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Novel acoustic flat focusing based 
on the asymmetric response in 
parity-time-symmetric phononic 
crystals
Hang Yang   1, Xin Zhang1, Yuechang Liu2, Yuanwei Yao1, Fugen Wu1 & Degang Zhao3

We present a two-dimensional (2D) parity-time-symmetric (PT-symmetry) phononic crystals (PCs) 
with balanced gain and loss medium. Using the super cell method of rectangular lattice, we exhibit the 
thresholdless spontaneous PT-symmetry breaking in the band structure. The numerical results show 
that the asymmetric scattering properties obviously occur in a non-Hermitian system. At two specific 
incident frequencies, unidirectional reflectionless and perfect transmission behaviors exist individually 
in opposite directions, which are accompanied by a phase transition of π. Based on the generalized 
Snell’s law, combining such a PT-symmetric medium, we design a novel metamaterial crystal for PT-
symmetric acoustic flat focusing. Its focus frequency can also be modulated by the gain/loss parameter. 
The novel flat focusing based on the PT-symmetry that we propose opens a new door for high-
dimensional applications of non-Hermitian metamaterials in acoustic wave manipulation.

Over the past two decades, there have been many studies on acoustic wave manipulations. The periodically struc-
tured PCs, metamaterials and metasurfaces are well-designed for applications such as acoustic waveguide1,2, 
acoustic focusing3–9, acoustic cloaking10, acoustic collimation11,12, and unidirectional transmission13–16. In par-
ticular, in flat focusing, PCs are implemented in many interesting manners, including negative refraction4–6 and 
metasurfaces7–9. However, most studies focused on Hermitian system, except a few works related to the complex 
domain17. Since the concept of PT-symmetry was introduced in Bender’s work18–20, it began to arouse much inter-
est on research of non-Hermitian systems, which remain invariant under the combination of parity (P) and time 
reversal (T) operations. Operator P is defined as: → −ˆ ˆp p, → −ˆ ˆx x, while operator T is: → −ˆ ˆp p, →ˆ ˆx x and 

→ −i i, which requires the non-Hermitian systems to satisfy the condition: − = ⁎V x V x( ) ( ). This condition is 
different from previous works and results in the emergence of the conjugate complex modulus, which has been 
widely explored in theory for electronic and optical systems21–32, and has introduced many interesting features.

Recently, non-Hermitian acoustics have been introduced to the 1D structure. The properties of one-way prop-
agation33 and bound states of the defect mode34 have been systematically investigated. These acoustic studies are 
only studied in 1D space. Very recently, Zhu et al. designed a curved PT-symmetric metamaterials crystal in 2D 
space, to achieve the unidirectional sound focusing effect in simulation and experiment35. However, until now, 
there has been no comprehensive analysis about the effect on the dispersion relation caused by PT-symmetry 
breaking in 2D acoustic systems. In addition, not confined to a curved structure, achieving the optional geometric 
manipulation of PT-symmetric metamaterials is a challenging problem.

In this letter, we introduce a 2D PT-symmetric PC with complex parameters. A complex bulk modulus in 
active practical systems can be uesd36, and non-Hermitian acoustic systems are also proven to be feasible in prac-
tice37–40. We analyze the degenerated band structure which experiences thresholdless PT-symmetry breaking. 
Moreover, we study the asymmetric scattering properties caused by PT-symmetry breaking. The unique unidi-
rectional reflectionless and perfect transmission behaviors with a phase transition of π are shown in the following 
sections. Based on the phase characteristic, which is associated with the generalized Snell’s law7,41, we further 
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design a PT-symmetric planar metamaterials lens for acoustic focusing, which opens a new degree of freedom of 
geometric shapes for acoustic wavefront engineering in non-Hermitian systems.

