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Approaching Higher Dimension 
Imaging Data Using Cluster-Based 
Hierarchical Modeling in patients 
with Heart Failure preserved 
ejection Fraction
Yukari Kobayashi1,2, Maxime tremblay-Gravel1,2, Kalyani A. Boralkar1,2, Xiao Li1, 
tomoko Nishi1,2, Myriam Amsallem1,2, Kegan J. Moneghetti1,2, Sara Bouajila1,2, Mona selej3, 
Mehmet O. ozen2,4, Utkan Demirci  2,4, Euan Ashley  1,2, Matthew Wheeler1,2, 
Kirk U. Knowlton5, Tatiana Kouznetsova6 & Francois Haddad1,2

Heart failure with preserved ejection fraction (HFpEF) is a major cause of morbidity and mortality, 
accounting for the majority of heart failure (HF) hospitalization. To identify the most complementary 
predictors of mortality among clinical, laboratory and echocardiographic data, we used cluster 
based hierarchical modeling. Using Stanford Translational Research Database, we identified patients 
hospitalized with HFpEF between 2005 and 2016 in whom echocardiogram and NT-proBNP were 
both available at the time of admission. Comprehensive echocardiographic assessment including left 
ventricular longitudinal strain (LVLS), right ventricular function and right ventricular systolic pressure 
(RVSP) was performed. The outcome was defined as all-cause mortality. Among patients identified, 
186 patients with complete echocardiographic assessment were included in the analysis. The cohort 
included 58% female, with a mean age of 78.7 ± 13.5 years, LVLS of −13.3 ± 2.5%, an estimated 
RVSP of 38 ± 13 mmHg. Unsupervised cluster analyses identified six clusters including ventricular 
systolic-function cluster, diastolic-hemodynamic cluster, end-organ function cluster, vital-sign cluster, 
complete blood count and sodium clusters. Using a stepwise hierarchical selection from each cluster, we 
identified NT-proBNP (standard hazard ratio [95%CI] = 1.56 [1.17–2.08]) and RVSP (1.37 [1.09–1.78]) as 
independent correlates of outcome. When adding these parameters to the well validated Get with the 
Guideline Heart Failure risk score, the Chi-square was significantly improved (p = 0.01). In conclusion, 
NT-proBNP and RVSP were independently predictive in HFpEF among clinical, imaging, and biomarker 
parameters. Cluster-based hierarchical modeling may help identify the complementally predictive 
parameters in small cohorts with higher dimensional clinical data.

Heart failure (HF) with preserved ejection fraction (HFpEF) is a major cause of morbidity and mortality in 
the aging population, accounting for more than half of HF hospitalization1–4. Patients with HFpEF have a high 
prevalence of comorbidities including systemic hypertension, diabetes mellitus, chronic kidney disease, atrial 
fibrillation as well as sleep-disordered breathing.
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The high mortality rate associated with HFpEF has driven several investigators to focus on identifying the 
best clinical and imaging predictors of outcome. Recent studies demonstrated the prognostic value of RV func-
tion5,6 and especially, Lam et al. showed that elevated right ventricular systolic pressure (RVSP) had a strong 
prognostic value among echocardiographic predictors7. There has also been a recent interest in left ventricular 
(LV) deformation imaging in HFpEF and most studies demonstrated that a significant percentage of patients 
with HFpEF have altered LV longitudinal strain (LVLS). LVLS was reported to be one of the predictors of progno-
sis8–10, however, the independent prognostic value of LVLS in HFpEF remains controversial11. In parallel, several 
validated scores predicting in-hospital mortality have been developed. Among these scores, the Get With The 
Guidelines-Heart Failure (GWTG-HF) risk score was shown to successfully predict in-hospital mortality12,13 as 
well as early post-discharge mortality risk14 based on clinical and biochemical variables. N-terminal pro-B-type 
natriuretic peptide (NT-proBNP) levels have also shown to be incremental to the GWTG-HF risk score to predict 
in-hospital mortality12 or mortality after discharge15.

