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Application of Chaotic Laws to 
Improve Haplotype Assembly Using 
Chaos Game Representation
Mohammad Hossein olyaee1, Alireza Khanteymoori1 & Khosrow Khalifeh  2

sequence data are deposited in the form of unphased genotypes and it is not possible to directly 
identify the location of a particular allele on a specific parental chromosome or haplotype. This study 
employed nonlinear time series modeling approaches to analyze the haplotype sequences obtained 
from the NGS sequencing method. To evaluate the chaotic behavior of haplotypes, we analyzed 
their whole sequences, as well as several subsequences from distinct haplotypes, in terms of the sNp 
distribution on their chromosomes. This analysis utilized chaos game representation (CGR) followed 
by the application of two different scaling methods. It was found that chaotic behavior clearly exists 
in most haplotype subsequences. For testing the applicability of the proposed model, the present 
research determined the alleles in gap positions and positions with low coverage by using chromosome 
subsequences in which 10% of each subsequence’s alleles are replaced by gaps. After conversion of the 
subsequences’ CGR into the coordinate series, a Local Projection (LP) method predicted the measure of 
ambiguous positions in the coordinate series. It was discovered that the average reconstruction rate for 
all input data is more than 97%, demonstrating that applying this knowledge can effectively improve 
the reconstruction rate of given haplotypes.

Deposited in bioinformatics databases is a wide range of available sequence data obtained from different high 
throughput sequencing tools. This wealth of data, when accompanied by advances in computational methods, has 
revolutionized the study of genome variation under the new emerging field of systems biology.

More than 99% of human genome is identical among individuals as well as different ethnic groups. In other 
words, less than 1% of genetic differences are responsible for all of the observed variations among people all over 
the world1.

Therefore, specifying these differences in genetic material and evaluating the distribution on the DNA 
sequences of different human populations may have important implications in solving various problems in biol-
ogy and medicine. In line with this assumption, two leading projects, the international haplotype map (Hapmap)2 
and 1,000 genomes3, have been pursued to characterize common patterns of human genetic variations.

Single nucleotide polymorphisms (SNPs) are the most common types of genetic variations in the human 
genome. SNP refers to the occurrence of different single nucleotides at specific positions in the human genome, 
which resulted from mutations followed by natural selection during the evolutionary time scale. The possible 
nucleotides define alleles for that position4. A SNP sequence along each chromosome is known as a haplotype. 
Both SNPs and haplotypes provide valuable information for assessing genetic variations in a systematic man-
ner. Different research fields, such as disease susceptibility, drug design, and genome-wide association studies 
(GWASs)5, can greatly benefit from this data.

The distribution of SNPs across genome elements has been investigated by a multitude of studies. These have 
illustrated that SNPs tend to be clustered across the genome elements in a deterministic manner in which the 
position of the each mutation is usually affected by its neighbors and the sequences of SNPs are often highly cor-
related with each other6–8. Based on this finding, several studies have proposed models to describe how SNPs clus-
tered along the genome sequence lead to the construction of haplotypes9–11. In order to identify genes involved 
in genetic diseases, massive amounts of SNP and haplotype data were utilized by GWASs to detect highly sta-
tistically significant correlations between SNPs on the genetic materials and various numbers of phenotypes12. 
(https://ghr.nlm.nih.gov/primer/genomicresearch/gwastudies). These are essential for the prediction, diagnosis, 
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prevention or medical therapy of diseases by contextualizing reference big data and provide the basic elements 
of modern personalized medicine13–16. Accordingly, identifying haplotypes, particularly when input fragments 
contain large sections of gaps without enough coverage is critical. In order to handle reading errors, low coverage, 
and large number of input fragment gaps, several fragment assembly algorithms have been proposed to recon-
struct the haplotypes from fragments of homologous human chromosomes from a single individual17–24. The 
identification of correlation between SNPs is the key challenge of recognizing haplotype sequences. Chaos theory 
provides a powerful tool for discriminating between random and deterministic processes if a suitable phase space 
embedding can be found. Indeed, several studies have shown that the underlying information structure can be 
revealed by chaos theory without the reliance on the respective equations of systems dynamics25. Based on this 
assumption, Chaos theory has been increasingly applied in Life sciences for understanding the complexity of 
biological systems26. For example, many attempts have been made to explain the chaotic behavior of biological 
sequences27–32. Moreover, chaotic view point has been applied to evaluate biological signals such as electroen-
cephalogram (EEG) signals33–35.

Mapping protein sequences in 2D space with chaos game representation (CGR) has shown that the struc-
tural classes of proteins can be distinguished by comparing their chaotic behavior36. CGR is an iterative mapping 
algorithm which was initially developed by Jeffrey37 for visualizing genomic sequences as chaotic systems38. This 
method can transform an input one dimensional biological sequence into an intuitive two dimensional picture39.

This study utilized nonlinear chaotic analysis with a surrogate data test and multi-fractal analysis to determine 
whether haplotypes can be detected as non-random SNP sequences. Also NA12878 dataset was used in binary 
form containing haplotype sequences of all human chromosomes.

