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New solution of the partial 
differential equation of the grain 
groove profile problem in the case 
of evaporation/condensation
tayssir Hamieh  1,2, Zoubir Khatir  1 & Ali Ibrahim1

This paper constitutes a new contribution on the resolution of Mullins problem in the case of the 
evaporation-condensation and gives an exact and explicit solution of the second partial differential 
equation relative to the geometric profile of the grain boundary grooving. New analytical expressions of 
the solution, the groove profile, the derivative and the groove deep were obtained:
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It was proved that the found solution gave more accurate results relative to those obtained by Mullins 
that neglected the first derivative (|y′| ≪ 1) relative to 1. The results obtained by this new solution can 
be advantageously used to give more precise solution of the general problem when combining the two 
phenomena relative to the evaporation-condensation and the surface diffusion in thin polycrystalline films.

The use of power electronics has increased in recent years. This is due to increased electrification in an economic 
and social context to reduce energy consumption and greenhouse gas emissions. The size, weight and cost of the 
converters have decreased, mainly in the field of electronic switches. Power electronic modules are key elements 
in the chain of power conversion. The application areas include aerospace, aviation, railway, electrical distri-
bution, automotive, home automation, oil industry. These modules constitute an assembly of various materials 
(Fig. 1).

Generally, the power chips are carried on a ceramic substrate which must ensure good electrical insulation and 
good thermal conduction. This substrate is also welded on a sole to be cooled.

There is a diversity of assembly technologies. This includes materials and process for insulation or passivation, 
interconnections, and die attach. The most common topside interconnections in power semiconductor devices, 
consisting of the metallization and the wire bonds, are subjected in operation to high functional stresses. This 
is the result of an important difference between the coefficients of thermal expansion (CTE) of the materials 
in contact: metallization and wire bonds (aluminum) and dies (silicon). The metallization layer (around 5 μm) 
deposited on the chips becomes a lot more distorted than the silicon with temperature, leading to high tensile and 
compressive stresses and thus to large inelastic strains1. It has been reported that two main types of degradation 
can take place in the topside of power chips under the effect of thermomechanical cycles: metallization recon-
struction (Fig. 2) and degradation of bonding contacts (Fig. 3)1–3. The last one may itself be either heel-cracks or 
cracks propagation followed by lift-off4. Various works have been conducted to propose scenarios of degradation 
mechanisms using thermal and power cycling tests5–7. Although it is quite clear that the wire-bond lift-off con-
tributes mainly to the module failure8, this link is not obvious with the metallization degradation6.
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It is observed that the first phase of aging is classically associated with the reconstruction of the metallization 
and the degradation of the bonding contact. The end of life is rather characterized by bond-wire heel-cracks and 
lift-off9.

We make the assumption that during cyclic aging, it is a progressive effect of condensation-evaporation that 
occurs and the film is structurally degraded by grooving. The scenario of this degradation is not clarified yet and it 
is the purpose of this paper to make a contribution on this point with a better understanding of the effects of stress 
parameters on the degradation of contacts between metallization and bond wire. It consists in a new mathemati-
cal solution of the formation of grain boundary grooving in polycrystalline thin films and in its comparison with 
other solutions given by Mullins et al.10–16, Hackney17, Broadbridge18, Zhang and Wong19 and Bouville et al.20,21.

Figure 1. High power IGBT module.

Figure 2. Topside metallization: before and after aging.

Figure 3. (a) Heel cracks, (b) Lift off.
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Study Problematic
The problem of the thermal degradation and the formation of grain boundary grooving in polycrystalline thin 
films, was largely studied, analyzed and commented10–13,19–21. Mullins10 studied in 1957 the thermal effect on 
the profile of the grain boundary grooving. Other scientists were also interested in the development of this 
phenomenon13–21.

Mullins developed the two cases of the evaporation-condensation and the surface diffusion by formulating in 
both cases the mathematical problem of the partial differential equation governing the geometric profile of the 
grain boundary grooving10–12.