Results
Band structure.  We propose a structure of 2D PT-symmetric PCs, which is presented in Fig. 1(a). The sys-
tem is arranged alternately with two types of cylindrical rods with conjugate complex modulus, one of which 
is the gain, and the other is the loss. The longitudinal wave velocity of the gain (loss) materials has a positive 
(negative) imaginary part. Here, we use α to denote the imaginary strength of the gain/loss materials. The dis-
tribution in the x direction with balanced gain and loss satisfies the PT-symmetry condition that the real part of 
the modulus is an even function, while the imaginary part is odd. Figure 1(b) shows the diagram of the super cell 
marked as green in Fig. 1(a), which contains 2 × 1 unit cells with lattice constant a and a rod radius of 0.3a. The 
band structures of the underlying 2D Hermitian system and non-Hermitian system are calculated, respectively. 
Figure 1(c) shows the band structure of common PCs with only the real component (α = 0). The wave vectors 
sweep along the boundary of the irreducible Brillouin zone for rectangular lattice. Although the 2 × 1 super cell 
method was used, the calculation result is identical to that of the unit cell, except a band corresponding to the 
unit cell is folded into two bands in the x direction of the super cell. Some bands also cross and degenerate in 
the Brillouin zone. As shown in Fig. 1(d), thresholdless PT-symmetry breaking spontaneously occurs when the 
imaginary component (α = 0.25) is added to form a balanced complex elastic modulus. Many degenerated bands 
appear along the boundary, especially in the Γ-X and Y-M directions. Similar to the case for 1D structures, some 
bands merge at the high symmetry points (labeled as dashed box A). However, in dashed box B, the originally 
degenerated bands split and merge again with other multiple bands, which does not occur in low-dimensional 
situations. The compression of merged bands also causes the appearance of directional bandgaps.

To provide a vivid illustration of the degenerate phenomenon, the 3D dispersion surface for the first and sec-
ond bands are plotted. The band structure for the super cell of the underlying Hermitian acoustic system (α = 0) 
is shown in Fig. 2(a). We observe a degenerate contour of frequency eigenvalues along the line of kx = 0.5π/a in 
the band structure because of the fold features in the super cell system. When the gain and loss are added to form 
a non-Hermitian system with a coefficient α = 0.25, Fig. 2(b) shows that the degenerate contours at the band 
crossing instantaneously experience thresholdless spontaneous PT-symmetry breaking. A particularly interesting 
phenomenon occurs, where the folded bands merge together outwards from the primary degenerate contour, and 
a new contour appears at the boundary between the merged and the independent regions. Thus, degeneracy in 3D 

Figure 1.  (a) Model of the 2D non-Hermitian systems (infinitely long in the z direction) composed of 
cylindrical rods embedded vertically in water. Rods labeled L and G represent the loss and gain regions 
respectively. (b) Plane schematic diagram of a 2 × 1 super cell in the structure. (c) Band structure of 2D 
Hermitian PCs for a rectangular lattice with α = 0. The first Brillouin zone of the rectangular lattice is indicated 
in the inset. (d) Real part of the band structure in the non-Hermitian system for a rectangular lattice with 
α = 0.25.

https://doi.org/10.1038/s41598-019-46467-3


3Scientific Reports |         (2019) 9:10048  | https://doi.org/10.1038/s41598-019-46467-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

k-space is exhibited as bands merging in a continuous area, which includes high-symmetry points and arbitrary 
low-symmetry points. Due to the extra spatial degree of freedom, the degenerate points in the 1D structure evolve 
into an irregular contour in the 2D system. A comparison of data values also shows that the bands nearly flatten 
in the x direction perpendicular to the degenerate contour after they merge. The imaginary part, as presented in 
Fig. 2(c), contains identical degenerate contour and forms complex conjugate pairs of frequencies with the real 
components.

Properties of the asymmetric response.  At the frequency of degenerated points, these structures exhibit 
a notably interesting feature of acoustic control. We use an eight-layer cell structure in the x direction, which 
includes four loss regions and four gain regions, as shown in Fig. 3(a). Here, the regions outside the periodic 
structure are consistent with the material of the background medium. Incident waves from either the left or 
right side are perpendicular to the structure. First, we calculate the 2D Hermitian system (α = 0). As depicted in 
Fig. 3(b), the reflection (green dotted line) in this system is weak because there is hardly any bandgap in the Γ-X 
direction in Fig. 1(a). The reflected spectrum is overlapping for the incident acoustic waves from the left or right.

In the 1D PT-symmetric system33, the acoustic waves incident from the left and right sides, possess the same 
transmission spectrum but different reflection spectra. Next, we have calculated the transmission and reflection 

Figure 2.  (a) Reduced frequencies for the first (blue) and second (red) super cell bands of the Hermitian 
system. (b,c) Real and imaginary parts of the frequencies for the first and second super cell bands, respectively. 
The dark gray regions indicate the merged bands.

