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Transcriptome Network Analysis 
Identifies CXCL13-CXCR5 Signaling 
Modules in the Prostate Tumor 
Immune Microenvironment
Adaugo Q. Ohandjo1, Zongzhi Liu2, Eric B. Dammer   3, Courtney D. Dill1, Tiara L. Griffen1, 
Kaylin M. Carey1, Denise E. Hinton1, Robert Meller4 & James W. Lillard Jr.1*

The tumor immune microenvironment (TIME) consists of multiple cell types that contribute to the 
heterogeneity and complexity of prostate cancer (PCa). In this study, we sought to understand the 
gene-expression signature of patients with primary prostate tumors by investigating the co-expression 
profiles of patient samples and their corresponding clinical outcomes, in particular “disease-free 
months” and “disease reoccurrence”. We tested the hypothesis that the CXCL13-CXCR5 axis is co-
expressed with factors supporting TIME and PCa progression. Gene expression counts, with clinical 
attributes from PCa patients, were acquired from TCGA. Profiles of PCa patients were used to identify 
key drivers that influence or regulate CXCL13-CXCR5 signaling. Weighted gene co-expression network 
analysis (WGCNA) was applied to identify co-expression patterns among CXCL13-CXCR5, associated 
genes, and key genetic drivers within the CXCL13-CXCR5 signaling pathway. The processing of 
downloaded data files began with quality checks using NOISeq, followed by WGCNA. Our results 
confirmed the quality of the TCGA transcriptome data, identified 12 co-expression networks, and 
demonstrated that CXCL13, CXCR5 and associated genes are members of signaling networks (modules) 
associated with G protein coupled receptor (GPCR) responsiveness, invasion/migration, immune 
checkpoint, and innate immunity. We also identified top canonical pathways and upstream regulators 
associated with CXCL13-CXCR5 expression and function.

PCa is a common malignancy characterized by relatively slow disease progression, compared to other cancers. 
It is the fourth leading cause of cancer-related mortality in the United States; however, it remains the second 
most common cancer in men1,2. The 5-year survival rate for PCa sufferers diagnosed with localized disease is 
nearly 100%, but the rate is only 30% for patients diagnosed with metastatic PCa2. Fortunately, advancements in 
omics technologies have enabled systematic approaches to better understand the lethal phenotype of metastatic 
PCa. Furthermore, the most common sites for PCa metastasis are the lymph nodes and bone3–6. The molecular 
mechanisms responsible for lymph node and bone metastasis are complex. These mechanisms drive changes 
in the TIME and are often enabled by lymphangiogenesis7, which provides a path for cancer cell migration and 
recruitment of immune cells to support8.

Characterization of the gene-expression signatures of PCa are important to predict patient outcomes. Gene 
signatures can be used to predict tumor resistance to treatment, aggressiveness and other clinically relevant pro-
files. The characterization of cancer gene signatures is also important to identify predicators of patient survival9,10. 
In this study, we sought to better understand the gene-expression signature of patients with prostate primary 
tumors by investigating the co-expression profiles of patient samples and their corresponding clinical outcomes, 
in particular “disease-free months” and “disease reoccurrence. Furthermore, we want to better understand the 
contribution of CXCL13, CXCR5 and immune-related genes within the identified co-expression profiles as it 
relates to patient outcomes. Chemokines and their receptors play an essential role in PCa metastasis. These chem-
otactic cytokines are considered pro-inflammatory, innate factors that recruit immune cells to sites of injury 
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or infection and promote angiogenesis and cellular proliferation3–6,11–14. We have previously reported that the 
expression of CXCR5 and its sole ligand, CXCL13, positively correlate with PCa severity5. We have also noted 
differential expression of CXCR5 by PCa cell lines, elevated CXCL13 serum levels in PCa patients, and CXCL13 
secretion by human bone marrow endothelium6. Gradient-dependent CXCL13-CXCR5 interactions are in part 
responsible for PCa cell migration and invasion. Moreover, inhibition or modulation of this axis may prevent 
prostate tumor progression. Although there are advances in our understanding of the biology of primary prostate 
tumors, our knowledge of how and why secondary prostate tumors preferentially migrate to the bone and lymph 
node remains limited.

We took advantage of large-scale gene expression profiles of PCa patients provided by TCGA and comprehen-
sive systems biology to identify drivers that significantly regulate the molecular signature of the TIME. WGCNA, 
developed by Horvath et al., was used to study biological networks and identify clusters or modules of highly 
correlated variables within intramodular “hubs” of genes15,16. WGCNA identified co-expression patterns among 
gene expression drivers in PCa progression, which also includes CXCR5, CXCL13 and associated G-proteins. Our 
results confirmed the quality of the TCGA transcriptome data and identified 12 network modules of co-expressed 
genes. We show that CXCR5 downstream signaling molecules and CXCL13 are members of the module associ-
ated with immune checkpoint, invasion/migration, innate immunity, and tertiary lymphoid structure formation. 
Functional analysis identified key canonical pathways and upstream regulators targeting the expression of genes 
in this module, which included CXCL13 and CXCR5.