To date few studies have evaluated as to which extent echocardiography is complementary to clinical and 
laboratory parameters or validated risk scores in patients with HFpEF. In this study, we sought to determine 
this complementarity of these parameters, first by using unsupervised cluster analysis and then hierarchical Cox 
regression modeling based on the identified clusters. We finally sought to evaluate whether the emerging param-
eters are additionally predictive to the GWTG-HF risk score.

Methods
Study design and patient population. Using the Stanford Translational Research Integrated Database 
Environment (STRIDE)16, we identified patients hospitalized for HFpEF (ICD-9 code 428.3) between January 
2005 and December 2016 who had a transthoracic echocardiography and the data of NT-proBNP at the time of 
their hospitalization. STRIDE contains clinical information of pediatric and adult patients cared for at Stanford 
Health Care and Stanford Children’s Health including patients encounters with transcriptions of all inpatient and 
outpatient clinical notes, pathology and radiology reports, medication lists, lab results, and vitals data. This data 
source was accepted under approved Institutional Review Board protocols. Each chart was carefully reviewed 
by two physicians trained in data extraction (FH and KB) to ensure the diagnosis of acute HF according to 
the Framingham criteria17 and preserved LV systolic function defined as LVEF >50% was confirmed by echo-
cardiographic report obtained near admission. Patients were excluded if they had a diagnosis of hypertrophic 
cardiomyopathy, pulmonary arterial hypertension, heart transplantation, pericardial disease, congenital heart 
disease, severe valvular heart disease or prior cardiac surgery. Patients with end-stage renal disease on dialysis, 
cirrhosis or active malignancy were excluded because of their influence on life expectancy. Patients were also 
excluded in the analysis if their LVLS, left atrial volume (LAV), LA strain, right ventricular free-wall longitudinal 
strain (RVLS), right atrial (RA) strain or RVSP was not measurable. We also randomly selected 50 age- and sex-
matched controls from Stanford healthy aging cardiovascular institute database for purposes of comparison of 
specific echocardiographic parameters. This study was approved by the Stanford Institutional Review Board with 
all protocols conducted in accordance with relevant guidelines and regulations. Informed consent was obtained 
from all patients enrolled.

Clinical and laboratory data. For each patient, we collected demographic, vital signs on admission, com-
plete blood count (CBC), comprehensive metabolic panel and NT-proBNP values. NT-proBNP concentrations 
were obtained using Roche Biochemistry analyzer (Roche diagnostics, Mannheim, Germany). Other laboratory 
data at the time of admission included blood urea nitrogen (BUN), sodium, potassium concentration, white 
blood cell count, hemoglobin concentration, platelets count, red cell distribution width (RDW), and mean cor-
puscular volume (MCV). We also calculated the GWTG-HF risk score from a point-score system using age, 
systolic blood pressure, heart rate, black race and chronic obstructive pulmonary disease13.

Echocardiography. Echocardiography was performed using commercially available echocardiographic sys-
tems (Sonos 7500, iE33, and EPIQ 7 C; Philips Medical Imaging, Eindhoven, the Netherlands), according to the 
American Society of Echocardiography guideline recommendations18. Image analyses were performed on Xcelera 
workstation by trained cardiologists from the Biomarker and Imaging Core laboratory at Stanford Cardiovascular 
Institute (YK, MTG). Standard echocardiographic views were obtained in two-dimensional (2D) and color tissue 
Doppler modes. LV end-diastolic volume, end-systolic volume and LV ejection fraction (EF) were calculated 
using Simpson’s method. Transmitral pulsed-wave Doppler velocity and tissue Doppler velocity of the lateral 
mitral annulus were obtained from apical 4-chamber view. LVLS was obtained using Lagrangian strain by manual 
tracing from the apical 4-chamber view. LA volumes were obtained using biplane area-length method and LA 
strain was calculated using Lagrangian strain. RV function was quantified using tricuspid annular plane systolic 
excursion (TAPSE), fractional area change (RVFAC) and RVLS using Lagrangian strain in a similar fashion. Right 
atrial pressure (RAP) was estimated as 3 mmHg if the inferior vena cava (IVC) diameter ≤2.1 cm and collapsed 
>50%, 15 mmHg if the IVC diameter >2.1 cm and collapsed <50%, and 8 mmHg in scenarios in which IVC 
diameter is enlarged or collapse index is sub-optimal otherwise. RVSP was estimated from the sum of the tricus-
pid regurgitation (TR) maximal velocity using the modified Bernoulli equation and estimated RAP. All strains 
were obtained using Lagrangian strain by tracing the myocardium manually and calculated in the following 
formula: 100 × (L1-L0)/L0