Since SNPs defining haplotypes are highly correlated with each other, several subsequences are extracted 
from each haplotype sequence and each haplotype is locally evaluated. After the CGR method transformed each 
subsequence to a line, the corresponding coordinate series was extracted and its chaotic behavior was evalu-
ated by a surrogate test. For more detailed assessment, a multi-fractal spectrum of the sequences was also com-
puted. The resulting data confirmed that haplotype sequences of representative chromosomes originate from a 
non-stochastic process involving the neighbor effect of its constituents.

In order to test the ability of the proposed model to accurately manipulate haplotype sequences, single indi-
vidual haplotype (SIH) reconstruction as a complicated task in computational biology was taken into account and 
the knowledge of chaotic behavior was utilized to improve the rate of haplotype reconstruction. The main con-
cern of SIH is the reconstruction of haplotypes from several input fragments originating from a given sequencing 
method. As mentioned earlier, sequencing errors and missing information (gaps) are the main challenges in 
dealing with this problem. Existing methods suffer from huge numbers of gaps as these lead to positions with low 
coverage and thus low confidence in attempts to identify alleles in such areas4. Here, the current work mapped 
each haplotype by CGR and extracted a coordinate series in the same way as previously described. The Local 
Projection (LP) method then locally estimated the trajectory in the neighborhood of each ambiguous point and, 
finally, each ambiguous point was determined by a projection to the resultant curve. The experimental results 
revealed that utilizing the knowledge of chaotic behavior can help improve the reconstruction rate and also play 
a complementary role in the existing methods.

Materials and Methods
In order to provide a comprehensive analysis of biological sequences, the current study applied a five-step rule, 
as proposed by Chou40, in the following order: (a) provide a valid dataset to evaluate the hypothesis; (b) express 
biological sequences with appropriate mathematical notations while preserving all of their hidden informa-
tion; (c) explain the proposed method exactly; (d) evaluate the final results; and (e) provide the source code of 
implementations.

Materials. The current work’s dataset included the HapMap NA12878 Whole-Genome Sequence (WGS) 
sample for a European (i.e., CEU) female individual, also known as HG001, which is a well-known reference 
genome dataset containing haplotype sequences of all human chromosomes41,42. The reference haplotypes were 
the trio-phased variant calls from the GATK resource bundle43. They were produced by a fosmid-based technol-
ogy from the HapMap sample NA12878 and filtered in 1,252,769 positions that were also covered by fragments 
of the NA12878 dataset.

Chaos game representation. CGR is a well-known algorithm which iteratively maps an input sequence 
into 2D space. This mapping leads to visualization of the input sequence in a picture. Furthermore, this procedure 
can reveal the hidden patterns of subsequences28.

For sequences with four alphabets, such as DNA, the final picture takes on a square format. Each vertex equals 
one nucleotide, i.e. A, T, C, and G. The sequence is mapped in the area of the square with a unit length such that 
each nucleotide base is plotted as a point. The first point is plotted at the center of the square. Next, the first base 
is placed halfway between the center of the square and the vertex which corresponds to the first base. As seen 
in the following formula, the coordinate of the ith base (bi) is placed halfway between the (i − 1)th point and the 
respective vertex (vi).

= . × +−b b v a0 5 ( ) (1)i i i1

The plot is known as the CGR of the input sequence.

Analysis of nonlinear time series. Suppose Xt is a scalar time series where t = 1, 2,…, N. If this time series 
is observed from a deterministic phenomenon perspective, it can be projected into a low dimensional state space 
called phase space. If = …τ τ+ + −Y x x x{ , , , }t t t t m( 1)  is Xt in the phase space, then the phase space can be recon-
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structed according to Takens’ embedding theorem44. For this purpose, parameters τ and m, as the time delay and 
embedding dimension respectively, should be determined. Dimension m completely demonstrates the object and 
its topological features. There are several approaches, such as Average Mutual Information (AMI)45 and False 
Nearest Neighbor (FNN)46, which heuristically estimate phase space parameters based on the available data.

Lyapunov exponent. Sensitive dependence on initial conditions is one of the main properties of chaotic 
systems. For an m dimensional chaotic system, the Lyapunov exponent (λ) is a spectrum containing m real 
numbers which quantifies sensitivity to initial conditions. It should be noted that the sign of its largest measure is 
positive for chaotic systems and its quantity indicates the extent of the chaotic system’s predictability.