The method consisted in using the general relation of the curvature R at any point (x, t) of the profile, where 
y = y(x, t) and R is a function of the two first derivatives y′ and y″ as a function of x. All mathematical develop-
ments proposed by Mullins10–12 and Mullins et al.13–16 were based on the approximation given by |y′| ≪ 1.

An exact solution was proposed by Broadbridge18, based on the Fujita research works22–24. However, the pro-
posed solution is not an explicit solution and very complicated to be used directly. To obtain the solution sug-
gested by Broadbridge, it is necessary to determine three parameters Θ*,   and θm that have to be calculated 
numerically by solving the found transcendental equation and the integral equation (Equations 21 and 23 of 
Broadbridge18). On the other hand, Broadbridge18, and Fujita did not obtain any explicit expression of the solu-
tion y(x, t), they only obtained a complicated equation between intermediate variable function of (x, y) and the 
first derivative y′ (x).

The study of the effects of stress parameters on the degradation mechanisms of the top side interconnections 
will allow to a good understanding of this phenomena. We are interested in this paper, in the mathematical devel-
opment of a new solution of the problem of the evaporation-condensation by deriving easier and more compact 
formulas that can be directly used by the scientific community that is interested in this problem type. Explicit 
equation giving the solution of the general Mullins problem y(x, t) was obtained as a function of x and t. The new 
solution will be compared to the Mullins approximated solution10.

Formulation of the Problem
It was observed that a two dimensional metallic film remains flat for any temperatures and for a very long time. 
When the temperature increases, the metal atoms move causing grooves at the grain boundary surface. The 
metallic atoms can diffuse at the surface or in the volume. Atoms can also evaporate into the vapor phase or 
condensate. Mullins10 developed the grooving process produced in solid surfaces. Grain-boundary migration 
controls the growth and shrinkage of crystalline grains and is important in materials synthesis and processing. A 
grain boundary ending at a free surface forms a groove at the tip, which affects its migration19. In polycrystalline 
thin films, grain boundary grooving through the thickness of the film is a common failure mode that strongly 
affects their properties. The grooving forms and develops at the point of intersection when the grain boundary 
ends at a free boundary in order to reduce the total free energy25.

Stone et al.25 studied the surface grooves at grain boundaries that intersect a planar surface for the case that 
the evolution occurs below the thermodynamic roughening transition by evaporation–condensation processes. 
They described the resulting groove profile by a nonlinear ordinary differential equation and gave an approximate 
analytical solution to the nonlinear. However, these authors21 as well as Mullins did not obtain an exact solution.

The method developed by Stone et al.25 is only valid for groove slopes sufficiently shallow that the entire slop-
ing wall is composed of a step train with intervening terraces of the facet orientation. Mullins supposed that all 
slope tangents of the profile are neglected relatively to 1 (|y′| ≪ 1). Both cases developed by Mullins and Stone did 
not propose an exact solution

As example, we give on Fig. 4 the symmetric profile of grain boundary grooving of a thin film.
It was experimentally shown26–35 that when thin polycrystalline films are annealed, they tend to break up by 

the formation and growth of grooves. Smaller and larger holes are usually located at the intersection points of 
three-grain boundaries36. The break up in thin films of some metals as copper on sapphire was initiated at pro-
cessing defects in the film34, in contrast of cavities found at grain boundaries on zirconia on alumina polycrys-
talline films37.

Figure 4. Profile y(x, t) of the grain boundary groove.
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Let us consider x and y(x, t) the spatial coordinates of any point of the groove profile and t the time. On Fig. 4, 
we give the general profile y(x, t) of the grain boundary groove in metal polycrystal.

Galina and Fradkov38 studied the problem of the grain boundary hole development by assuming that there is 
evaporation/condensation as the transport mechanism rather than surface diffusion as generally supposed.