Results
Visual and diagnostic biotype distribution yields expected features, as annotated in reference 
genome GRCh38.  Transcriptome profiling was assayed on an Illumina HiSeq platform by multiple process-
ing centers. Technical variability may have been introduced during sequencing, as a precaution, we conducted 
a diagnostic analysis to confirm gene expression composition17. The NOISeq R-package was used to generate 
diagnostic plots and analyze gene expression count distribution across RNA biotypes18,19. The distribution of 
mapped reads among different RNA biotypes in TCGA prostate adenocarcinoma (PRAD) project were evaluated 
using the biotype detection function. The biotype detection plot highlighted the proportion of genes detected for 
each biotype, compared to the total annotated representation in the reference genome GRCh38 (Supplementary 
Fig. 1). The biotypes identified in normal tissue samples were relatively equal to those identified in primary tumor 
samples. Both had over 30% protein coding genes, as expected.

Adjusted mRNA expression for clinical center batch effect correction and outliers.  The removal 
of extraneous variables was critical to conduct optimal co-expression analysis. These factors could potentially be 
introduced as batch effects, sequencing artifacts, contaminants, technical variabilities, etc. In our study, 19,672 
protein-coding mRNA were analyzed for 498 primary tumors and 51 matched normal tissue case samples. These 
protein-coding genes were analyzed for batch (center) effect before and after using the ComBat algorithm in the 
R sva package20,21. The analysis first standardized the dataset between samples so that genes had similar overall 
mean and variance. Empirical Bayes batch effect parameter estimates were performed using parametric empirical 
priors. Finally, the dataset was adjusted for batch effects across samples20,21. We then used MC Oldham’s approach 
from the SampleNetworks R function to remove low connectivity (z.k) outliers (Fig. 1, panel A). These outliers 
were proven to have low connectivity, because the power (β) estimation with these outliers inflated the output, 
due to low correlation to similar samples across the range of transcripts measured (Fig. 1, Panel B). The sam-
ple network using “bicor” for adjacency was calculated, flagging low connectivity outliers less than 3 standard 
deviation below mean z.k. We used “bicor”, biweight midcorrelation, opposed to Pearson correlation to robustly 
identify outliers16,22. The default function, Pearson correlation was used as there were no outliers16. Due to high 
variation among RNA sequencing data across samples, biweight midcorrelation was a pivotal feature. Prior to 
identification of co-expression networks, PCa was performed to confirm the success of ComBat in adjusting 
mRNA expression for center batch effect correction and removal of outliers (Supplementary Fig. 2). Panel A 
shows high variability before adjustment and Panel B shows minimal variability after adjustment.

Identification of 12-enriched networks associated with pca clinical traits.  WGCNA of transcrip-
tomes was used to efficiently organize mRNA expression into networks related to molecular pathways or func-
tions of protein coding genes16,23. Our gene expression data was complex with several dimensions, and associates 
with multi-scaled variables, including clinical characteristics. We applied WGCNA to define cohesive trends in 
genes co-expressed across case samples including primary tumors and normal samples. With such high dimen-
sionality, identifying groups of genes with similar expression patterns was difficult. WGCNA was applied to the 
normalized, filtered, batch corrected and adjusted final expression matrix to identify gene groups (modules), 
represented by similar gene expression patterns across case samples that belong to the same co-expression mod-
ules. WGCNA identified modules by first using a pairwise correlation to determine each possible gene in the 
expression pair. The pairwise correlations were then represented as network modules using clustering analysis 
to further identify regulators, perform functional enrichment and identify hub genes24–26. Based on the criterion 
of approximate scale-free topology (Supplementary Fig. 3), it was determined that a soft threshold power of 10 
should be used for the adjacency matrix to identify expression networks correlated with the clinical traits of PCa.

Twelve strongly co-expressed groups/modules (i.e., pink, tan, brown, green, green-yellow, red, blue, purple, 
black, magenta, turquoise and yellow) were identified (Fig. 2). Supplementary Table S1 provides the complete 
list of protein-coding genes cross-referenced with module membership and correlation to each of the module 
eigengenes (kME) within the twelve co-expression networks identified, plus grey, which collects all transcripts with 
lower correlations across case samples not considered to be strongly co-expressed. To define modules of interest 
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we looked at case sample trait characteristics and chose to focus on two clinical characteristics, “disease-free 
months” and “recurred progressed”. Hence, the dendrogram-associated heatmap highlighted modules of tran-
scripts that positively or negatively correlate with clinical traits of PCa.

Figure 1.  Connectivity outlier detection and TCGA sample clustering as depicted by Box plot of bicor sample 
network connectivity and hierarchical clustering. Panel (A), a z-score plot of z.k (sample connectivity) identifies 
12 (out of 550) low connectivity outliers among normal and tumor samples as depicted by the red dots, which 
were flagged because they were more than 3 standard deviations below mean z.k (red horizontal line) after 
building a sample network adjacency using bicor. Panel (B), an orthogonal check by hierarchical clustering on 
euclidian sample distance of the 550 tumor and normal samples finds 11 of the 12 sample outliers identified by 
z.k outlier status are also in outlier branches to the left of the hierarchical cluster.