Suppose Y(0) and Y (0)  are two initial neighbor points in phase space, in which − =Y Y(0) (0)  . By the 
evolution of time, the points are separated and the average of this separation, equaling λmax, is obtained according 
to the following equation:



λ =




− 

→∞

→ t
Y t Y tlim lim 1 ln ( ) ( )

(2)max t
0

Although calculating λ from experimental data is a difficult task, several methods have been proposed to 
determine the largest Lyapunov exponent47–50. In this study, the Eckmann’s method51 was chosen because it is one 
of the most practical approaches for determining the Lyapunov exponent from the experimental data52. The first 
step involves mapping Xt as a scalar time series to = …τ τ+ + −Y x x x{ , , , }t t t t m( 1)  by reconstructing the phase space. 
Suppose Yj and τ+Yj 2

 are two points in the phase space such that τ+aYj 2
 is the evolution of Yj which has been pro-

vided by a rule or map as below:

= τ+F Y Y( ) (3)j j 2

In the above relation, τ2 is the iteration step which can be selected independently from τ. In the next step, for 
each point Yj, all of its neighbors is found. Suppose Y j

r is the rth nearest neighbor of Yj, calculating the Lyapunov 
exponent involves determining D F Y( )j  which maps all neighborhoods of vectors −Y Yj

r
j to −τ τ+ +Y Yj

r
j2 2

. It 
should be noted that D F Y( )j  is the m × m Jacobian matrix of F at Yj.

The Lyapunov exponent is obtained by calculating the eigenvalues of the matrix ( ′D F D F)K K where D F K is 
computed as below:

= . − …D F D F K D F K D F( ) ( 1) (1) (4)K

where K is an arbitrary integer of evaluation points, and =D F K D F Y( ) ( )K .

Correlation dimension method. Suppose X is a chaotic time series whose attractor has been reconstructed 
in phase space. The correlation dimension method is one of the most fundamental approaches for studying cha-
otic time series, by which its measure describes the complexity of the attractor53. The correlation dimension can 
be expressed by Equation (5):

∑=
−

− −= ( )C r
N N

H r Y Y( ) 2
( )( 1) (5)i j

N
i j, 1

where N is the number of m-dimensional points on the reconstructed space, Yi is the delay vector, r is a neighbor-
hood, and H is the Heaviside step function. C(r) is computed for a range of neighborhood sizes r and a range of 
embedding dimensions m. The next step plots the slopes of C(r) against r on a log-linear plot. For each embedding 
dimension, there may be a specific curve. If these curves saturate on a common plateau, their y-value is a measure 
of the correlation dimension. The following describes the relationship between r and C(r):

α∝C r r( ) (6)D2

where α is a constant value and D2 is the correlation dimension given by Equation (7):

=
→

D C r
r

lim log ( )
log (7)r

2
0

As seen in the above formula, D2 is estimated based on the linear region, which is found between the depop-
ulated and saturated regions. It should be noted that the depopulated region refers to the area of the plot with no 
pairs of points. The saturated region includes a large value of r where C(r) reaches a constant value.

It should be emphasized that the correlation dimension is suitable for situations in which the chaotic behavior 
of a given system is known. In other words, the correlation dimension is unable to distinguish between the sto-
chastic and deterministic processes.

Surrogate data test. Surrogate data test is a Monte Carlo-based algorithm which can detect the chaotic 
behavior of an existing time series. This test supposes that the given time series is random and is provided by a 
stochastic process. Then, an arbitrary amount of surrogate data is generated. These data are random but preserve 
the statistical properties of the original data. The test starts with the hypothesis that the original time series is 
random. Next, a method for nonlinear time series analysis is chosen, such as that of extracting a correlation 
dimension, and this measure is computed for the original and surrogate time series. If the results for the original 
time series are completely different with those for the surrogate time series, then it can be concluded that the 
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hypothesis is not true. In other words, the original time series is related to a deterministic process. It is worth 
mentioning that the generated surrogate data cover most of the subset of the stochastic process class.

There are several ways to generate surrogate data, the most important of which consists of the following steps. 
First, Fourier transform converts the original time series to the frequency domain. Then, each element is changed 
by multiplication to a random phase with a unit magnitude. The resulting data are transformed back by inverse 
Fourier transform and, finally, randomized data with the same power, known as surrogate data, are generated.

Multi-fractal analysis. Multi-fractal refers to elements composed of several simple fractal objects. Fractal 
dimension cannot describe these objects’ dynamic behavior. Instead, a continuous spectrum, namely the gener-
alized fractal dimension, was developed54. When the attractor of a given time series is plotted in a phase space, 
this time series reveals chaotic behavior when the attractor is fractal or multi-fractal. Accordingly, multi-fractal 
analysis, as well as the surrogate data test, can help reveal the chaotic features of a given object. Up until now, 
several approaches have been proposed for implementing multi-fractal analysis. Fixed size box-counting is one 
of the most popular methods employed for solving various problems. As expressed in the following relationship, 
the surface of a given object is covered by several identical size ε boxes. μ is an arbitrary function which calculates 
the density of points (B) for each of the boxes. The partition sum of all non-empty boxes can then be calculated 
according to Equation (8):

∑ μ= ∈ε μ ≠Z q B q R( ) [ ( )] (8)B
q

( )

In the above relationship, q can assume any real value for discriminating the sparse from the dense regions. 
Equation (9) calculates the mass exponent:

τ
ε

= ε
ε

→q Z q( ) lim ln ( )
ln (9)0

Finally, the generalized fractal dimensions are defined by the following relationships:

τ
=

−
≠D q

q
q( )

( 1)
, for 1

(10)q

μ μ
ε

= ∑ =ε→D B Blim ( )ln ( )
ln

, for q 1 (11)q 0

f(α) spectrum is used to evaluate the multi-fractal behavior of the data. Equation (12) expresses this measure:

α α τ= −f q q q( ) ( ) ( ) (12)

Here, α(q) is the Lipschitz-Holder exponent which determines the singularities of a measure. This measure is 
related to τ(q) and is given by the following relationship:

α τ=q d
dq

q( ) ( )
(13)

It should be noted that f(α) can determine the strength of multi-fractality, such that a narrower spectrum 
demonstrates weak multi-fractal behavior and a broader spectrum indicates stronger multi-fractality behavior.

Results and Discussions
Extracting subsequences. The analysis was performed on the full length sequences of distinctive hap-
lotypes as well as the subsequences of haplotypes, as described below. Since the overall results of the full length 
analysis indicated that these sequences did not exhibit chaotic behavior, a detailed analysis of their subsequences 
is provided here.

As shown in Fig. 1, a number of SNPs, whose distances were less than predefined threshold r, constructed 
subsequence Si. Since the extracted subsequences should have had the minimum data length required for chaos 
analysis, the present study assumed r equals 30,000 and selected subsequences whose lengths were greater than 
Thr (800) for further analysis.

By applying these cut-offs, different numbers of subsequences were extracted for each chromosome. Table 1 
presents the total number of subsequences and those with lengths greater than the threshold value.

Chaos game representation of haplotype sequences. CGR is an iterative mapping algorithm which 
can provide a visualize form for a biological sequence. Detailed examination of the obtained picture can reveal 
the chaotic behavior of a system in terms of the local patterns of the sequence38. In order to quantitatively assess 
the output of CGR, a coordinate series is extracted containing all positions of the CGR picture. A typical CGR 

Figure 1. S1, S2, and S3 are three subsequences whose SNP distances are less than predefined r.
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picture and its corresponding coordinate series for the first subsequence of Chromosome 1’s haplotype are shown 
in Fig. 2’sA,B, respectively. It is worth mentioning that individual values of input sequences correspond to unique 
points in the CGR picture and vice versa.

Since all information is preserved in the CGR plot, as well as in its respective coordinate series, the resulting 
data of the coordinate series assessment can be attributed to its related CGR picture.

Surrogate test. In order to examine the nonlinear properties of the original input data, the statistical sur-
rogate data testing method was applied on individual coordinate series. The following procedure prepared the 
surrogate data. For each coordinate series, the embedding dimension and time delay were first determined and 
10 surrogate coordinate series were then generated according to the method reviewed earlier. After this, the cor-
relation dimension was computed for the original and its related surrogate coordinate series.

Table 2 presents the typical results of the surrogate test, including the correlation dimension values for the 
original coordinate series along with the minimum and maximum surrogates for all Chromosome 1 haplotype 
subsequences. The last column contains the values of the largest Lyapunov exponent (LLE) of each subsequence.

Chromosome #All Subsequences
#Subsequences with a 
Length >Thr

1 874 38

2 914 41

3 697 39

4 751 39

5 594 40

6 567 35

7 577 35

8 552 34

9 418 23

10 443 25

11 474 29

12 464 30

13 304 22

14 336 17

15 346 10

16 271 16

17 346 11

18 245 17

19 177 7

20 198 10

21 111 5

22 101 5

Table 1. Subsequence information extracted from all chromosomes.

Figure 2. Binary CGR of the first extracted subsequence (A) and its extracted coordinate series (B) from the 
first subsequence of Chromosome 1. Since the input sequences consist of two alphabets, the obtained pictures 
resemble dotted lines.
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According to Table 2’s data, the null hypothesis of the surrogate test was rejected for most of the subsequences 
and the sensitivity for the initial condition was confirmed for subsequences containing positive LLE. Thus, 
Table 2’s data demonstrates that 74% of Chromosome 1’s haplotype subsequences exhibited chaotic features. 
The surrogate test and LLE computation were also carried out for the other chromosome haplotypes. As shown 
in Fig. 3, some percentages of subsequences in other haplotypes involved chaotic features. The resulting data 
indicate that most of the extracted subsequences exhibited chaotic behavior. Since mapping from sequences to 
coordinate series preserves all the information, the obtained results indicate that these subsequences originated 
from deterministic behavior.

Multi-fractal analysis. To confirm the above results, whose findings observe chaotic behavior in coordinate 
series extracted from subsequences, the present study applied multi-fractal analysis for CGRs. Multi-fractal anal-
ysis is another method for examining chaotic behavior. For investigating the scaling behavior of the CGR picture, 
CGRs were covered by several size ε boxes. In line with this assumption, if ε was equal to 1

8
, for instance, the CGR 

image was covered by eight boxes. Here, the input sequences had two alphabets and so the resulting CGR was a 
dotted line. With this method of analysis and according to the density of points in each box, the multi-fractal 
parameters, including Dq, α, and f(α), were calculated. Figure 4 provides the results of this calculation for the first 
subsequence of Chromosome 1’s haplotype.