Mullins studied the thermal grooving mechanisms relative to the evaporation/condensation and surface dif-
fusion phenomena10. Mullins supposed for a polycrystalline solid at equilibrium, a symmetric grain boundary 
groove profile and then the ratio of grain boundary energy per unit area, γGB, to surface energy per unit area, γSV, 
is related to the groove angle, θ by the following relationship:

γ
γ

θ= Sin
2

GB

SV

Note that tanθ is equal to the slope of the profile y(x, t) at x = 0.
When studying the evolution of grain boundary groove profiles in the cases of the evaporation/condensation 

and surface diffusion, Mullins10 assumed that: (1) the surface diffusivity and the surface energy, γSV, were inde-
pendent of the crystallographic orientation of the adjacent grains and (2) the tangent of the groove root angle, 
γ, is small compared to unity. Mullins also supposed an isotropic material. The assumption (tanθ ≪ 1) was used 
by Mullins to simplify the study of the mathematical partial differential equation. The polycrystalline metal was 
supposed (3) in quasi-equilibrium with its vapor. The interface properties doesn’t depend on the orientation rel-
ative to the adjacent crystals. The grooving process was described by Mullins using the macroscopic concepts (4) 
of surface curvature and surface free energy. The matter flow (5) is neglected out of the grain surface boundary.

We propose in this paper to study the grain boundary groove profiles in polycrystalline metal and to give an 
analytical solution relative to the only case of evaporation/condensation, more precise than of the solution found 
by Mullins10 that supposed very small slops for all x values.

By using the notion of curvature c at any point M(x; y(x, t)) given by the following relation:
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The mathematical equation governing the evaporation-condensation problem will be written here as:
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where the parameter C(T) (equal to Mullins parameter A used in equation 5 of ref.10) depends on the temperature 
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γω
π

=C T P T
m kT

( ) ( )
(2 ) ( ) (3)

0
2

1/2 3/2

where γ is the isotropic surface energy, P0(T) the vapor pressure at temperature T in equilibrium with the plane 
surface of the metal characterized by a curvature c = 0, ω is the atomic volume, m is molecular mass and k is the 
Boltzmann constant. Mullins10 supposed that the coefficient of evaporation is equal to the unit.

Mullins Approximation
To resolve this differential equation, Mullins was constraint to suppose that |y′| ≪ 1 that means that the slope y′(x, 
t) at any point of the curve y(x, t) is very small behind 1 and can be neglected. Equation (2) can be written as:
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This problem is well-known in the conduction of heat in solids. It can be resolved by the following variable 
change:
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The solution of differential equation (12) is given by:
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With the condition boundary ′ =y t m(0, ) , one obtains =A m Ct2 . Using the other condition boundary y 
(x, 0) = 0, the solution of the differential equation (13) becomes:
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In conclusion, the solution of approximated Mullins problem will be written as:
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In conclusion for this part, the Mullins solution of approximated equation supposing |y′| ≪ 1, is given by:
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where erfc is the complementary error function.
The derivative y′ is given as a function of x and t by the following equation:

′ = −y x t m e( , ) (18)
x
Ct4
2

However, knowing that ε= −t(0, ) 0, one deduces the value of the groove depth:

ε π θ π= =t m Ct tan Ct( ) (19)0
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Results Obtained by Using Mullins Approximation
The approximation |y′| ≪ 1 used by Mullins in the case of evaporation and condensation in case of the grain 
boundary grooving in polycrystalline thin films is well described by equations (17). By taking Ct = 1 (value pro-
posed and used by Mullins10), we obtain the Fig. 5 showing the variation of the profile y(x, t) of the grain groove 
of Mullins approximation as a function of the distance x from the grain separation surface for various angles θ. 
It is obvious shown that when the groove angle θ increases, the slope m at x = 0 increases and this increases the 
groove depth ε0 as proved by Fig. 5.