Figure 2.  Gene dendrogram of clustered dissimilarity, based on consensus topological overlap, with the 
corresponding module colors and associated top canonical pathway. Each colored row represents a color-
coded module, which contains a group of highly connected genes. A total of 12 modules were identified. The 
relationship between each relevant clinical trait was assessed for each color-coded module. Bypassing the 
default Pearson correlation method in WGCNA, we applied biweight mid-correlation as a robust alternative 
implemented in WGCNA function (bicor).
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Relationships between modules and associated clinical traits.  Correlation of eigengenes, repre-
senting the first principle component of each module’s expression profile across case samples, was performed 
to visualize the relatedness of modules (Fig. 3, top panel). A heat map also identified positively (red), uncorre-
lated (white), and negatively (blue) correlated eigengenes for all pairwise correlations for the 538-point eigen-
genes (Fig. 3, lower panel). Notably, the red module was positively correlated to purple, blue, and green module 
eigengenes. The pink module had a pairwise positive correlation to the tan module eigengene pattern of expres-
sion. The blue module was anticorrelated with the green-yellow module. Overall, both the cluster and heat maps 
depicted similarities and dissimilarities based on a correlation metric applied across all the module eigengenes 
and depicted the eigengene network. To prioritize modules of relevance to PCa, an intensity map of module-trait 
relationships was created to display whether modules have a positive or negative correlation with clinical traits 
(Fig. 4). We found that some clinical traits had no correlation with any module, e.g., age, clinical tumor stage and 
distant metastasis. This could be due to the exclusive use of primary tumor datasets. The pink, tan, red, and purple 
modules all had a negative correlation to disease-free months, with p < 0.05. Tan, red, purple, and magenta had 
significant (p < 0.05) positive correlation to patient status of disease recurrence or progression.

Overall, WGCNA overlaid differentially expressed genes (DEGs) onto modules and performed an unpaired 
two tailed t-test to identify modules with DEGs. The weighted gene co-expression network approach identified 
12 modules with potentially DEGs between tumor and normal case samples. Some of these modules correlated 
with specific clinical traits. The following short module abbreviations corresponded to the following colors: M3 
(brown), M7 (black), M8 (pink), M11 (green-yellow), and M12 (tan). DEGs were upregulated in tumor samples 
compared to normal samples (Fig. 5, panel A). Modules M2 (blue), M4 (yellow), and M5 (green) harbored DEGs 
that were significantly down-regulated in tumor case samples, compared to those from normal prostate tissue 
(Fig. 5, panel B). Interestingly, M1 (turquoise), M6 (red), M9 (magenta), and M10 (purple) modules harbored 
DEGs that had a mix of significantly upregulated and down-regulated genes. There were several relevant genes 
significantly upregulated in the red module: CASP1, IFI16, CXCL13, IGF2BP2, IL18, CD244, IL12A, CD274, 
NFATC2, VAV1, TLR10, CCR3, PIK3CD, SYK, BCL11B, BIRC3, TNFSF11, RAC2, CCL20, ITGAM. All effects 
were statistically significant at a 0.05 significance level by unpaired two tailed T test (Supplementary Table S4).

Functional enrichment analysis reveals a key module is involved in gcpr responsiveness, inva-
sion, migration and immune activation.  Aggregated gene lists were used to determine which of the 12 
modules were enriched with genes involved in GPCR responsiveness, invasion-migration, cell cycle, immune 
activation, epithelial-mesenchymal transition (EMT) and T peripheral (Tph) cells (Supplementary Table S2). M6 
(red), the red module, was enriched with genes implicated in (GPCR) responsiveness (p = 0.0032), invasion and 
migration (p = 0.041), immune checkpoint (p = 8.9 × 10−14) and Tph-associated genes (p = 2.1 × 10−5) as con-
firmed by Fisher Exact one-tailed test after Benjamini-Hochberg FDR correction (Fig. 6a). All FET results are 
provided in supplementary tables S5 and S6. CXCL13 and CXCR5 are members of the red module, which led us 
to investigate functional enrichment analysis of the red module. Interestingly, the red module is enriched with 
genes implicated in oncogenic as well as some unexpected signaling pathways (Table 1). These pathways included 
altered immune cell function.

Gene ontology (GO) enrichment and differential expression analysis of genes within the RED 
module.  Gene ontology enrichment analysis was performed using GO Elite on the red module to identify 
the function of the genes within this co-expression network27(Fig. 6b). A gene enrichment analysis is a pro-
cess of classifying the genes of interest into functional categories, such as biological and molecular processes28. 

Figure 3.  Relatedness dendrogram and correlation heatmap of modules identified by weighted gene co-
expression network analysis (WGCNA). (Top Panel) Dendogram of module eigengene relatedness. (Lower 
Panel) Heatmap plot of the pairwise correlations (adjacency matrix) of module eigengenes. Red represents near-
perfect positive correlation, and blue represents anti-correlation; white represents no pairwise correlation.
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The top biological processes, that were significantly enriched in the red module, include the immune system 
process (270 genes), regulation of the immune response (140), and leukocyte activation (95) and defense 
response (143). CXCL13 and CXCR5 were classified within the immune system process, lymph node devel-
opment, and GPCR-signaling processes. CXCL13 was classified into two additional processes: the elevation of 
cytosolic calcium and cell-cell signaling. After completing the gene ontology analysis, gene expression within 
CXCL13-CXCR5 associated biological processes was evaluated using the differential gene expression output. The 
genes involved in lymph node development (CXCL13, CXCR5, IL7R, IL15, TGFB1) immune system response 
(CASP1, CCR3, CCR9, CXCR6, GPR15, GPR55, GNGT2, IL15, INSL3, MAP3K8, NFATC2, PIK3CD, SYK, and 
VAV1)), intracellular calcium elevation(CD52, CCR9, CXCL13, CXCR3, CXCR4, and IL1B) and cell-cell interac-
tion(FASLG, IL10, CD70, TNFSF8 and TNFSF9) were mostly over-expressed compared to normal prostate tissue. 
Taken together, GO analysis highlighted the processes associated with similar groups of genes while WGCNA 
identified correlation patterns and defined groups or network of similarly expressed genes, i.e., network modules.