19–23. LVLS was obtained with apical 4-chamber view, endo/epicardial circumferential 
strains with the parasternal short-axis view, RVLS with RV focused apical 4-chamber view in end-diastole (L0) 
and end-systole (L1). LA strain and RA strain were obtained with apical 4-chamber view at the time of maximum 
volume (L0) and minimum volume (L1). The intraclass correlation coefficient (ICC) of interobserver variability 
was 0.91 for LVLS, 0.91 for LA strain or 0.86 for RVLS and ICC of intraobserver variability was 0.99 for LVLS, 
0.98 for LA strain, and 0.91 for RVLS in our Stanford Biomarker and Phenotypic Core Laboratory. In case of atrial 
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fibrillation, the values from five cardiac cycles with similar RR interval were averaged. Area and volumes were 
indexed to body surface area.

Outcome. The primary outcome was defined as all-cause mortality. The status was confirmed using chart 
review, care everywhere network (Epic Systems Corporation, Verona WI) or the United States Social Security 
Death Index to ascertain the vital status of each patient as of February 2014; and the time of the event was deter-
mined from whichever was later.

Statistical analyses. Results are expressed as mean ± standard deviation for continuous variables or median 
and interquartile range when not normally distributed, or as the frequency and percentage for categorical var-
iables. To delineate their relationship between parameters, we used unsupervised cluster analysis. Gephi was 
used for network visualization. The nodes are colored based on the modules. The thickness of the edges reflects 
the R-squared between two nodes. This unsupervised cluster analysis was used to guide the stepwise super-
vised analysis. Univariable Cox regression analysis was firstly performed to evaluate the association with the 
outcome for each parameter, then stepwise Cox regression analysis was performed to identify parameters that 
emerge in each cluster. The parameters retained in the previous model in each cluster were used in the final 
analysis. Hazard ratios and 95% confidence intervals were standardized by each standard deviation to compare 
the strength of association with outcome between parameters. LASSO analysis was also performed using the cat-
egorical end-point at 3 years to assess whether a different method yields similar findings24 (glmnet version 2.0–5). 
The predictive value of the model was assessed by the median of the AUROCs (area under the receiver operating 
characteristic) calculated in the test sets. Finally, the complemental value of these parameters to the GWTG-HF 
risk score was evaluated. P values < 0.05 were considered statistically significant. Analyses were performed using 
SPSS version 21 (SPSS Inc, Chicago, Illinois) and glmnet R package (glmnet version 2.0–5). (Full explanation of 
cluster analysis and LASSO analysis are shown in Supplemental Material).

Results
From the STRIDE database, we identified 270 patients with a HFpEF diagnosis whose echocardiographic assess-
ment and NT-proBNP were available at the time of admission. Of these patients, 39 patients were excluded 
because of the other etiologies (n = 20) or unable to access to the images (n = 19). Furthermore, for the study 
purpose of comprehensive echocardiographic assessment, 45 patients were excluded in the analysis because either 
one of RVSP, LVLS, LA strain, RVLS, or RA strain was not obtained due to the quality of tricuspid regurgitation 
signal or poor 2D images (Fig. 1). Finally, a total of 186 patients were included in the study. When comparing 
the patients in whom comprehensive imaging was available from the original cohort, the patients included in the 
analysis did not differ from the original cohort with regards to age (79 ± 13 vs. 78 ± 15, p = 0.42), sex (58% vs. 
60% female, p = 0.56), comorbidity of diabetes mellitus (34% vs. 36%, p = 0.62), a history of coronary artery dis-
ease (60% vs. 61%, p = 0.92), the presence of atrial fibrillation/flutter (31% vs. 29%, p = 0.75) or overall mortality 
(32% vs. 33%, p = 0.92). Moreover, there was no significant difference in the GWTG-HF risk score (41.3 ± 7.3 vs. 
41.8 ± 7.7, p = 0.55).