On Fig. 6, we plotted the variations of the derivative y′ (x) of the grain groove profile for Mullins approx-
imation as a function of the distance x from the grain separation surface for various angles θ. This derivative 
y′ strongly depends on the groove angle. The smaller the groove angle is, the smaller the derivative y′ is. For 
θ = 1°, all derivatives y′ (x) can be neglected relatively to 1 for all x values. In the nonrealistic case for θ ≤ 5°, the 
Mullins approximation can be applied and the solution can describe the profile of the grain groove in the case of 
evaporation-condensation.

It is clearly shown on Fig. 6 that for a groove angle and greater than 8°, all derivative values y′ (x) are greater 
than 0.15 whatever the x value and become greater than 1 when θ > 25°. In all cases, the Mullins approximation 
cannot be applied when the groove angle θ > 8° and the Mullins condition |y′| ≪ 1 becomes invalid in such cases.

Figure 6 clearly shows the non-validity of the Mullins hypothesis that supposed |y′| ≪ 1. The error percentage 
is higher than 20% from a groove angle θ exceeding 10°; the error dramatically increases to 35% for θ = 15° and 
exceeds 100% since θ = 30°. This proves that the Mullins approximation cannot be justified after θ = 7° and all 
results of the literature based on the condition |y′| ≪ 1 are experimentally false.

Figure 5. Evolution of the profile y(x, t) of the grain groove of Mullins approximation as a function of the 
distance x from the grain separation surface for various groove angles θ from 1° to 60°. (Ct = 1).

Figure 6. Evolution of the derivative y′ (x) of the grain groove profile of Mullins approximation as a function of 
the distance x from the grain separation surface for various groove angles θ from 1° to 60°.
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On the other hand, Mullins considered the condition of Mullins of the small slope approximation:

=‴y t(0, ) 0 (20)

Even this condition proposed by Mullins is not in general satisfied.
To prove that this condition is not justified in this case, calculate the third derivative ‴y x t( , ) using the Mullins 

approximation:
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When applying the condition (20) and taking Ct = 1 as Mullins did it in10, we find:

= −‴y t m(0, ) 2 (22)

Therefore, ≠‴y t(0, ) 0 and the condition (20) is not satisfied and it strongly depends on the slope m at the 
origin. However, if m > 0.05 or the angle θ > 3°, then > .‴y t(0, ) 0 10. Therefore, the Mullins approximation is 
only satisfied if θ < 3°. This last case is not a realistic one.

Solution of Broadbridge and Fujita
Broadbridge18 gave an implicit solution of the general Mullins problem given by equation (2) by applying the 
Fujita results22–24. Broadbridge replaced C(T) in equation (2) by a constant D(0) and wrote the following form:
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Based on the solution of Fujita22–24 that introduced a variable change, ψ, such as:
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Broadbridge18 obtained:
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Notice that Θ = Θ = 1 for t > 0 and x = 0
Now, Fujita22 proposed the following variable changes:
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Fujita22 then gave an implicit solution necessitating numerical calculations.
Broadbridge18 applied Fujita’s results to Mullins problem and obtained:
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The parameters Θ*,   and θm are well defined by equations (22)–(24) of Broadbridge18 and can be calculated by 
numerical integration.

The final solution of Fujita is given here by the following equations:
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Equations (42) and (43) do not allow to obtain an explicit solution y(x, t) of Mullins problem. 
Therefore, it will be very difficult, in practice, to use these results. All these reasons lead us to reconsider the 
evaporation-condensation problem by proposing a new mathematical method taking into account the general 
equation without neglecting the first derivative y′(x). New expressions easier to be used were obtained. The new 
solution consisting in the correction of Mullins solution is presented in the following section.