Original
Surrogate 
Min

Surrogate 
Max LLE

S1 0.36627 0.39204 0.58594 0.33360

S2 0.13629 0.04635 0.05898 0.13629

S3 0.43052 0.71659 0.51951 0.34368

S4 0.26051 0.27251 0.54544 −0.05953

S5 0.35052 0.40979 0.57804 0.64071

S6 0.10796 0.10934 0.16225 0.26067

S7 0.25108 0.29168 0.38618 0.69047

S8 0.23778 0.25782 0.47653 0.24444

S9 0.35097 0.35113 0.62711 0.03415

S10 0.27321 0.26391 0.55738 0.47606

S11 0.31865 0.36589 1.00820 −0.05989

S12 0.10715 0.12004 0.15777 0.83138

S13 0.39225 0.45739 0.67238 0.30744

S14 0.47752 0.58567 0.75620 0.29638

S15 0.43977 0.49288 0.81505 0.03177

S16 0.18912 0.19767 0.30535 −0.03274

S17 0.53972 0.60917 0.95226 −0.10400

S18 0.27841 0.28615 0.42475 0.35364

S19 0.45505 0.50642 0.65790 0.33360

S20 0.47605 0.55843 0.90008 −0.10132

S21 0.18262 0.20794 0.39612 0.01682

S22 0.11989 0.13120 0.19777 0.83163

S23 0.10483 0.10412 0.13882 0.37704

S24 0.54638 0.29920 0.54770 1.13682

S25 0.07839 0.08140 0.12628 0.97159

S26 0.09959 0.09959 0.13728 0.60269

S27 0.13594 0.13708 0.25053 0.86333

S28 0.15408 0.16693 0.25944 0.76313

S29 0.43850 0.5150 0.83745 0.13629

S30 0.13553 0.13878 0.30403 0.18735

S31 0.09739 0.09993 0.18582 −0.03322

S32 0.14369 0.15750 0.22236 0.53379

S33 0.24935 0.28596 0.64447 0.43406

S34 0.16918 0.18759 0.25632 0.60329

S35 0.44667 0.47550 0.71674 0.35169

S36 0.30748 0.31783 0.72264 0.13042

S37 0.07777 0.07777 0.10733 −0.02983

S38 0.31624 0.39668 0.93261 0.34368

Table 2. Results of the surrogate test and LLE measures for the extracted subsequences of Chromosome 1’s 
haplotype.
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As presented in Fig. 4, the values of Dq, as different fractal dimensions for various q measures, as well as those 
of f(α), confirm different fractal dimensions. This reveals multi-fractality of the CGR picture. Therefore, the 
statistical self-similarity of the CGR should be described by a spectrum of fractal dimensions. Figure 5 shows 
the existence of multi-fractal property demonstrating that the subsequences originated from a deterministic pro-
cess. It should be noted that multi-fractal curves reveal structural information which is hidden in the original 
subsequences.

Altogether, these findings indicate that the establishment of full length haplotype sequences can yield new fea-
tures under the laws of stochastic processes. In addition, these results show that it is possible to extract some other 
features of subsequences for the purpose of evaluating their similarity and clustering state in a given haplotype by 
employing chaos theory assumptions. In particular, chaotic analysis reveals the deterministic nature of haplotype 
sequences. In some problems, such as haplotype assembly, in which the amount of noise and coverage rate of 
input fragments can affect the quality of reconstructed haplotypes, it is possible to rectify the achieved haplotypes 
via some features, such as the correlation between neighboring SNPs.

Exploiting CGR for haplotype reconstruction. To improve the reconstruction rate in the single indi-
vidual haplotype (SIH) problem, one can explore how to use the chaotic feature in the extracted subsequences. In 
diploid organisms, such as humans, chromosomes are in pairs inherited from the father and mother respectively. 
As seen in Fig. 6, SIH involves several input fragments, known as reads (ri), which are attained from a defined 
region on a pair chromosomes, based on a sequencing read technology. A set of reads can be represented by 
matrix M × N, namely R, where each element rij belongs to {0, 1, ‘−’}. It is worth to noting that coverage refers to 
the number of reads that cover a certain position. For example, as can be seen in Fig. 6, coverage of the first col-
umn equals with 4, because it has been covered by r1, r5, r7, and r9. The haplotype assembly attempts to reconstruct 
haplotypes h1 and h2, such that these sequences are the most compatible with the input fragments. As mentioned 
earlier, the existing approaches show a low performance when matrix R involves columns with insufficient cov-
erage. In these columns, there is not sufficient data to determine the measure of alleles with high confidence. 
Moreover, perhaps there are some positions which are not covered by any input fragments. In such cases, these 
positions will remain ambiguous and be represented by gaps.