Figure 1. Flow chart of patients in the study. Patients were identified using Stanford Translational Research 
Integrated Database Environment (STRIDE). Manual curation of the chart was performed to confirm a 
diagnosis of heart failure for hospitalization. Echocardiographic images of each patient were reviewed to 
exclude other etiologies and comprehensive echocardiographic assessment was performed. If either one of the 
echocardiographic parameters of LVLS, LAV, LAS, RVLS, RAS or RVSP was not measurable due to the poor 2D 
image quality or the quality of tricuspid regurgitation signal. LAV, left atrial volume; LAS, left atrial strain; LVLS, 
left ventricular longitudinal strain; RAS, right atrial strain; RVLS, right ventricular longitudinal strain; RVSP, 
right ventricular systolic pressure.
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Table 1 shows the baseline characteristics of patients with HFpEF and controls. The mean age of patients 
with HFpEF was 78.7 ± 13.5 years with a majority of female patients (58%). Of 186 patients, 58 patients (31%) 
presented with atrial fibrillation or flutter when echocardiographic assessment was performed. Table 2 shows the 
echocardiographic assessment in patients with HFpEF. While all patients presented LVEF > 50%, only 24 patients 
(13%) presented with absolute LVLS > 16%. We used the cut-off value in LVLS as 16% in absolute value, based on 
previous literature where normal LVGLS ranged from 15.9 to 22.1% in absolute value9,25. LV hypertrophy defined 
as LVMI > 95 g/m2 for women and LVMI > 115 g/m2 for men was observed in 43 patients (23%) and pulmonary 
hypertension defined by RVSP ≥ 40 mmHg was observed in 75 patients (40%) (Fig. 2A–C). The comparison of 
these echocardiographic parameters between the patients with HFpEF and age- and sex-matched controls is 

Parameters Controls N = 50 HFpEF N = 186 P value

Age (years) 77.6 ± 6.4 78.7 ± 13.5 0.57

Male, n (%) 24 (48) 80 (43) 0.42

BSA (m2) 1.76 ± 0.32 1.88 ± 0.31 0.01

BMI (kg/m2) 23.3 ± 4.2 28.3 ± 7.7 <0.001

Heart rate (bpm) 58 ± 19 80 ± 18 <0.001

Systolic blood pressure (mmHg) 123 ± 18 135 ± 25 <0.001

Diastolic blood pressure (mmHg) 72 ± 11 68 ± 17 0.07

Atrial fibrillation/flutter, n (%) 0 58 (31) <0.001

Hypertension, n (%) 14 (28) 186 (100) <0.001

Diabetes mellitus, n (%) 0 62 (33) <0.001

History of coronary artery disease, n (%) 0 112 (60) <0.001

Medication

Beta blocker, n (%) 1 (2) 108 (58) <0.001

ACE-I/ARB, n (%) 10 (20) 73 (39) 0.02

Calcium channel blocker, n (%) 4 (8) 51 (27) 0.004

Diuretics, n (%) 6 (12) 117 (63) <0.001

Spironolactone, n (%) 0 9 (5) 0.21

NT-proBNP (pg/dl) N.A. 2151 (1075–4752) N.A.

Table 1. Clinical characteristics. ACE-I; angiotensin converting enzyme inhibitor, ARB; angiotensin II receptor 
blocker, BMI; body mass index, BSA; body surface area.