New Resolution of the General Case
The general equation of the evaporation-condensation problem is given by:
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β
α

′

+
=

′
−y

y
e

1 (51)
u

2

2
2 2 2

This leads to the following equation: ′ = + α

βα−
y u( )

e u2 2 2
. The variables y and u can be separated:

α

βα
= +

−
dy

e
du

(52)u2 22

with:

θ
α θ

β









=
=

=

m tan
Ct

Ct
2 sin

4 1

One can write the first derivative y′(u) given by equation (53):

α

θ
′ = +

−
y u

e sin
( )

(53)u2 22

as a function of x and t, one writes ′ = + θ

θ−
y x t( , )

e sin

sin

x Ct2/(2 ) 2
, and the integration of equation (53) leads to:

∫
α

θ
− =

−
y u y

e sin
du( ) (0)

(54)

u

u0 2 22

Knowing that (0) = −ε0, where ε0 is the depth of the groove, we obtain equation (55):
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∫
α

θ
ε=

−
−y u

e sin
du( )

(55)

u

u0 2 2
02

Using the boundary condition: =→∞y ulim ( ) 0u  and equation (55) one obtains the following equation:

∫ε α

θ
=

−

∞

e sin
du

(56)u
0

0 2 22

Therefore, equation (55) can be written as:

∫ ∫
α

θ

α

θ
=

−
−

−

∞
y u

e sin
du

e sin
du( )

(57)

u

u u0 2 2 0 2 22 2

By writing equation (57) as a function of x and t, one obtains:

∫ ∫
θ

θ

θ

θ
=

−
−

−

∞
y x t sin

e sin
dv sin

e sin
dv( , )

(58)

x
Ct

v Ct v Ct0
2

/(2 ) 2 0 /(2 ) 22 2

or

∫
θ

θ
=

−∞
y x t sin

e sin
dv( , )

(59)

x Ct

v Ct

/2

/(2 ) 22

Equation (59) giving the new solution obviously shows the large difference with the Mullins solution. On 
Fig. 7, we represent the variations of the profile y(x, t) of the grain groove of the new solution as a function of the 
distance x from the grain separation surface for various angles θ, for a particular and specific case such as Ct = 1 
(value used by Mullins) in order to have the same situation of Mullins and to be able to compare our new solution 
with that of Mullins approximation. All calculations were executed using Mathematica programme.

Comparison Between Mullins Solution and the Exact Solution
The following expression gives the ratio of Mullins solution yMullins on the exact solution yexact:

∫

θ π
=

θ

θ
∞

−

‐ ( )y
y

Ct erfc

dv

tan

(60)

Mullins

exact

x
Ct

x Ct sin

e sin

2
/2

v Ct2/(2 ) 2

On Fig. 8, we represent the variations of the ratio (yMullins/yexact) as a function of the distance x from the grain 
separation surface for various groove angles θ. The obtained curves clearly show an important deviation between 
the two solutions for all values of groove angle θ.

As example, we draw on Figs 9 and 10, the evolution of the profile y (x) of the grain groove for Mullins approx-
imation and the exact solution as a function of the distance x from the grain separation surface, respectively for 
θ = 25° and 35°. The two obtained curves on Figs 9 and 10 show an important difference between the two cases. 
Mullins solution is really so far from the exact solution.

Figure 7. Profile y(x, t) of the grain groove of the new solution as a function of the distance x from the grain 
separation surface for various groove angles θ. (Ct = 1).
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The calculation of the exact derivative y′ (x) of the grain groove profile obtained by the exact solution given by 
equation (53) for various groove angles θ is represented on Fig. 11. Here, we didn’t suppose any condition on the 
value of the first derivative of the grain groove profile.

Now, by expressing the ratio of the Mullins derivative y′Mullins and the exact derivative y′exact, we obtain the 
following expression:

Figure 8. Evolution of the ratio (yMullins/yexact) of Mullins solution on the exact solution for the grain groove 
profile as a function of the distance x from the grain separation surface for various angles θ. (Ct = 1).

Figure 9. Evolution of the profile y (x) of the grain groove for Mullins approximation and the exact solution as a 
function of the distance x from the grain separation surface for θ = 25°. (Ct = 1).