The results in previous sections show the route of chaos in several extracted haplotype subsequences. These 
findings reveal a dependency among SNPs, which can serve as promising knowledge for determining the measure 
of alleles in ambiguous positions. For this purpose, it is necessary to first provide test sequences with gap posi-
tions. These sequences were obtained by corrupting the evaluated subsequences in a substitution of 10% of the 
individual subsequences for gaps. Next, each corrupted subsequence was mapped by CGR and its correspond-
ing coordinate series was extracted as mentioned before. When dealing with gap measures, the algorithm was 
restarted and the next point was added between the center of line and the obtained allele. In the next step, the LP 
method estimated the allele measures in the gap positions. In deterministic chaotic flows, LP is generally applied 
for noise reduction. Since chaotic attractors are limited in their phase space, each divergence can be interpreted 
as noise. Regarding to this fact, the phase space is reconstructed. Afterwards, LP enhances the trajectories of the 
attractor locally. In particular, for each point, a set of its neighbors is found and a local curve which approximates 
them is determined. Finally, the considered point is updated by projecting to the resultant curve. Readers inter-
ested in the details of the LP algorithm may refer to an excellent book by Kantz and Schreiber55.

In this problem, projection was only limited to the points which indicated gap positions. It should be noted 
that these points were initially set by the average of their neighbors’ measures. Next, a set of neighbors containing 
2N + 1 points was constructed, which consisted of the considered point as well as N points before and N points 
after the considered point.

Figure 7 demonstrates a part of the coordinate series extracted from the first subsequence of Chromosome 
1, which is fitted by the LP method. The star signs indicate positions with ambiguous measures projected to the 
fitted curve. To specify the allele measure of a gap position in the haplotype, the next step converts the value of the 
projected point to 0 or 1 by comparisons with the threshold.

Figure 3. Percent of chaotic subsequences found throughout all chromosome haplotypes.
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=





≤ .h i if cs i
Otherwise

( ) 0 ( ) 0 5,
1 , (14)

where cs(i) refers to the ith ambiguous measure projected to the fitted curve and h(i) is the output for the ith 
position with a gap measure.

The proposed method was employed for all obtained coordinate series from all subsequences of all chromo-
somes. The reconstructed subsequences were compared with the original subsequences. Figure 8 depicts the 

Figure 4. Three curves related to the first subsequence of Chromosome 1’s haplotype. (A) represents Dq, (B) is 
related to spectra α, and (C) represents f(α).
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percentage of improvements. As seen in Fig. 8, the boxplot demonstrates the deviation of the reconstruction rate 
for all subsequences belonging to a specified chromosome. The results demonstrate that the rate of reconstruction 
for all subsequences was more than 97% overall.

Figure 5. Multi-fractal curves of all subsequences related to Chromosome 1’s haplotype (A) dimension spectra, 
(B) specturm α, and (C) f(α). All of the selected subsequences have positive LLE and passed the surrogate test.

Figure 6. Example of an SIH problem. Matrix R contains input fragments. h1 and h2 are the reconstructed 
haplotypes. Positions 4 and 6 are ambiguous because they are not covered by any input fragments.

Figure 7. A part of the extracted coordinate series from Chromosome 1’s subsequence (Data), the fitted curve 
which is the output of the proposed method (Green Curve), and the star points indicating positions with 
ambiguous values which are determined by a projection to the fitted curve.
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Conclusion
The current study investigated the chaotic behavior of haplotype sequences by considering the distribution of 
SNPs and mapping them with the CGR algorithm. The application of surrogate test and multi-fractal analysis pro-
cedure on a haplotype dataset demonstrated that the full length of chromosomes did not exhibit chaotic behavior. 
However, it was found that various numbers of subsequences throughout all haplotypes showed a deterministic 
nature. According to these findings, the laws of chaotic and stochastic processes can be employed for modeling 
haplotype sequences in a size-dependent manner. Moreover, the present study applied this knowledge to improve 
the reconstruction rate in the haplotype assembly problem. These promising results demonstrate that chaotic 
viewpoint can be effectively utilized to determine alleles in gap positions or low coverage positions. Finally, the 
source code used in the current work is available from the author upon request.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.

References
 1. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. 

Nature 409, 928–934 (2001).
 2. Gibbs, R. A. et al. The international HapMap project. Nature 426, 789–796 (2003).
 3. Consortium, G. P. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56 (2012).
 4. Rhee, J.-K. et al. Survey of computational haplotype determination methods for single individual. Genes & Genomics 38, 1–12 

(2016).
 5. Schaid, D. J. Evaluating associations of haplotypes with traits. Genetic epidemiology 27, 348–364 (2004).
 6. Ding, X. et al. Detecting SNP Combinations Discriminating Human Populations From HapMap Data. IEEE transactions on 

nanobioscience 14, 220–228 (2015).
 7. Koboldt, D. C., Miller, R. D. & Kwok, P. Y. Distribution of human SNPs and its effect on high‐throughput genotyping. Human 

mutation 27, 249–254 (2006).
 8. Hellmann, I. et al. Why do human diversity levels vary at a megabase scale? Genome research 15, 1222–1231 (2005).
 9. Lee, C.-Y. A model for the clustered distribution of SNPs in the human genome. Computational Biology and Chemistry 64, 94–98 

(2016).
 10. Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N. OncodriveCLUST: exploiting the positional clustering of somatic mutations 

to identify cancer genes. Bioinformatics 29, 2238–2244 (2013).
 11. Amos, W. Even small SNP clusters are non-randomly distributed: is this evidence of mutational non-independence? Proceedings of 

the Royal Society of London B: Biological Sciences, rspb20091757 (2010).
 12. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. 