Upstream regulator analysis identifies top canonical pathways of the red module.  The red 
module is enriched with pathways supporting the TIME. Disease-associated terms and biological functions 
enriched within the red module are metabolic disease, immune-related diseases and inflammatory diseases. 
Upstream regulator analysis was performed for all genes within the red module using Ingenuity Pathway Analysis 
(IPA) (Supplementary Table S3). The top canonical pathway identified further supports that the red module is 
enriched with biological functions supporting the TIME (Table 1). Moreover, growing evidence further supports 
the notion that cancer could be a disease of metabolic dyshomeostasis, with inflammation a critical component of 
tumor progression29,30. The upstream regulators found in the M6 (red) module included transmembrane recep-
tors, transcription regulators, GPCR, cytokines, and growth factors responsible for immune cell activation as well 
as tertiary lymphoid structure formation (Table 2).

Figure 4.  Module-trait relationship reveals both positive and negative correlation with clinical traits. Listed 
in the heatmap are bicor correlation rho values and p-values for the correlation (in parentheses), defining 
relationships between module eigengenes for overall weighted expression profiles of modules across the set of 
case samples, and clinical traits. Each row in the table corresponds to a module and each column to a specific 
clinical trait. The module colors are shown on the left side of each row. Values signify positive correlation unless 
preceded by a minus, in which case values signify negative correlation. The boxes colored red are intended to 
highlight module-trait correlations with a p value approaching significance (p < 0.10) — although all but three 
have p < 0.05.
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Discussion
The immune system is capable of recognizing and eliminating tumor cells in the tumor microenvironment by acti-
vating both innate and adaptive immunity31. Alternatively, the immune system can also suppress tumor immunity. 
The primary objective of this study was to gain insights into the molecular signature of primary prostate adenocar-
cinoma and identify gene relationships above the “noise” of competing expression networks and varying cell types 
that define the tumor and normal prostate microenvironment. Having constructed sample networks, the relation-
ship between standardized sample connectivity (z.k) and the standardized sample clustering coefficient (z.c) for all 
samples was examined. This approach provides both flexibility and efficiency needed to analyze large datasets in 
an iterative manner by identifying groups of samples for processing as well as identifying and removing outliers32. 
After batch effect correction and removal of outliers, 12 distinct co-expressed modules (clusters) were identified 
using ComBat (from the package sva) within WGCNA. To confirm the success in using ComBat, PCA was used to 
show the difference in variability before and after ComBat normalization and thus confirmed the success of noise 
reduction. The gene expression data after denoising allowed for WGCNA network construction that contained 
more pathway enrichment outputs than compared to un-adjusted gene expression data.

The unbiased nature of WGCNA avoids subjective decisions associated with gene expression analysis of pri-
mary prostate tumors. These modules are a network of co-expressed genes across normal and tumor samples. 
Module eigengenes (MEs) were calculated to effectively represent the identified subnetworks of genes and the 
added benefit of dimensionality reduction enabled us to assess the relevance of gene expression clusters with 
clinical variables of interest. We identified modules that were positively and negatively correlated with age, patho-
logical tumor stage, disease-free months, gleason score, and lymph node stage. This “module-clinical” trait rela-
tionship linking highlights the power of WGCNA to reduce the high dimensionality within multi-scale data sets, 
making the prioritization of modules relevant to clinical traits of interest.

Genes within each WGCNA-designated module were extracted to perform pathway enrichment analysis 
using IPA; leading to the identification of top canonical pathways and upstream regulators. To further examine 
the gene-expression signature and patient clinical outcome, we narrowed our focus to survival endpoint, i.e., 
“disease-free months”. Modules that correlated to disease-free months were M8 (pink), M12 (tan), M6 (red), M5 
(green), and M9 (magenta) with p-value < 0.05. Of the five identified modules, which correlated to disease-free 
months, only the red module was further investigated to test our hypothesis, as it was also enriched with genes 
involved in GPCR responsiveness, invasion, migration and immune checkpoint.

CXCR5 and CXCL13 were found within M6 (red) module. Functional enrichment analysis of this module, 
using IPA, identified 22 (CCR2, CD4, CD28, CXCL13, FOXP3, IL1B, IL2, IL10, IL27RA, LTA(TNFβ), LTB, 
NFATC2, POU2AF1, POU2F2, RELB, TBX21, TLR7, TNF, TNFSF13B, TNFRSF1B, and TNFRSF4) high degree 

Figure 5.  Differential gene expression identifies modules that contains upregulated genes, downregulated genes 
or both. (Panel A) Stacked bar graph shows fraction of module membership with up- (red) or down- (blue) 
regulated genes with p < 0.05 for comparison of tumor case-samples to normal prostate, by unpaired two tailed 
T test. (Panel B) Volcano plot of differentially expressed genes (DEGs). The log2 fold change is plotted on the 
X-axis and the negative Log10 p-value is plotted on the Y-axis.
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hub genes that are important upstream regulators of CXCR5 and CXCL13. Notably, the top 20 percent of 1,012 
red module members included CD4 (rank 12/1012), TNFRSF1B (rank 20), TNFSF13B (rank 151), TBX21 (rank 
155), and CCR2 (rank 197) (Table S1). These upstream regulators included a mix of transmembrane receptors 
(including GPCRs), transcriptional regulators, cytokines, and growth factors. Importantly, NFATC2 was iden-
tified as an upstream regulator of the M6 module genes. This transcriptional factor is a member of the nuclear 
factor of activated T cell (NFAT) family and promotes proinflammatory cytokine expression, including CXCL13.