Figure 10. Evolution of the profile y (x) of the grain groove for Mullins approximation and the exact solution as 
a function of the distance x from the grain separation surface for θ = 35°. (Ct = 1).
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θ
θ

′
′

=
− −y

y
e sin
cos

1
(61)

Mullins

exact

2x
Ct
2

2

In order to compare between the two derivatives of Mullins and exact solutions, we draw on the Fig. 12, the 
evolution of the ratio of Mullins derivative of the grain groove profile on the exact derivative as a function of 
the distance x from the grain separation surface for different groove angles θ. The two obtained curves show an 
extreme deviation when the distance x increases.

Even for the derivatives y′Mullins and y′exact, there is an important difference between the two derivatives and the 
deviation can reach 200% putting in defeat the Mullins model.

Calculation of the Groove Depth
Equation (56) can be written as:

∫ε α

θ
=

−

∞ −

−

e

e sin
du

1 (62)

u

u
0

0 2 2

2

2

Now, using Taylor series expansion for a radius of convergence equal to 1:

∑− = +
− − … − +

=

∞
x p p p n

n
x(1 ) 1 ( 1) ( 1) ( 1)

! (63)
p

n

n
n

1

For p = −1/2, equation (62) becomes for |X| < 1:

Figure 11. Evolution of the derivative y′ (x) of the grain groove profile of the exact solution as a function of the 
distance x from the grain separation surface for various groove angles θ. (Ct = 1).

Figure 12. Evolution of the ratio of Mullins derivative on the exact derivative of the grain groove profile as a 
function of the distance x from the grain separation surface for different values of groove angle θ. (Ct = 1).
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∑− = +−

=

∞
X n

n
X(1 ) 1 (2 )!

( !) 2 (64)n
n

n1/2

1
2 2

Applying this formula for θ= <−X e sin 1u2 22
, one can write:

∑θ θ− = +− −

=

∞
−e sin n

n
e sin(1 ) 1 (2 )!

( !) 2
( )

(65)
u

n
n

nu n2 2 1/2

1
2 2

2 22 2

Equation (61) can be then written as:

∫ ∑ε α θ=




 +







∞ −

=

∞
−e n

n
e sin du(2 )!

( !) 2
( )

(66)
u

n
n

nu n
0

0 1
2 2

3 22 2

By permuting between integral and summation signs in equation (66) because of the obvious convergence of 
the series and knowing that ∫ = π∞ −e duu

0 2

2
, one obtains:

∑ε α π θ=




 +







=

∞ n
n n

sin
2

1 (2 )!
( !) 2 3 (67)n

n
n

0
1

2 2
2

Using α θ= Ct2 sin , the following expression for ε0 will be obtained:

∑ε π θ θ=




 +







=

∞
Ct n

n n
sinsin 1 (2 )!

( !) 2 3 (68)n
n

n
0

1
2 2

2

Equation (68) clearly shows that the groove depth ε0 strongly depends on the groove angle θ the coefficient C 
and the time t. The comparison between Mullins and exact solutions leads to draw the following Fig. 13:

Figure 13 shows an important deviation of Mullins groove deep relative to the exact groove deep for θ larger 
than 25 °. On the other hand, the groove deep increases when the groove angle increases thus showing a strong 
dependency of these two parameters.

Analytical Solution
In this section, we propose to give an analytical solution of the general case. Equation (58) can be rearranged as:

∫
α

θ
ε=

−
−

−

−
y u e

e sin
du( )

1 (69)

u u

u0 2 2
0

2

2

Following the same previous method for the integration of equation (69), one writes:

∫ ∑α θ ε=




 +





 −−

=

∞
−y u e n

n
e sin dv( ) (2 )!