Parameters N = 186

Interventricular septal thickness (cm) 1.1 ± 0.2

Posterior wall thickness (cm) 1.0 ± 0.2

LV internal diameter (cm) 4.5 ± 0.7

Relative wall thickness 0.47 ± 0.11

LV mass index (g/m2) 86.1 ± 23.3

LVEF (%) 62 ± 7

LVLS (%) −13.2 ± 2.6

Epicardial circumferential strain (%) −9.2 ± 2.9

Endocardial circumferential strain (%) −31.3 ± 8.8

Lateral e’ (cm/s) 8.3 ± 2.9

Lateral E/e’ 11.9 ± 5.2

Maximal LA volume index (ml/m2) 37.2 ± 16.0

LA emptying fraction (%) 40.4 ± 13.0

LA strain (%) −15.8 ± 6.0

TAPSE (mm) 19.8 ± 6.0

RVFAC (%) 38.1 ± 6.6

RVLS (%) −23.0 ± 4.9

RA emptying fraction (%) 39.9 ± 13.9

RA strain (%) −19.4 ± 7.2

Maximal RA volume index (ml/m2) 32.1 ± 19.3

Maximal RA area index (cm2/m2) 10.6 ± 3.9

Estimated RVSP (mmHg) 38.5 ± 12.8

Table 2. Echocardiographic measurements. LA; left atrial, LVEF; left ventricular ejection fraction, LVLS; 
left ventricular longitudinal strain, NT-proBNP; N-terminal pro B-type natriuretic peptide, RA; right atrial, 
RVFAC; right ventricular fractional area change, RVSP; right ventricular systolic pressure.
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shown in Supplemental Fig. 1. Figure 2D presents the Venn diagram demonstrating the overlap between the 
number of patients with LV hypertrophy, impaired LVLS, and pulmonary hypertension. These features were 
selected because of the importance of RVSP on outcome7 as well as the key characteristics of LV hypertrophy and 
decreased LVLS in patients with HFpEF. RV dysfunction based on TAPSE < 1.6 cm, RVFAC < 35% or absolute 
RVLS < 20% was present in 51 (27%), 45 (24%), or 47 patients (25%), respectively. We used the cut-off value in 
RVLS as 20% in absolute value, based on 95% lower limit of controls reported26.

Unsupervised: Clustering and network analysis. As shown in the cluster dendrogram of Fig. 3, we 
identified six clusters, each of which highlights parameters that are more closely associated with each other. These 
include the end-organ function cluster (blue) including NT-proBNP, creatinine, blood urea nitrogen, RDW and 
Hb; the ventricular systolic function cluster (red) including LVLS and RV functional parameters; the diastolic 
hemodynamic cluster (turquoise) including RVSP, right atrial pressure, and atrial size and strain metrics; the vital 
sign cluster; the CBC based cluster and the sodium based cluster.

Figure 4 shows the correlation and connection network between those parameters. NT-proBNP was centered 
being strongly connected with right ventricular function parameters while its connection with RVSP or LVLS 
was weak.

Supervised hierarchical outcome analysis: cox regression analysis and LASSO analysis. During 
a median (IQR) follow-up of 3.3 (1.1–5.7) years, 60 patients (32%) died, among whom 7 patients (3.8%) died dur-
ing hospitalization. Mortality rates were 17% at 1-year, 25% at 3-years and 47% at 5-years.

Table 3 presents the cluster based hierarchical modeling; first on the univariate Cox regression analysis fol-
lowed by multivariable intra and inter cluster analysis. Among the stronger independent factors in each cluster, 
we identified NT-proBNP (standardized hazard ratio (SHR) [95%CI] = 1.58 [1.20–2.09], p = 0.001) as an inde-
pendent associate in the end-organ function cluster, RVFAC (1.38 [1.09–1.74], p = 0.008) as an independent asso-
ciate in ventricular systolic cluster, and age (1.38 [1.00–1.88], p = 0.05), RA strain (1.30 [1.00–1.69], p = 0.049) 
and RVSP (1.44 [1.12–1.86], p = 0.005) as independent associates in diastolic hemodynamic cluster. The parame-
ters in the other clusters were not significantly associated with the outcome in our cohort. The final multivariable 
analysis demonstrated that NT-proBNP (1.56 [1.17–2.08], p = 0.003) and RVSP (1.37 [1.09–1.73], p = 0.008) were 
independent associates with the outcome. The above results were further supported by Kaplan-Meier curve anal-
ysis which showed NT-proBNP (Log-rank p = 0.03) and RVSP (Log-rank p = 0.02) differentiated the outcome 
according to their tertile (Supplemental Fig. 2). LASSO analysis also found NT-proBNP and RVSP as associates 
with outcome (AUROC = 0.67).

