
induced by Jy with respect to F. Thus, the transition point is the intersection point of the two curves for the ASF 
and HTW. Note that all absolute values of σy described here are the same values as σy described in Fig. 2(b). The 
only difference between the two entropy productions is the variable expressed by the function of X or F. σy with 
respect to F can be described as the two different curves in each flow pattern, whereas σy with respect to X falls 
on a single curve. The function σy(F) permits the distinction between the two flow patterns. θi in Eq. (2) is an 
important factor because, in the case of a nonzero value, state transition occurs. The physical meaning of θi was 
interpreted as a correction term for conversion to the local driving force6. Our results shown in Fig. 3(a) rule 
out this interpretation. Thus, θi may describe the interference of the two irreversible processes or the degree of 
symmetry-breaking because for σx, θx = 0. Full interpretation of the physical meaning needs to be investigated 
further.

To verify the transition point determined by the MEPP, we computed the time course of the temperature at 
the measurement position by varying ΔT in intervals of 0.1 K (Fig. 4b). At ΔT = 7.4 K, the temperature remained 
constant during the measurement time span. At ΔT = 7.5 K, however, the temperature started to increase at a 
time of approximately 260 s. Eventually, temperature oscillation began. This result indicates that HTW behav-
ior appeared at ΔT = 7.5 K, and this transition point is extremely close to the value calculated from the MEPP. 
Although the calculation using the MEPP was performed in 1-K intervals, the precision of the predicted value is 
extremely high (note that we obtain complete agreement on the transition point if we set the intervals to 0.5 K). 

Figure 2. (a) Relationship between the local thermodynamic flux Ji and the local thermodynamic force Xi. (b) 
Relationship between the entropy production σi and the local thermodynamic force Xi for an ASF and HTW. 
The solid line is fit using the quadratic curve, σ = . × X1 83 10i i

8 2. It is in agreement with the theoretical curve, 
σ = λT Xi i

2 2.
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The MEPP correctly predict the transition point only in the time span in which the MEPP analysis is conducted. 
In fact, for ΔT = 7.4 K, the temperature oscillated at a time of approximately 400 s, and the HTW appeared. When 
the analysis period was changed from 200–300 s to 300–400 s, we found that the prediction point calculated by the 
MEPP decreased by approximately 0.1 K. These results indicate that, although the nonequilibrium system does 
not reach a steady state, the MEPP can specify the nonequilibrium state and predict the transition point.

This understanding motivates the question of how Jy is capable of uniquely specifying the nonequilibrium 
states. The decisive component of the thermodynamic variables that specifies the nonequilibrium states may be 
the component that breaks the spatial symmetry with respect to the driving force applied to the entire system. Jy 
at the measurement point is perpendicular to the driving force. In context, using Jz, we must be able to predict 
the transition point because Jz is perpendicular to the driving force. Therefore, using the same approach as that 
for the calculation of σy, we analyzed the transition points obtained from the σz component at different measure-
ment points. For simplicity, we fit σz using a quadratic function of F, even though Jz may behave as a high-order 
dependency of F. The result is shown in Fig. 5.σz exhibits the distinctive features exhibited by σy: first, the system 
changes to maximize the entropy production; and second, the point of state transitions coincides with the inter-
section between the entropy production curves. These transition points are congruent with those obtained from 
the σy component (Fig. 5b).

We investigated the relationship between the driving force F and the total entropy production (Fig. 6). The 
total entropy production falls on a single curve, σ = λ −T T R R F R R R[( ) / ln( / )]x c h o i o i

2, which represents the the-
oretical value of the x component of entropy production expressed as a function of F. We unsuccessfully 
attempted to predict the transition point using the total entropy production as a function of F because the total 

Figure 3. Effect of the driving force F on each component of the local thermodynamic flux Ji for an ASF and 
HTW: (a–c) Jx, Jy, and Jz, respectively. (a) The solid line represents Jx = λTcTh(Ro − Ri)F/rln(Ro/Ri). (b) The solid 
and broken lines are two regression lines calculated from the relation σy = JyXy (See the text for more details). 
Inset: Magnified view.