Figure 6.  Functional enrichment analysis reveals modules enriched with genes involved in GCPR 
responsiveness, invasion/migration, immune checkpoints, EMT, cell cycle and Tph-associated genes. 
Enrichment analysis was performed on members of known oncogenic pathways using a one-tailed Fisher’s 
exact test for significant overlap with our predefined gene symbol lists of interest against all modules’ member 
gene symbols. The heat map displays Benjamini–Hochberg-corrected P-values (to control FDR for multiple 
comparisons) for the enrichment of certain pathways (vertical categories), and modules (on the abscissa) 
indicated by module color, number and genes in each module (Panel A). Significance is demonstrated by the 
color scales, which range from 0 (white) to a ceiling of 3 (red), -log (p, BH corrected). Asterisks represent the 
level of significance of comparisons (*p < 0.05; **p < 0.01, ***p < 0.00001). Panel B represents gene ontologies 
of the red (M6) module. The x axis represents Z scores. The y-axis represents the top 5 biological processes 
(green), molecular functions (blue), and cellular components (brown) that are significantly enriched with genes 
in the red module.

Top Canonical Pathways – M6 (Red) Module p-value Overlap

Th1 and Th2 Activation 2.2 × 10−53 40.0%

Th1 Pathway 3.9 × 10−45 43.8%

Th2 Pathway 1.1 × 10−41 39.0%

Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 3.6 × 10−41 54.2%

Communication between innate and Adaptive Immune Cells 1.0 × 10−35 48.3%

Top Diseases and Biological Functions (Red Module)

Disease Indications – M6 (Red) Module p-value range No of Molecules

Endocrine System Disorders 1.4 × 10−79–2.8 × 10−133 236

Metabolic Disease 7.4 × 10−65–2.8 × 10−133 240

Gastrointestinal Disease 1.0 × 10−27–2.8 × 10−133 316

Immunological Disease 4.2 × 10−22–2.8 × 10−133 477

Inflammatory Response 3.6 × 10−22–1.8 × 10−142 488

Table 1.  M6 (Red) module canonical pathways, disease and biological functions. The M6 (red) module is 
enriched with pathways supporting immunity and inflammation. Diseases and biological functions enriched 
within the red module are metabolic disease, immune-related diseases and inflammatory diseases.
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CXCL13 is a chemoattractant that promotes the migration of B lymphocytes and chemotaxis of cells express-
ing CXCR5. CXCL13 and CXCR5, have been reported to control the organization of B lymphocytes within the 
follicles of the lymphoid tissue, spleen, and liver33–40. The expression of CXCL13 by PD-1Hi CXCR5−peripheral 
helper T cells (Tph cells) has been implicated in inflammatory disease and breast cancer41–44. Specifically, Tph 
cells are highly present in patients with rheumatoid arthritis and produce CXCL13, IL-21, ICOS, and MAF, which 
promote CXCR5+ cell recruitment, local auto-antibody production and inflammatory cytokine production45–47 
Enrichment analysis of our data shows the red module is significantly enriched with Tph-associated genes with 
high KME such as BATF, CCR2, CD4, CXCL13, ICOS, PD-1, SH2D1A, SLAMF6, and TIGIT. Furthermore, Sox4 
is an upstream factor of the red module and has been recently identified as a transcription factor responsible for 
Tph functions.47 Taken together, these recent reports of Tph cell function further support our hypothesis that the 
CXCL13-CXCR5 axis enriches the prostate TIME.

Our group previously reported that serum CXCL13, IL-1β, and TNF levels are significantly elevated in 
patients with advanced PCa7. Indeed, TNF is produced by macrophages as a multifunctional proinflammatory 
cytokine that regulates many biological processes including cell proliferation and differentiation. We have previ-
ously shown elevated levels of TNF in the serum of PCa patients; physiologically relevant levels of this inflamma-
tory cytokine lead to the production of CXCL13 by bone marrow endothelial cells7. Hence, TNF plays a double 
role in cancer progression by contributing to the TIME and promotion (of growth, proliferation, invasion, and 
metastasis)48–51. Tam et al., showed that IL-1β mediated hormone-induced changes in gene expression during the 
formation of prostatic intraepithelial neoplasia (PIN)52. These changes further support the role that IL-1β plays 
within the tumor microenvironment. We believe that these upstream regulators provide signals that subsequently 
lead to the production of CXCL13, its receptor CXCR5, inflammatory molecules, growth and angiogenic factors, 
which all enrich prostate TIME.