Figure 2. The prevalence of cardiac impairment in patients with HFPEF. The distribution of LV mass index 
(A), LVLS (B) and RVSP (C). The panel D presents the venn diagram demonstrating the overlap between LV 
hypertrophy (threshold of LV mass index 115 g/m2 for male and 95 g/m2 for female), impaired LVLS (threshold 
of LVLS −16%), and pulmonary hypertension (threshold RVSP of 40 mmHg) features. LVLS, left ventricular 
longitudinal strain; RVSP, right ventricular systolic pressure.
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Analyzing the value of right heart metrics-RVSP ratios.  Due to the association with outcome of 
RVSP and right heart metrics in our cohort and the recent reports of the importance of the relationship between 
RV contractile function and RVSP or its coupling to pulmonary circulation in heart failure27,28, we also tested 
whether TAPSE/RVSP ratio, RVFAC/RVSP ratio, RVLS/RVSP ratio or RAS/RVSP ratios would carry more predic-
tive value when compared to RVSP alone. Cox regression analysis demonstrated that all of those ratios predicted 
outcome comparably or even better than RVSP alone (SHR [95%CI] = 1.57 [1.15–2.14] per 1 SD worsening, 

Figure 3. Cluster Dendrogram of clinical, laboratory and echocardiographic echocardiographic features. 
Dynamic tree cut algorithm detected six clusters of closely associated features shown in blue, brown, green, 
red, yellow, and turquoise. AF; atrial fibrillation, AFL; atrial flutter, BMI; body mass index, BUN; blood 
urea nitrogen, Cr; creatinine, DBP; diastolic blood pressure, eGFR; estimate glomerular filtration rate, Hb; 
hemoglobin, HR; heart rate, IVSd; diastolic interventricular septum, LAEF; left atrial emptying fraction, 
LAS; left atrial strain, LAVI; left atrial volume index, LVDd; diastolic left ventricular dimension, LVEF; left 
ventricular ejection fraction, LVLS; left ventricular longitudinal strain, LVMI; left ventricular mass index, MCV; 
mean corpuscular volume, Na; sodium, NLR; neutrophil-to-lymphocyte ratio, NT-proBNP; N-terminal pro 
B-type natriuretic peptide, Plt; platelet, PWd; diastolic posterior wall, RAAI; right atrial area index, RAEF; right 
atrial emptying fraction, RAP; right atrial pressure, RAS; right atrial strain, RAVI; right atrial volume index, 
RDW; red cell distribution width, RVFAC; right ventricular fractional area change, RVLS; right ventricular 
longitudinal strain, RVSP; right ventricular systolic pressure, RWT; relative wall thickness, SBP; systolic blood 
pressure, SVI; stroke volume index, TAPSE; tricuspid annular plane systolic excursion, WBC; white blood cell.

Figure 4. Network analysis of different clinical, laboratory and echocardiographic features. The nodes are 
colored based on the clusters in Fig. 3. The thickness of the edges reflects the topological overlap between two 
nodes. Abbreviation; same as Fig. 3.
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p = 0.004 for TAPSE/RVSP ratio, 1.66 [1.20–2.29] per 1 SD worsening, p = 0.002 for RVFAC/RVSP ratio, 1.57 
[1.14–2.16] per 1 SD worsening, p < 0.001 for RVLS/RVSP ratio, 1.81 [1.30–2.53] per 1 SD worsening, p < 0.001 
for RAS/RVSP ratio and 1.41 [1.12–1.76] per 1 SD worsening, p = 0.003 for RVSP alone).

Complementary value to validated clinical score. The mean value of the GWTG-HF risk score was 
41.3 ± 7.3 (Fig. 5A) and the score predicted long-term outcome in our cohort (SHR [95%CI] = 1.73 [1.36–2.22], 
p < 0.001). The chi-square in the models to predict outcome using the GWTG-HF risk score only, the GWTG-HF 
risk score and NT-proBNP, and the GWTG-HF risk score, NT-proBNP, and RVSP significantly improved adding 
these two parameters to the GWTG-HF risk score (Fig. 5B).