( !) 2
( )

(70)

u v

n
n

nv n

0 1
2 2

3 2
0

2 2

By permuting between integral and summation signs, equation (70) can be written as:

Figure 13. Evolution of the Groove deep ε0 as a function the groove angle θ in two cases of Mullins solution 
and the exact solution.
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∫ ∫∑α θ ε=




 +
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∞
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If one uses the complementary error function erfc:

∫
π

= −−e dv erfc u
2

[1 ( )],
u v

0

2

∫
π

= −−e dv
n

erfc nu
2 3

[1 ( 3 )]
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0

3 2

One finds:

∑α π θ ε=
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2
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with = x
Ct2

, and α θ= Ct2 sin , the final solution can be written as a function of x and t as:
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Replacing ε0 by its value from equation (72), one obtains the final solution given by equation (78):
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Discussion of the Third Derivative Condition and Comments on the Constant C
On the third derivative. The Mullins approximation lead us to determine the third derivative

= −




 −







−‴y x t m x
Ct

e( , ) 2 1
2 (21)

x
Ct

2
4

2

The third Mullins condition =‴y t(0, ) 0 relative to the small slope approximation is not satisfied when using 
the Mullins approximation, because equation (21) leads to = − ≠‴y t m(0, ) 2 0

Now, the second derivative y″(u) from our exact solution is recalled here:

β′′ = − ′ + ′y u uy u y u( ) 2 ( )[1 ( ) ] (45)2

The calculation of the third derivative leads to the following expression:

β β= ′ + ′ + ′ −‴y u y u y u u y u( ) 2 ( )(1 ( ) )[2 (1 3 ( ) ) 1] (75)2 2 2

Knowing that ′ = ′u Ct y x t( ) 2 ( , ), =‴ ‴y u Ct y x t( ) 2 ( , ), =u x
Ct2

 and β =Ct4 1, one obtains:

= ′ + ′




 + ′ −





‴y x t y x t y x t x

Ct
y x t( , ) 2 ( , )(1 ( , ) )

2
(1 3 ( , ) ) 1

(76)
2

2
2

where the first derivative is given by: ′ = + θ

θ−
y x t( , )

e sin

sin

x Ct2/(2 ) 2
 and θ′ = =t tan m(0, ) . This leads to the value 

of ‴y t(0, ):

= − +‴y t m m(0, ) 2 (1 ) (77)2

Therefore, we can evaluate the percentage error relative to the use of the Mullins approximation:

−
=

+
‴ ‴

‴
y t y t

y t
m

m
[ (0, )] [ (0, )]

[ (0, )]
100

1 (78)
Exact Mullins

Exact
2

If m > 0.10, the groove angle θ > 6°.
Again, we proved the non-validity of the Mullins approximation.

On the constant C and practical cases of metals. In order to study the effect of the parameter C or Ct 
on the validity of Mullins approximation that supposed the condition |y′ (x)| ≪ 1 for any x whatever, we calcu-
lated below the values of the parameter C for various metals as a function of temperature T. To do this, recall the 
relation giving C as a function of the different characteristics of metals:
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γω
π

=C T P T
m kT

( ) ( )
(2 ) ( ) (3)

0
2

1/2 3/2

The vapor pressure P0(T) of metals can be calculated by using the following general equation39:

= + + +P atm a b
T

c T d Tlog ( ) log
10 (78)0 3

where γ the constants a, b, c and d are given for different metals on Table 1:
Equation (78) and Table 1 allowed to calculate the vapor pressures of different metals. The different physico-

chemical characteristics of the metals are presented on Table 2.
Using the results given in Table 2 and equation (3), we determined the values of C and the derivative y′ (x) 

of the various metals for the considered temperatures as a function of the distance x. The obtained results are 
presented on Table 3.

Table 3 clearly shows for 12 metals that the parameter C depends on the metal nature and imposed by the 
temperature range. Results show once again that the derivative y′ (x) cannot be neglected in front of 1 for all x 
values. The Mullins approximation is false even when the parameter C decreases from 10−6 to 10−8 μm2/s and for 
many studied metals. We conclude that the Mullins case can be only applied for groove angle smaller than 6 °C, 
the committed error reaching in certain cases 100%. The approximated solution obtained by Mullins cannot then 
describe the physical reality of the grain groove problem in the case of evaporation/condensation.