We have previously shown that PCa cell lines and prostate tumors express CXCR5 and respond to CXCL13 
that is significantly elevated in the serum of PCa patients compared to serum of patients3. We also showed that 
CXCR5 expression correlates with Gleason scores greater and CXCR5-expressing PCa cell lines respond to 
CXCL13 with enhanced expression of metalloproteinases, invasion and migration53. We further showed that PCa 
cell lines selectively expressed PI3K isoforms and DOCK254 and respond to CXCL13 in an PI3K-, Akt-, ERK1/2-, 
DOCK2-, and/or JNK-dependent manner depending on androgen receptor expression status6. Using protein 
antibody array analysis, we identified CXCR5-signaling networks that in PCa cell lines, which were driven by 
Akt1/2, Cdk1/2, CDKN1B, CREB1, FAK, Integrinβ3, Src, Paxillin, JNK, JUN, SAPK, and differential G protein 
activation5,36. Taken together, these results suggest that CXCL13 contributes to cell-signaling cascades that regu-
late advanced PCa metastasis (i.e., invasion, growth, and/or survival). Lastly, we demonstrated similar expression 
and function of the CXCL13-CXCR5 in lung cancer38 and others have shown in breast cancer55.

Upstream Regulators 
of M6 genes KME Regulated gene

CD4 0.925 CXCL13, CXCR5, TNF𝛼 and 13 regulated genes.

TNFRSF1β 0.916 CXCL13, ICAM1 TNF𝛼 and 12 regulated genes.

TNFSF13β 0.837 CXCR5, ICAM1 and 22 regulated genes.

TBX21 0.836 CXCR5, TNFSF11 and 22 regulated genes.

CCR2 0.816 CXCL13, IL1β, TNF𝛼 and 20 regulated genes.

LTβ 0.786 CXCL13, IL1β and 3 regulated genes.

POU2AF1 0.769 CXCR5 and 16 regulated genes.

TGFβ1 0.754 CXCL13, CXCR5, ICAM1, IL1β, ITGβ7, LTA, TNF𝛼, TNFSF11 (RANKL), VCAM1 and 149 regulated genes.

TLR7 0.702 CXCL13, ICAM1, IL1β, TNF𝛼 and 40 regulated genes.

IL27RA 0.684 CXCL13, IL1β, LTA, LTB, TNF𝛼 and 11 regulated genes.

LTA (TNFβ) 0.683 CXCL13, IL1β, LTA and 7 regulated genes.

IL10 0.678 CXCL13, LTB, ICAM1, IL1β, ITGβ7, TNF𝛼, TNFSF11 (RANKL), VCAM1 and 108 regulated genes.

NFATC2 0.677 CXCR5, TNF𝛼 and 40 regulated genes.

CD28 0.659 CXCL13, IL1β, ITGβ7, LTA, TNF𝛼, TNFSF11 (RANKL)and 68 regulated genes.

TNFRSF4 0.654 CXCR5 and 9 regulated genes.

FOXP3 0.640 CXCL13, TNF𝛼 and 23 regulated genes.

IL1β 0.609 CXCL13, ICAM1, IL1β, LTA, TNF𝛼, TNFSF11, VCAM1 and 136 regulated genes.

POU2F2 0.605 CXCR5 and 19 regulated genes.

TNF𝛼 0.604 CXCL13, CXCR5, LTB, ICAM1, IL1β, ITGβ7, TNF𝛼, TNFSF11, VCAM1 and 105 regulated genes.

CXCL13 0.564 CXCR5, IL10, LTA, and TNFSF11 (RANKL)

IL2 0.533 CXCR5, ICAM1, IL1β, ITGβ7, LTA, LTB, TNF𝛼, TNFSF11 (RANKL), and 127 regulated genes.

RELB 0.527 CXCL13, IL1β, LTA, LTB, TNF𝛼 and 16 regulated genes.

Table 2.  Upstream regulators in the M6 (red) module that regulate tertiary lymphoid structure formation. 22 
upstream regulators were identified that regulate tertiary lymphoid structure formation genes found in M6 
(red): CXCR5, CXCL13, ICAM1, ITGβ7, IL1β, LTA, LTB, TNF𝛼, TNFSF11, and VCAM1. Upstream regulators 
include cytokines, growth factors, G-protein coupled receptors, transmembrane receptors and transcription 
regulators. A complete list of all regulated genes is provided in Supplementary Table S3.
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Our data also suggests a role of CXCL13-CXCR5 and other interactions to enhance tertiary lymphoid struc-
ture (TLS) formation, thereby modulating the prostate TIME. The M6 (red) module eigengenes, e.g., CXCR5, 
CXCL13, ICAM1, ITGβ7, IL1β, LTA, LTB, TNF𝛼, TNFSF11, and VCAM1, were largely associated with genes 
known to support TLS formation. TLSs are cellular and tissue aggregates of lymphocytes, myeloid cells and stro-
mal cells that presumably support immunity, chronic inflammation, autoimmunity disorders and cancer56. These 
TLSs are initiated and maintained by ectopic expression of chemokines, e.g., CXCL1357. TLSs are proximal or 
intimately associated with the TIME; this may promote the migration and invasion of cancer cells from the pri-
mary site to metastatic sites in distant organs. Nevertheless, the role of TLSs in cancer progression is under debate, 
which provides the rationale for more studies to elucidate their precise role in PCa progression and the prostate 
TIME.