Discussion
In this study, we used unsupervised cluster analysis method to guide hierarchical supervised outcome modeling in 
patients with acute HFpEF. This method allowed to identify the most predictive parameters among closely related 
metrics. NT-proBNP which was centrally connected among echocardiographic parameters and biomarkers was 
strongly prognostic for patients with HFpEF complementary with RVSP which captures hemodynamic severity.

HFpEF is a major cause of morbidity and mortality accounting for up to half patients with HF and the survival 
of patients with HFpEF is similar to that of patients with reduced ejection fraction1,2. Consistent with previous 
studies, patients in our study had a high prevalence of multimorbidity and the mortality rate was high, approach-
ing 47% at 5-years.

With the emergence of higher dimensional imaging data in HF outcome analysis, understanding the com-
plementarity may help better selected parameters for building multivariable modeling. This is a novel approach 
which is important especially for small cohorts where overfitting may be a major issue. Unsupervised cluster 
analysis is the task of grouping a set of parameters according to similarities and has been often used to display the 
genome-wide expression patterns. Since echocardiographic parameters relate with each other although the num-
ber is relatively small compared with the genes, this analysis may allow pattern classification that can then guide 
hierarchical modeling by analyzing the complementarity present both intra and inter clusters.

Our study identified the six clusters which capture key physiological domains in HFpEF. Among them, param-
eters in the end-organ function cluster, ventricular systolic function cluster, and diastolic hemodynamic cluster 
showed the relation with outcome. In the end-organ cluster, NT-proBNP and renal function emerged as the two 
strongest factors associated with outcome. Plasma levels of NT-proBNP are well-known biomarkers for neuro-
hormonal activity in patients with HF and can be reliably used for diagnosis and the risk stratification in patients 
with HF, regardless of the LVEF29,30. Renal function has been also reported to be associated with adverse outcome 
in patients with acute and chronic heart failure31,32.

In the ventricular systolic function cluster, both LVLS and metrics of right heart function were associated with 
outcome. In patients with HFpEF, most patients presented with reduced LVLS, which has been controversial for 

SHR 95% CI P SHR 95% CI P SHR 95% CI P

Univariable Multivariable in cluster Overall multivariable

End-organ function cluster

Log NT-pro BNP per 1SD increase 1.58 1.20–2.09 0.001 1.58 1.20–2.09 0.001 1.56 1.17–2.08 0.003

BUN per 1SD increase 1.26 1.02–1.55 0.004

Hb per 1SD increase 1.18 0.92–1.51 0.18

RDW per 1SD increase 1.14 0.94–1.39 0.18

Creatinine per 1SD decrease 1.04 0.82–1.34 0.74

Ventricular systolic cluster

RVFAC per 1SD decrease 1.38 1.09–1.74 0.008 1.38 1.09–1.74 0.008

LVLS per 1SD worsening 1.34 1.05–1.73 0.02

TAPSE per 1SD decrease 1.30 0.99–1.70 0.06

RVLS per 1SD worsening 1.28 0.99–1.65 0.06

Diastolic hemodynamic cluster

Age per 1SD increase 1.47 1.07–2.01 0.02 1.38 1.00–1.88 0.050

RAS per 1SD worsening 1.41 1.01–1.82 0.009 1.30 1.00–1.69 0.049

RVSP per 1SD increase 1.41 1.12–1.76 0.003 1.44 1.12–1.86 0.005 1.37 1.09–1.73 0.008