Proceedings of the National Academy of Sciences 106, 9362–9367 (2009).
 13. Glusman, G., Cox, H. C. & Roach, J. C. Whole-genome haplotyping approaches and genomic medicine. Genome medicine 6, 73 

(2014).
 14. Cirulli, E. T. & Goldstein, D. B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nature 

Reviews Genetics 11, 415 (2010).
 15. Kalyanasundaram, A., Gerhard, G. S. & Skelding, K. A. Genomics, haplotypes and cardiovascular disease (2007).
 16. Chanock, S. J. et al. Replicating genotype–phenotype associations. Nature 447, 655 (2007).
 17. Olyaee, M.-H. & Khanteymoori, A. AROHap: An effective algorithm for single individual haplotype reconstruction based on 

asexual reproduction optimization. Computational biology and chemistry 72, 1–10 (2018).
 18. Si, H., Vikalo, H. & Vishwanath, S. Information-Theoretic Analysis of Haplotype Assembly. IEEE Transactions on Information 

Theory (2017).
 19. Edge, P., Bafna, V. & Bansal, V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies. Genome 

research 27, 801–812 (2017).
 20. Das, S. & Vikalo, H. Optimal Haplotype Assembly via a Branch-and-Bound Algorithm. IEEE Transactions on Molecular, Biological 

and Multi-Scale Communications 3, 1–12 (2017).
 21. Kuleshov, V. et al. Whole-genome haplotyping using long reads and statistical methods. Nature biotechnology 32, 261 (2014).
 22. Aguiar, D., Wong, W. S. & Istrail, S. In Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. 3 (NIH Public 

Access).
 23. Genovese, L. M., Geraci, F. & Pellegrini, M. SpeedHap: an accurate heuristic for the single individual SNP haplotyping problem with 

many gaps, high reading error rate and low coverage. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 
5, 492–502 (2008).

Figure 8. The deviation of reconstruction rates for all extracted subsequences from all chromosomes.

https://doi.org/10.1038/s41598-019-46844-y


1 1Scientific RepoRts |         (2019) 9:10361  | https://doi.org/10.1038/s41598-019-46844-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

 24. Bansal, V. & Bafna, V. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24, 
i153–i159 (2008).

 25. Garcia, S. P. & Almeida, J. S. Nearest neighbor embedding with different time delays. Physical Review E 71, 037204 (2005).
 26. Dokoumetzidis, A., Iliadis, A. & Macheras, P. Nonlinear dynamics and chaos theory: concepts and applications relevant to 

pharmacodynamics. Pharmaceutical research 18, 415–426 (2001).
 27. Anitas, E. M. & Slyamov, A. Structural characterization of chaos game fractals using small-angle scattering analysis. PloS one 12, 

e0181385 (2017).
 28. Almeida, J. S. Sequence analysis by iterated maps, a review. Briefings in bioinformatics 15, 369–375 (2014).
 29. Pandit, A., Dasanna, A. K. & Sinha, S. Multifractal analysis of HIV-1 genomes. Molecular phylogenetics and evolution 62, 756–763 

(2012).
 30. Yang, J.-Y., Yu, Z.-G. & Anh, V. Clustering structures of large proteins using multifractal analyses based on a 6-letter model and 

hydrophobicity scale of amino acids. Chaos, Solitons & Fractals 40, 607–620 (2009).
 31. Deschavanne, P. & Tuffery, P. Exploring an alignment free approach for protein classification and structural class prediction. 

Biochimie 90, 615–625 (2008).
 32. Joseph, J. & Sasikumar, R. Chaos game representation for comparison of whole genomes. BMC bioinformatics 7, 243 (2006).
 33. Güler, N. F., Übeyli, E. D. & Güler, I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. 