Figure 4. (a) Effect of the driving force F on the y-component of the entropy production σy for an ASF 
and HTW. The solid and broken curves represent the regression curves for an ASF and HTW using Eq. (2): 
y = 5.18 × 10−8x2, and y = 3.00 × 10−5(x − 73.0)2, respectively. The intersection point of the two curves for the 
ASF and HTW correspond to the transition point. Inset: Magnified view. (b) Time course of the temperature T 
near the prediction points. ΔT is the temperature difference between the inner and outer walls.
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entropy production increases monotonically with F. We found that information related to the system was lost 
because the σx component, which constitutes 94.6–99.9% of the total entropy production, covers the slight change 
in the entropy production due to the transition. This finding indicates that the largest component of the entropy 
production as well as the total entropy production cannot distinguish one nonequilibrium state from another. The 
results indicate that the current formulation of the MEPP requires revision.

From the above results, we deduced that a specific component of the thermodynamic flux depending on the 
driving force distinguishes one nonequilibrium state from another. Hence, we may extend the MEPP using the 
relation between the thermodynamic flux and the driving force. This relation specifies the nonequilibrium states 
as thermodynamic phases similar to phases in equilibrium. Therefore, we can derive an equation related to the 
phase boundaries between the nonequilibrium states. Using the corrected thermodynamic force Ii = (Fi − θi), 
instead of the local thermodynamic force6,11,33 and its conjugate variable Ji(Fi), the maximum entropy production 
principle can be rewritten as

∑σ μ σδ








−





−













=F F I J( ) ( ) 0,
(3)

k k
i

i i

Figure 5. (a) Entropy production for the z components, σz, as functions of the driving force F at various 
measurement points. The solid and broken lines represent the fitting curves of the entropy production for an 
ASF and HTW, respectively, obtained using Eq. (2). The intersection point of the two curves for the ASF and 
HTW correspond to the transition point. (b) Comparison of the transition-point prediction based on analysis 
of σy and σz at various measurement points.

Figure 6. Relationship between the total entropy production and the driving force F. The solid curve represents 
σx = λTcTh[(Ro − Ri)F/Rln(Ro/Ri)]2.
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where μ is a Lagrangian multiplier. We obtain the following explicit expression for the thermodynamic flux:

σ
σ

σ σ
=

∑ ∂ ∂
∂
∂

=
∂
∂

.J F
I F F r F

( )
( / )

1
(4)

i i
i i i i i i

Coefficient ri corresponds to the degree of a homogeneous function5. If two different driving forces, F1, F2, are 
applied to a system, the entropy production can be expressed in the form σ = σ(F1, F2). Then, the differential form 
of the entropy production can be given as

σ σ σ
=






∂
∂






+



∂
∂



 .d

F
dF

F
dF

(5)1
1 2

This equation holds for different nonequilibrium phases. When two nonequilibrium phases are at a transition 
point, the entropy productions of the two phases are equal. Therefore, from Eqs (4) and (5), we obtain

∆
∆

= −
dF
dF

r J F
r J F

( )
( )

,
(6)

1

2

2 2 2

1 1 1

where ΔJ is the difference in the thermodynamic fluxes for the transition from one phase to another. This 
expression may correspond to the Clausius–Clapeyron equation describing the slope of the phase boundaries in 
equilibrium.

In this paper, the relationship between the thermodynamic flux and the various nonequilibrium states in a 
system incorporating two irreversible processes were examined. A nonequilibrium state changes to another state 
to maximize the entropy production induced by the thermodynamic flux in a direction perpendicular to the driv-
ing force. Hence, a selection rule for predicting the transition point between different states is needed to evaluate 
the symmetry-breaking component of the thermodynamic flux with respect to the driving force. Moreover, our 
analysis revealed that the total entropy production and the largest entropy production cover the slight change 
in the entropy production due to the transition. Thus, the quantities involved in this principle are likely to be 
system-dependent.