LAS per 1SD worsening 1.38 1.05–1.81 0.02

LAEF per 1SD worsening 1.37 1.05–1.77 0.02

BMI per 1SD increase 1.34 0.99–1.80 0.05

Table 3. Parameters are listed in descending order of standard hazard ratio within each cluster. If the number 
of parameters in the cluster is more than 6, only 6 parameters with higher standardized hazard ratio were 
listed in the Table. The parameters in the other clusters were not listed because all of the parameters were not 
significantly associated with the outcome. BMI; body mass index, LAS; left atrial strain, LAVI; left atrial volume 
index, LVLS; left ventricular longitudinal strain, NT-proBNP; N-terminal pro B-type natriuretic peptide, RAS; 
right atrial strain, RDW; red cell distribution width, RVFAC; right ventricular fractional area change, RVLS; 
right ventricular longitudinal strain, RVSP; right ventricular systolic pressure, SHR; standardized hazard ratio, 
TAPSE; tricuspid annular plane systolic excursion.
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predicting outcome8–11,33,34. In our study, LVLS was not retained in the multivariable model among the parameters 
in the ventricular systolic function cluster, probably because of its moderate correlation with RV function.

In the diastolic hemodynamic cluster, RVSP and RAS were independent predictors of outcome. RVSP has 
reported to be predictive in patients with HFpEF by Lam et al., who investigated 244 patients with HFpEF 
in their first population-based study7. They showed that patients with pulmonary artery systolic pressure 
(PASP) ≥ 48 mmHg had worse mortality than the patients with PASP < 48 mmHg for long-term follow-up. One of 
the interesting results in this cluster was that RAS was also strongly predictive for outcome. Given that the normal 
atrial function compensates to maintain ventricular filling with greater atrial compliance and atrial pump func-
tion, patients with reduced RA function are more likely to experience overt right heart failure, leading to worse 
outcome. This might be also supported by the results that RAS/RVSP ratio presented best standardized hazard 
ratio beyond RVSP alone among right heart function to RVSP ratios. Fewer researches have been performed how 
to assess RA function accurately by echocardiography, therefore, future studies are warranted to prove this finding.

While the method presented may be well suited to select the most predictive parameters, we may not validate 
previously identified predictors. As such, to the best of our knowledge, this study is the first to test whether RVSP 
and NT-proBNP would be incremental to the validated GWTG-HF risk score. This proved to improve the risk 
stratification for patients hospitalized with HFpEF beyond biomarker data alone, echocardiographic parameters 
alone, or clinical data alone. Since the GWTG-HF risk score does not include the information of those parame-
ters, this study highlights the importance of combining hemodynamic severity and cardiac biomarker with the 
GWTG-HF risk score.

There are several limitations in this study. First, our sample size was relatively small and nearly 30% of patients 
had to be excluded because of incomplete data, as the study goal required comprehensive echocardiographic 
parameters. However, the baseline characteristics of patients excluded did not differ from the original cohort. This 
point is a challenge in usual clinical setting as imaging quality may be sub-optimal in the acute setting. Second, 
the RVSP was only estimated using the continuous Doppler measurements of the TR signal, without invasive con-
firmation. However, the reliability of this estimation has previously been reported when attention is given35 and 
each signal was reanalyzed with attention to signal quality. Third, we did not include E/e’ in this study as it was not 
systematically recorded in many of the patients whose echocardiography was performed before 2008. However, it 
was not significantly associated with the outcome in patients with E/e’ available in our study, therefore, we did not 
use E/e’ for further analysis. Furthermore, even in the patients with e’, it was acquired from only lateral annulus. 
More precise assessment will be needed in future studies. Fourth, we did not include cardiovascular death or 
rehospitalization as a secondary end-point since patients were followed at different institutions during the study 
period or we only know the vital status from the United States Social Security Death Index, leading to incomplete 
data collection. Finally, this is a single-center observation, therefore, further examination across multi-centers 
would be warranted to validate our present findings.

Conclusion
Cluster-based hierarchical modeling may help understand higher dimensional data in small cohorts. This study 
identified the two most predictive factors in HFpEF among clinical, imaging, and biomarker parameters and 
demonstrates their potential incremental value to well validated GWTG-HF risk score.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Figure 5. The GWTG-HF risk score and its complementarity to RVSP and NT-proBNP. (A) Distribution of 
GWTG-HF risk score. (B) Chi-square comparison between the models with the GWTG-HF risk score alone, 
adding NT-proBNP, and further adding RVSP.
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