Figure 3.  (a) Schematic presentation of the normal incidence model, which is composed of an 8-layer cell 
structure: four loss regions and four gain regions. The reflected and transmitted acoustic waves from the left/
right incidence are indicated by the red/blue arrows. (b) Reflection coefficient (green dotted line) in the non-
dissipative system and transmission (black solid line) and reflection coefficient of the left-incident (red solid 
line) and right-incident (blue dashed line) waves in the non-Hermitian system.
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coefficients of left-incident and right-incident elastic waves that propagate through the 2D PT-symmetric PCs. 
As illustrated in Fig. 3(b), the left reflection is different from the right one, and their strengths are much higher 
because of the gain and loss medium. High reflections and high transmissions occur at the frequencies of approx-
imately 0.26 and 0.75, which show a great coincidence with the frequency of marked degenerated points 1 and 
2 at the Γ-X direction in Fig. 1(d). The transmissions here are much higher than 1. Although the left and right 
reflection coefficients have different values, the overall trend is roughly identical except for the frequency region 
indicated in gray in which we are interested. In the marked region, two reflection peaks are distinctly inter-
laced, which corresponds to different unidirectional zero reflections in the frequency domain and simultaneously 
results in the obvious asymmetric response in this frequency range.

To better understand the unidirectional behaviors, we have focused on the gray frequency region in Fig. 3(b). 
The 1D PT system always obeys an exact “generalized unitarity relation”27:

=


 −



r r t

T
1 1 ,

(1)L R
2

where t is the transmission coefficient, ≡T t 2 is the transmittance, and rL and rR are the left and right reflection 
coefficients for the incident waves, respectively.

This relation leads to another form:

− =T R R1 , (2)L R

where ≡R rL R L R( ) ( )
2 is the reflectance. According to Eq. (1), rL or rR must vanish when T = 1. For T < 1, Eq. (2) 

can be rewritten as + =T R R 1L R , which is a generalization of the more familiar conservation relation T + R = 1 
applied in the lossless Hermitian system, with the left and right reflectance RL = RR = R. For T > 1, Eq. (2) becomes 

− =T R R 1L R .
In our 2D PT-symmetric PCs, the principles applied the in 1D structure are also applicable. We discover two 

exceptional points (EPs) with obvious unidirectional behavior in the frequency range of our study. As shown in 
Fig. 4(a), the right reflection is close to 0 and the left reflection is approximately 0.20 at the frequency 
ω πν= . a0 475(2 / )1 0 , whereas at the frequency ω πν= . a0 555(2 / )2 0 , the reflections are ≈r 0L  and ≈ .r 0 32R . 
Figure 4(a) also shows that the transmission spectra of two incident directions are identical. A transmission valley 
forms because of the directional bandgap in the Γ-X direction, and two EPs are located around that bandgap. At 
two corresponding EPs, the transmission is exactly 1. This result presents a unidirectional behavior of reflection-
less perfect transmission, where one of the reflections always remains at zero but the other is not when T = 1. In 
addition, the relation between reflection and transmission in our 2D structure excellently satisfies the generalized 
unitarity relation. As illustrated in Fig. 4(b), the phase difference between transmitted waves and reflected waves 
is always π/2 regardless of the incident direction. Moreover, the right reflected waves experience an abrupt phase 
transition of π at frequency ω1, while the left reflected waves experience the same transition at frequency ω2. The 
phase between the left and right reflections is π for the case of T > 1 but is invariably equal for T < 1. One-way 
transport without reflection occurs when the PT-symmetric phase changes into the broken phase mainly because 
the reflected waves are completely absorbed by the loss part. However, the unitary behavior of transmitted acous-
tic waves is only contributed by the gain part in the lossy system.

The simulated scattering pressure fields in Fig. 5(a–d) have excellently confirmed the transmittance and reflec-
tance results in Fig. 4(a). The incident fields are not shown. As depicted in Fig. 5(a–b), there is a significant 
reflection phenomenon when the waves are vertically incident at ω1 = 0.475, but the right-incident waves are 
reflectionless. Conversely, Fig. 5(c–d) show that the left incidence has no reflection but the right reflected wave is 
obviously at ω2 = 0.555. Based on the property of EPs, it can be designed into a novel acoustic switch device using 

Figure 4.  (a) Left (red solid line) and right (blue dashed line) reflection coefficients that correspond to the left 
y-axis and the transmission coefficient (black solid line) that corresponds to the right y-axis. (b) Phases of the 
left-reflected, right-reflected and transmitted waves in the asymmetric frequency range.
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the unidirectional reflectionless behavior, which is also applied to other multifunctional devices in acoustic wave 
manipulations.