Expert systems with applications 29, 506–514 (2005).
 34. Jeong, J. et al. Nonlinear analysis of the EEG of schizophrenics with optimal embedding dimension. Medical engineering & physics 

20, 669–676 (1998).
 35. Übeyli, E. D. Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Systems with Applications 37, 

985–992 (2010).
 36. Olyaee, M. H., Yaghoubi, A. & Yaghoobi, M. Predicting protein structural classes based on complex networks and recurrence 

analysis. Journal of theoretical biology 404, 375–382 (2016).
 37. Jeffrey, H. J. Chaos game representation of gene structure. Nucleic Acids Research 18, 2163–2170 (1990).
 38. Xiaohui, N., Feng, S., Xuehai, H., Jingbo, X. & Nana, L. Predicting the protein solubility by integrating chaos games representation 

and entropy in information theory. Expert Systems with Applications 41, 1672–1679 (2014).
 39. Hueso, M., Cruzado, J., Torras, J. & Navarro, E. ALUminating the path of atherosclerosis progression: chaos theory suggests a role 

for Alu repeats in the development of atherosclerotic vascular disease. International journal of molecular sciences 19, 1734 (2018).
 40. Chou, K.-C. Some remarks on protein attribute prediction and pseudo amino acid composition. Journal of theoretical biology 273, 

236–247 (2011).
 41. Huang, J. et al. A reference human genome dataset of the BGISEQ-500 sequencer. Gigascience 6, 1–9 (2017).
 42. Duitama, J. et al. Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of Single Individual Haplotyping 

techniques. Nucleic acids research 40, 2041–2053 (2011).
 43. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature 

genetics 43, 491 (2011).
 44. Takens, F. Detecting strange attractors in turbulence. Lecture notes in mathematics 898, 366–381 (1981).
 45. Fraser, A. M. & Swinney, H. L. Independent coordinates for strange attractors from mutual information. Physical review A 33, 1134 

(1986).
 46. Kennel, M. B., Brown, R. & Abarbanel, H. D. Determining embedding dimension for phase-space reconstruction using a geometrical 

construction. Physical review A 45, 3403 (1992).
 47. Kim, B. J. & Choe, G. H. High precision numerical estimation of the largest Lyapunov exponent. Communications in Nonlinear 

Science and Numerical Simulation 15, 1378–1384 (2010).
 48. Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time series. Physica D: Nonlinear 

Phenomena 16, 285–317 (1985).
 49. Kantz, H. A robust method to estimate the maximal Lyapunov exponent of a time series. Physics letters A 185, 77–87 (1994).
 50. Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets. 

Physica D: Nonlinear Phenomena 65, 117–134 (1993).
 51. Eckmann, J.-P., Kamphorst, S. O., Ruelle, D. & Ciliberto, S. Liapunov exponents from time series. Physical Review A 34, 4971 (1986).
 52. Skokos, C. In Dynamics of Small Solar System Bodies and Exoplanets 63–135 (Springer, 2010).
 53. Ding, M., Grebogi, C., Ott, E., Sauer, T. & Yorke, J. A. Estimating correlation dimension from a chaotic time series: when does 

plateau onset occur? Physica D: Nonlinear Phenomena 69, 404–424 (1993).
 54. Salat, H., Murcio, R. & Arcaute, E. Multifractal methodology. Physica A: Statistical Mechanics and its Applications (2017).
 55. Kantz, H. & Schreiber, T. Nonlinear time series analysis. Vol. 7 (Cambridge university press, 2004).

Author Contributions
A.R.K., M.H.O. and K.K. designed the research, K.K. and M.H.O. collected data, M.H.O. and A.R.K. wrote and 
performed computer programs, A.R.K., M.H.O. and K.K. analyzed and interpreted the results, M.H.O. and K.K. 
wrote the first version of the manuscript, A.R.K. and K.K. revised and edited the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-46844-y
http://creativecommons.org/licenses/by/4.0/

	Application of Chaotic Laws to Improve Haplotype Assembly Using Chaos Game Representation
	Materials and Methods
	Materials. 
	Chaos game representation. 
	Analysis of nonlinear time series. 
	Lyapunov exponent. 
	Correlation dimension method. 
	Surrogate data test. 
	Multi-fractal analysis. 

	Results and Discussions
	Extracting subsequences. 
	Chaos game representation of haplotype sequences. 
	Surrogate test. 
	Multi-fractal analysis. 
	Exploiting CGR for haplotype reconstruction. 

	Conclusion
	Figure 1 S1, S2, and S3 are three subsequences whose SNP distances are less than predefined r.
	Figure 2 Binary CGR of the first extracted subsequence (A) and its extracted coordinate series (B) from the first subsequence of Chromosome 1.
	Figure 3 Percent of chaotic subsequences found throughout all chromosome haplotypes.
	Figure 4 Three curves related to the first subsequence of Chromosome 1’s haplotype.
	Figure 5 Multi-fractal curves of all subsequences related to Chromosome 1’s haplotype (A) dimension spectra, (B) specturm α, and (C) f(α).
	Figure 6 Example of an SIH problem.
	Figure 7 A part of the extracted coordinate series from Chromosome 1’s subsequence (Data), the fitted curve which is the output of the proposed method (Green Curve), and the star points indicating positions with ambiguous values which are determined by a 
	Figure 8 The deviation of reconstruction rates for all extracted subsequences from all chromosomes.
	Table 1 Subsequence information extracted from all chromosomes.
	Table 2 Results of the surrogate test and LLE measures for the extracted subsequences of Chromosome 1’s haplotype.