Metal a b c d Temperature range (K)

Co 6.488 −20578 0 0 1768.2–2150 K

Zn (solid) 8.435 −6923 −0.7523 0 298–692.6 K

Ga 3.624 −13829 0.7579 −0.3141 302.96–1600 K

Ti 16.37 −25229 −2.6574 0 1941.2–2400 K

Tl 8.628 −9383 −1.0086 0 577.2–1100 K

Li 8.409 −8320 −1.0255 0 453.7–1000 K

Au 10.298 −18898 −1.2222 0 1337.2–2050 K

Cu 11.209 −17427 −1.4742 0 1358.2–1850 K

Al 10.578 −16946 −1.313 0 933.5–1800 K

Cs 8.232 −4062 −1.3359 0 302.96–550 K

Sr 4.809 −8385 0.415 −0.597 298–1050.2 K

Mg 8.489 −7813 −0.8253 0 298–923.2 K

Zn (liquid) 5.378 −6286 0 0 692.6–750 K

Table 1. Values of a, b, c and d for different metals for valid temperature range.

Metal TMP (K) TBP (K) T (K) P0 (Pa) M (g/mol) γ (J/m2) ω (m3)

Co 1768.2 3143.2 2120 303.04 58.933 2.536 1.11 × 10−29

Zn (solid) 692.6 980.2 688 86.67 65.38 0.992 1.53 × 10−29

Ga 302.96 2673.2 1570 278.52 69.723 0.991 1.96 × 10−29

Ti 1941.2 3560.2 2370 286.35 47.867 2.045 1.77 × 10−29

Tl 577.2 1746.2 1070 318.79 204.383 0.639 2.86 × 10−29

Li 453.7 1603.2 970 294.34 6.941 0.524 2.18 × 10−29

Au 1337.2 2973.2 2300 4708.39 196.9666 1.503 1.69 × 10−29

Cu 1358.2 2835.2 2200 11490.38 63.546 1.808 1.18 × 10−29

Al 933.5 2743.2 2000 2956.96 26.9815 1.152 2.32 × 10−29

Cs 302.96 2673.2 530 425.19 132.905 0.095 1.18 × 10−28

Sr 1050.2 1655.2 1030 1008.65 87.62 0.415 5.60 × 10−29

Mg 923.2 1364.2 910 1449.73 24.305 0.773 2.32 × 10−29

Zn (liquid) 692.6 980.2 950 28923.82 65.38 0.992 1.53 × 10−29

Table 2. Characteristics of tested metals such as melting point: TMP (K), boiling point: TBP (K), temperature of 
metal: T (K), vapor pressure at T: P0 (Pa), molar mass: M (g/mol), surface energy of metal: γ (J/m2)40 and atomic 
volume: ω (m3).
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Conclusion
This New study gave an exact and explicit solution and another analytical solution of the grain boundary groove 
profile relative to the case of evaporation/condensation. The resolution of the partial differential equation gov-
erning this phenomenon gave new analytical expressions of the groove profile y(x, t), the derivative y′(x, t) and 
the groove deep ε0(θ).
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The general solution given by Broadbridge18, and Fujita22 is not explicit solution, very complicated to be used 
by the scientific community and needs many numerical calculations. The equations obtained by our new method 
are easier and can be used for many practical applications.

The comparison with Mullins solution proved that the results obtained by Mullins were false and our new 
solution corrected the gap caused by the Mullins theory. This theory was only valid for non-realistic case of a 
groove angle θ ≈ 1° to 6°. The Mullins’s hypothesis expressed by |y′| ≪ 1 is not satisfied even when C is very small. 
The experimental values of 12 chosen metals confirmed the non-validity of the Mullins approximation. Even the 
third Mullins derivative ‴y t(0, ) cannot be cancelled as supposed by the third Mullins hypothesis. Our new solu-
tion proved that the error percentage of Mullins solution reaches 100% for values of the groove angle θ less than 
30°.

The new solution gave an important and useful analytical correlation between the groove profile and the 
groove deep with the groove angle.
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