Acoustic flat slab focusing.  There is always a phase difference π between the left- and right-reflected waves 
when the transmittance is greater than 1. It can be utilized to frame two units of metamaterials, which can real-
ize the discrete phase gradient of π that covers the full range of 2π. Using the above structure and parameters, 
Fig. 6(a) shows two units of PT-symmetric metamaterials. Due to different arrays of gain and loss mediums, the 
reflected waves of two units correspond to the left and right reflected waves, respectively. Here, the lattice length 
a is 1 cm. To clearly exhibit the discrete phase shifts, as plotted in Fig. 6(b), the pressure distribution of reflected 
waves at the left edge of each unit is independently calculated with free space wavelength λ = 3.5a. At this wave-
length, the reflection amplitudes in two units are nearly equal, which are approximately 3/5 of the amplitude of 
the incident wave. The pressure strips are obviously shown, and there is a shift of λ/2, i.e., the π phase between 
adjacent peaks of two reflected waves, so that two such unit structures can shift up to provide a discrete phase 
gradient for the entire 2π range.

Using the 2π range phase shifts for reflected waves, we can design different metamaterials to achieve the wave-
front manipulation with the combination of the generalized Snell’s law:

θ θ φ
− =k

n
d
dy

[sin( ) sin( )] 1 ,
(3)r i

i

where π λ=k 2 /  is the wave vector in the background medium (water), θr(θi) is the angle of reflection (incidence), 
ni is the refractive indices of the media, and dφ/dy is the phase shift per unit distance along the y direction. When 
the plane wave is normally incident on the metamaterials, Eq. (3) can be rewritten as:

θ λ
π

φ
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Equation (4) demonstrates that the reflected angle can be freely controlled by designing the appropriate phase 
profile along the y direction.

Based on this property, we design a non-Hermitian acoustic flat lens to focus on the acoustic plane wave. 
Figure 7(a) shows the schematic diagram of the flat lens, which offers more possibilities for controlling the 
geometric freedom of metamaterials. The hyperboloidal phase profile along the y direction is used to realize 
acoustic point focusing at a distance f from the structure. For a given focal length f, the positions of phase shift 
φ(y) in the y direction must satisfy the equation:

φ π
λ

= ⋅ = + − .y k AB y f f( ) 2 ( )
(5)

2 2

Here, we chose f = 5λ as the focal length. For the sake of clarity, there is a rule to convert a continuous phase 
profile to a discrete phase profile. Because the π phase difference of two structural arrangements, the units 

Figure 5.  (a,b) Acoustic scattering pressure field for left and right incidences at ω1 = 0.475. (c,d) Acoustic 
pressure field for left and right incidences at ω2 = 0.555. Here, the amplitude is normalized. The field of incident 
waves is not shown and the directions of transmitted and reflected waves are indicated by black arrows.
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providing π phase shift is utilized to displace the continuous phase range π ± π/2 at the specified position in the 
y direction. From Eq. (5), the coordinates of discrete phase shifts are calculated to obtain y1 = 0, y2 = ±0.080 m, 
y3 = 0.116 m, and y4 = 0.145 m, as shown in Fig. 7(b). We arrange the two unit structures to construct the lens 
according to coordinates, and the absolute acoustic pressure field of reflected waves for the designed lens is plot-
ted in Fig. 7(c). It is clearly observed that an excellent focusing effect occurs at the left space of the constructed 
lens when the plane wave is vertically incident. Figure 7(d) shows the distribution of the absolute pressure field 
in the vertical direction, where the coordinate of the x axis is selected as −0.13 m away from the outer structure. 
The intensity of the pressure at the focal points is approximately 2.3 times larger than that of the incident waves.