The adapted TIME begins to promote cancer cell proliferation and survival in a very delicate manner. Perhaps 
the eigengenes discussed modulate tumor growth and survival in immuno-surveillance; this further supports 
the peculiar nature of the microenvironment promoting cancer. Studies have shown that CXCL13 recruits B cells 
that produce lymphotoxins; thereby activating IkB kinase 𝛼 (IKK 𝛼) in prostate cancer stem cells which promotes 
progression of castration resistant prostate cancer58. IL-27p28, the ligand for IL27RA, has been linked with tumor 
progression, self-renewal and tumorigenicity, expression of inflammatory mediators, tumor immune invasion 
and regulated chemokine axis via STAT1/STAT3 signaling. Prostate cancer stem-like cells (PCSLCs) were dis-
seminated to lymph nodes and bone marrow via CXCL13-CXCR5 upregulation, which in turn drive metastasis59.

Furthermore, mechanistic analysis by Garg et al., revealed that the loss of tumor suppressor PTEN and the 
overexpression of oncogenic member of Protein Kinase C family PKCɛ individually and synergistically upreg-
ulated the production of CXCL13 via the non-canonical nuclear factor kB (NF-kB) pathway60. Various stud-
ies have characterized the role of CXCL13 as a homing chemokine in many diseases, including tumor immune 
response within prostate associated lymphoid tissues61. Taken together, there is a strong rationale for targeting the 
CXCL13-CXCR5 signaling axis for cancer treatment.

Gene ontology analysis was performed to identify the function of the genes in WGCNA designated net mod-
ules. Gene ontology of the black module shows that this module is enriched with genes involved in cell cycle, 
DNA replication and chromosomal arrangements. Top hub genes of the black (M7) module BUB1B and CENPF 
are reported to contribute to the tumor microenvironment. It is reported that overexpression of BUB1B in PCa 
cells promotes proliferation and migration of cells. BUB1b interferes with its microenvironment by secreting 
proteases, mitogenic, antiapoptotic and antigenic factors that promotes carcinogenesis of neighboring cells62,63. 
NR2F2 of the yellow module promotes EMT transition through the direct and indirect regulation of ZEB1 and 
ZEB2, a hub gene of the purple module.ZEB1 and ZEB2 are downstream targets of FOXM1, a hub gene of the 
black module63. Epithelial to mesenchymal transition is regulated by transcriptional programs activated by tran-
scription factors which include ZEB, SNAIL, SLUG and TWIST64. The purple module is enriched with genes 
involved in platelet activation, angiogenesis and act as extracellular matrix structural constituents. Moreover, 
ADCY5, a hub gene of the blue module mediates G-coupled receptor signaling. ADCY5 and CXCR5 signaling is 
associated with overall survival in pancreatic adenocarcinoma65. We acknowledge elements of other modules as it 
relates to carcinogenesis and cancer progression, however in-depth analysis of other network modules is subject 
to ongoing studies that will better delineate the indirect involvement in the TIME.

Based on previous studies, we expected that CXCR5 and CXCL13 would be involved in the development of 
lymphoid structures. CXCR5 and CXCL13 were assigned in the red (M6) module with genes involved in the 
immune system response, lymph node development, GPCR signaling, elevation of cytosolic calcium, and cell-cell 
signaling functional categories. The gene ontology results further imply CXCL13 and CXCR5’s role in the devel-
opment of prostate cancer. CXCR5 is a G Protein Coupled Receptor and when its ligand, CXCL13, binds there is 
a natural increase in intracellular calcium levels. Tertiary lymphoid structures are formed at sites of inflammation 
and injury, which is seen in cancer66. They begin to form with the secretion of lymphotoxins in the microenviron-
ment which promotes chemokine secretion. Genes, in the aforementioned CXCL13-CXCR5 signaling associated 
gene ontologies, were found to be over-expressed in prostate cancer samples, than compared to normal tissue.

As previously mentioned, the aim of differential expression analysis is to show differences amongst the tumor 
and normal patient samples. As a result, we found several upregulated genes associated with GCPR signaling 
(CCR3, CXCR5, CXCL13, CCL20), GTP-metabolizing proteins (RAC2) and other genes associated with metabo-
lism (IGF2BP2) extracellular matrix remodeling (ITGAM), Immune system response (CASP1, CD274, NFATC2, 
PIK3CD, SYK, and VAV1), lymphoid tissue mediators (TLR10), cell growth genes (IFI16, proinflammatory 
cytokines (IL18 and IL12A), cell-cell signaling(CD244) apoptotic associated genes (BIRC3 and CASP1), osteo-
clast differentiation and activation (TNFSF11).

In conclusion, we have presented a comprehensive approach to enhance our understanding of the activities of 
the prostate TIME. Using WGCNA, we were able to explore the dynamic changes that allow primary tumors to 
self-progress into secondary tumors, which subsequently lead to castration-resistant and/or metastatic tumors. 
According to the network construction by WGCNA, there were 12 modules identified; M6 (red) was enriched 
with 3 of 5 oncogenic pathways, including TLSs. Findings from this study further support previous studies that 
CXCR5-CXCL13 signaling is an important driver of tumor progression in patients with PCa. Overall, we have 
presented a comprehensive systems biology approach to enhance our understanding of the molecular aspects of 
the prostate TIME. Taken together, these findings support the important role of the CXCL13-CXCR5- signaling 
axis in the prostate TIME.
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Methods
Data collection and normalization.  The data used in this study was obtained from (TCGA). Tumor and 
matched normal samples were collected from patients with prostate adenocarcinoma (PRAD) with informed 
consent and IRB approval. 498 primary tumors with 51 matched normal tissue controls were downloaded. 
Download date for network analysis was on or before September 27, 2017. Level 3 RNA Seq data was used for 
this study, which is de-identified and publicly available through TCGA. Subjects cannot be directly identified or 
through identifiers linked to the subjects; hence, this study is IRB exempt.