One wonders if the MEPP-based analysis can apply to nonequilibrium systems involving several branches of 
solutions, for example, bistability in flow patterns3,34. A slight difference in initial perturbation leads to a com-
pletely different patterns. In this manuscript, we used the steady value of driving force applied to the entire system 
as a kind of state variable describing entropy production and thermodynamic flux. This approach cannot be used 
for nonequilibrium systems exhibiting several branches of solutions because the same value of driving force may 
correspond to different entropy productions exhibited by different branches. We may use driving force reflecting 
initial conditions as state variables to predict the system behavior; the difference in the initial perturbation corre-
sponds to the difference in the driving force. Therefore, when we use an initial value of driving force or its average 
value as nonlocal thermodynamic force, different values of the nonlocal thermodynamic force may specify differ-
ent branches of solutions. If all branches of solutions show the same entropy production, the approach predicts 
that coexisting states will appear. If there is a slight difference in entropy production among several branches of 
solutions, the branch exhibiting the maximum entropy production will be selected. Consequently, applying our 
modified MEEP to nonequilibrium systems involving several branches of solutions is a significant issue to be 
addressed. Finally, we proposed an equation related to the phase boundaries between the nonequilibrium states 
on the basis of the MEPP involving entropy production as a function of the driving force. Experimental and 
numerical validation of this equation will reveal the range of MEPP applicability.

Numerical calculation methods. We investigate the thermal convection in an annular pool filled with 
silicon melt (height: 3 mm), for which there is a fixed temperature difference between the inner (Ri = 15 mm) and 
outer walls (Ro = 50 mm). The silicon melt is a noncompressible Newtonian fluid. We used the continuity equa-
tion as the governing equation along with the Navier–Stokes equation and energy equation:

∇ ⋅ =u 0, (7)

ρ
ν

∂
∂

+ ⋅ ∇ = − ∇ + ∇
u u u p u
t

1 ,
(8)

2

α∂
∂

+ ⋅ ∇ = ∇uT
t

T T , (9)
2

where u is the fluid velocity vector, t is the time, ρ is the density of the silicone melt, p is the pressure, ν is the 
kinetic viscosity of the silicone melt, T is the temperature, and α is the thermal diffusivity of the silicon melt. 
According to order analysis, the strength of natural convection relative to Marangoni convection can be deter-
mined by the parameter Ra1/2/Ma2/3(<1, Ra: Rayleighnumber, Ma: Marangoninumber). In this system, this value 
is small; therefore we ignored the effect of the gravity term in the Navier–Stokes equation. The boundary condi-
tions at the free surface and at the container bottom are expressed by the following equations:

=z d:
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x

T
y

T

=z 0:

= = =
∂
∂

= .u u u T
z

0, 0x y z

For the boundary condition at the free surface, we considered the generation of convection due to the thermal 
Marangoni effect. We also assumed that the shape of the free surface would not change. Solid walls were used for 
the inner wall, outer wall, and bottom surface of the container, and we used a no-slip condition for the velocity. 
We fixed the temperature of the inner wall to be constant and set the outer wall to a temperature higher than that 
of the inner wall. Specifically, we set the temperature of the inner wall to Tc = Tm = 1683 K (Tm: melting point of 
silicon), and we varied the temperature of the outer wall in the range of Th(=ΔT + Tc) = 1684 K to 1697 K. We 
used adiabatic conditions for the upper surface and bottom surface. For the initial conditions, we set the velocity 
of the fluid within the container to 0, and the temperature was homogeneous at a value of 1683 K.

We set the number of grid points to be 81 in the radial direction, 180 in the circumferential direction, and 
21 in the vertical direction. These numbers for the grid are based on the conditions used by Li et al.35, and the 
resolution was sufficient to handle hydrothermal waves for a fluid with a low Prandtl number. We discretized the 
equations with the finite volume method and performed the numerical calculations using OpenFOAM, which 
uses the PISO algorithm. The details of the calculation method have been described in previous research36. The 
simulation code has already been verified, and we verified that there were no problems. The physical values used 
in the calculations were the same as the values used previously, as presented in Tables 1 and 2.
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