We have demonstrated the effect of imaginary parameter α in Fig. 8. The bandgap range and center frequency 
between the second and third bands in the Γ-X direction increase with the increase in α. At the bandgap fre-
quency range, it will forms a transmission valley, so the left and right EPs (T = 1) are easier to find around the 
bandgap. On both sides of the EPs, there will always be a case of T > 1, which determines the frequencies of the 
phase difference of π. Thus, the imaginary parameter α has a great effect on the frequencies of the phase tran-
sition. We can control the frequency, which has a phase difference of π, by changing the value of the imaginary 
part. Theoretically, a high focusing efficiency of reflected waves can also be acquired by modulating the gain/loss 
strength α. Therefore, both the frequency and the amplitude of acoustic flat focusing can be manipulated.

Discussion
We have designed a novel 2D non-Hermitian PC for acoustic flat focusing. It is composed of soft rubber rods with 
a complex conjugate elastic modulus, which are periodically embedded in water. When plane waves propagate 
through the PT phononic structure from opposite directions, there are significant unidirectional behaviors and 
phase transitions in the scattering phenomenon. The right-reflected waves vanish at ω πν= . a0 475(2 / )1 0 , while 
the left-reflectionless effect appears at ω πν= . a0 555(2 / )2 0 . Combining the generalized Snell’s law and the phase 
shift of two unit structures, we constructed the planar non-Hermitian metamaterial lens to achieve acoustic 
focusing via reflected waves. Such asymmetric response and phase modulation in our study can be used to con-
ceive acoustic experiments and design functional devices. It also has great potential in other lattice systems, 
non-Hermitian metasurfaces, and even the transient time dimension.

Figure 6.  (a) Schematic diagram of two units for non-Hermitian metamaterials. The green and orange arrows 
indicate the propagation direction of incident and reflected waves, respectively. (b) Pressure strips of the 
reflected waves by the two units. The high maps of the pressure field are utilized to distinctly display the phase 
shift between two units. Here, the amplitude is normalized.

https://doi.org/10.1038/s41598-019-46467-3


7Scientific Reports |         (2019) 9:10048  | https://doi.org/10.1038/s41598-019-46467-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Methods
Numerical simulation of the structures.  The 2D PT-symmetric PC considered in this paper is composed 
of gain/loss materials in water (ρ = kg m1000 /0

3, ν = m s1490 /0 ). Both the gain and loss materials are soft rubber 
(ρ = kg m950 /L G( )

3), but their longitudinal wave velocities are distinguished by positive and negative imaginary 
parts (ν α= × ± i m s1550 (1 ) /L G( ) ). To simplify the calculation process in our case, we ignore the shear modulus 
in rubber because it does not significantly affect the essential physics of the system. The z direction in this PT 
system is infinitely long, and the acoustic waves propagate along the x direction. Throughout this paper, the 
finite-element method (FEM) based on the software COMSOL Multiphysics 5.3a is employed for the simulations. 
The calculations of the band structure are performed with the super cell method. For Fig. 3(a), the background 

Figure 7.  (a) Schematic diagram of the design of the lens. A hyperboloidal phase profile along the y direction 
is used to focus the acoustic plane wave to a single point at a distance f from the metamaterials. (b) Discrete 
phase shifts along the y direction. (c) Normalized absolute pressure field for the designed lens with f = 5λ. (d) 
Distribution of the absolute pressure in the y direction at x = −0.13 m.

Figure 8.  Corresponding frequency of the bandgap and left and right EPs in the Γ-X direction as a function of 
the gain/loss parameter α.
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pressure field of plane waves is used, and periodic boundary conditions are imposed to the upper and lower 
boundaries to simplify the structure and reduce the amount of calculation without losing accuracy. Each strip of 
the pressure pattern in Fig. 6(b) is independently calculated. Perfectly matched layers (PMLs) are also used in 
Fig. 7(c) to eliminate the reflected waves by the outer boundaries.

Realization of the structures.  The structures consist of the loss and gain medium with a positive and neg-
ative imaginary part respectively. Generally, the acoustic loss materials are ubiquitous in nature because acoustic 
loss can be easily caused by viscous elasticity. It should be noted that a natural acoustic gain media has not yet 
been found. However, it can be effectively realized by well-designed feedback systems39. More specifically, the 
proposed structures can be realized by using the sensors and pre-amplifiers. The sensed signal is amplified in a 
pre-amplifier of appropriate gain progression. In addition, an equivalent acoustic gain system can be constructed 
by combining auxiliary devices such as microphones and loudspeakers.
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