Diagnostic and visual analysis of mRNA Expression.  NOISeq, a R based package (version 2.18.0, 
accessible at http://www.bioconductor.org/packages/release/bioc/html/NOISeq.html) was used as a comprehen-
sive resource for further analysis of RNA-Seq data. The NOISeq package was used for an in-depth analysis of our 
RNA-Seq data, providing biotype distribution, i.e protein coding RNAs, long non-coding RNAs, microRNAs and 
much more. For this study, we only analyzed protein-coding mRNA expression. NOISeq was used to determine if 
further processing was needed to ensure the quality and integrity of our data, such as low-count filtering, removal 
of outliers, and batch effect correction18,19.

Detecting low counts, batch effect correction, and removal of outliers.  One limitation of 
RNA-Seq is the existence of missing expression counts. As a result, we removed all genes with greater than 
50% zero counts by obtaining log2 (expression value + 0.01). 19,672 protein coding genes were analyzed for 
batch (center) effect. Using ComBat algorithm, batch effect correction was applied to detect variance from 
the 32 sequencing centers that contributed to the PRAD dataset. ComBat, an empirical Bayes method in the 
Bioconductor SVA package, was used to remove outliers. Principal component analysis was performed using R 
package Factoextra to confirm the success of ComBat in adjusting the mRNA expression for center batch effect 
correction and removal of outliers

Identification of modules associated with different stages of primary prostate tum-
ors.  Weighted gene co-expression network analysis (WGCNA) is a freely accessible R package that uses corre-
lation of genes expression profiles across all included case samples in the abundance matrix to construct modules 
of co-expressed genes, some of which can be associated with specific clinical traits of interest, thereby draw-
ing attention to these particular modules of interest. Following eigengene calculation, correlation of eigengenes 
identified by WGCNA to the clinical traits in hand, allowed us to prioritize co-expressed modules of gene tran-
scripts. For this project, we used one-step network construction blockwiseModules() WGCNA function, with 
built-in module detection features including calls to the WGCNA dynamic tree-cutting algorithm, cutreeHybrid. 
WGCNA::blockwiseModules() parameters were as follows: power = 10, mergeHeight = 0.1, PAMstage = True, 
deepSplit = 2, net = blockwiseModules(t(cleanDat), power = power, deepSplit = ds, minModuleSize = 75, 
TOMDenom = ”mean, mergeCutHeight = mergeHeight, corType = ”bicor”, networkType = ”signed”, pam-
Stage = PAMstage, pamRespectsDendro = TRUE, reassignThresh = 0.05, verbose = 3, saveTOMs = FALSE, 
maxBlockSize = 2000016,21.

Interaction of Co-Expression Network & Modules: a second iteration of correlation defined 
relatedness of module eigengenes output by the WGCNA blockwiseModule() function.  To fur-
ther evaluate the similarities between groups (modules) of co-expressed genes identified, module eigengenes (also 
known as the first principal component of each module, representing a weighted expression value for each case 
sample contributing to the network) already output by the blockwiseModules function was correlated in pairs. 
The output from this analysis is a relatedness dendrogram and heat map, which respectively shows the relatedness 
of all modules, and the correlation, anti-correlation, or lack of correlation between each pair of modules.

Functional Enrichment and differential expression analysis of genes within each module.  An 
unpaired two-tailed statistical hypothesis t-test was conducted to compare differential expression among 
tumor and normal patient sample conditions. It is important to elucidate the biological roles of genes inside 
co-expression modules, as co-expressed modules often represent co-regulated gene transcripts with cohesive 
biological functions which are proxies for epigenetic regulation modules, transcripts downstream of particular 
transcription factors, and often also represent cell-type-specific programs of gene expression67. To this end, highly 
connected genes within each module are called hub genes. Hub genes were pooled in each module according 
to their intra-modular connectivity, which is defined by high positive correlation with a module eigengene. We 
filtered the top-ranked genes above 0.5 KME with the most robust connectivity within each module and used 
Ingenuity Pathway Analysis (IPA) to perform an analysis that shows the canonical pathway of selected mod-
ule hubs. Furthermore, we performed functional enrichment analysis of G-protein coupled receptor (GPCR) 
responsiveness, invasion-migration, cell cycle, immune activation, EMT-related and Tph-associated gene lists to 
establish any enrichment and overlap within the 12 WGCNA modules.

Gene ontology (GO) enrichment analysis.  GO enrichment analysis was performed using GO Elite on all 
genes within the red module27. Using Fisher’s exact test t test for over-represented functional associations28. The 
Gene Set Enrichment Analysis (GSEA) molecular signature C2 database (v6.2) was used as a reference to identify 
the biological processes, molecular functions and cellular components associated with genes in the red module.

IPA Upstream regulator analysis.  To identify the biological function of the significantly associated 
modules to traits of interest, we sought to further investigate genes within the same module participating in the 
same biological process. These genes are most likely regulated by the same or similar upstream regulators, which 
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includes transcription factors. We identified the upstream transcriptional regulators in each module with a p 
value of overlap < 0.01, which gave insight into the biological drivers of each module.

Data availability
The TCGA PRAD datasets downloaded during and/or analysed during the current study are available from the 
corresponding author on reasonable request.
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