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Walking-related locomotion is 
facilitated by the perception of 
distant targets in the extrapersonal 
space
Sara Di Marco1,2, Annalisa Tosoni1, Emanuele Cosimo Altomare1, Gabriele Ferretti3, 
Mauro Gianni Perrucci   1 & Giorgia Committeri1

The Gibsonian notion of affordance has been massively employed in cognitive sciences to characterize 
the tight interdependence between hand-related actions, manipulable objects and peripersonal 
space. A behavioural facilitation effect, indeed, is observed for grasping actions directed to objects 
located in the ‘reachable’ peripersonal space. Relevantly, this relationship is supported by dedicated 
neural systems in the brain. The original notion of affordance, however, was directly inspired by real-
time interactions between animals and their extended natural environment. Consistently, also the 
extrapersonal space representation can be significantly modulated by action-related factors, and the 
brain contains dedicated systems for the representation of topographical space and navigation. Here 
we examined whether a facilitation effect could be also described for a walking-related action in the 
far extrapersonal space. To this aim, we employed a go/no-go paradigm requiring subjects to execute 
a footstep ahead in response to pictures of a virtual reality environment containing objects located 
at different distances (near, far) and eccentricities (central, peripheral). A walking-related, facilitation 
effect for distant extrapersonal locations was found, suggesting an automatic trigger of walking by 
positions that preferentially guide spatial exploration. Based on the parallelism with the literature on 
micro-affordances, we propose that this effect can be described in terms of “macro-affordances”.

Contemporary cognitive science has been largely influenced by the ethologically-inspired idea that the brain’s 
functional architecture is organized to reflect the interactive nature of animals’ behaviour in their natural environ-
ment1. Accordingly, since its inception in 19792, the notion of affordances as perceivable opportunities of action 
offered by the environment to an animal has been massively employed in experimental psychology and cognitive 
neuroscience to explain and interpret a series of findings indicating that object- and space-related representations 
are inextricably linked to action-related representations3.

Within this framework, the majority of experimental works have focused on the relationship between 
hand-related actions, manipulable objects and the reachable peripersonal space. At the behavioural level, for 
example, a facilitation effect has been observed when a visually-presented manipulable object was associated 
with the execution of a functionally appropriate hand action (in terms of spatial alignment between the object’s 
features and the responding hand or of appropriateness of the hand grip)4,5. Subsequent studies have shown that 
this behavioural facilitation is specifically observed when graspable objects are located within the reachable perip-
ersonal space6,7, thus indicating that the perception of the affording features of an object (i.e. micro-affordances) is 
spatially constrained, i.e. it depends on the spatial relationship between the objects and the motor actor.

Therefore, despite the above-mentioned original emphasis on subject-environment interaction, current stud-
ies on the issue have specifically focused on reaching/grasping-related affordances or on body-scaled affordances. 
Classical studies in the field of ecological psychology, for example, have investigated affordances beyond reach-
ing space by employing action judgments and movement adaptations while navigating through apertures/gaps, 
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demonstrating that perception of affordances is body-scaled (e.g. the body size is implicitly used to judge ‘pass-
ability’ and to adapt neck and shoulders movement)8–11. Within the context of the embodied cognition research 
tradition, instead, the relevant series of studies by Proffitt and colleagues have employed explicit distance judg-
ments to show that the representation of the large-scale extrapersonal space (i.e. the space that falls far away 
from our body; see12 for a review on different space models and sectors) can be significantly modulated by motor 
potentialities/resources13–16. In particular, it has been shown that contingent factors such as wearing a heavy 
backpack13 or having consumed high caloric substances15 as well as stable variables such as the decline in motor 
functions with aging16 can significantly influence the explicit perception of slant and object’s distance within the 
extrapersonal space. Notably, recent studies have additionally shown that extrapersonal space perception can be 
significantly modulated by the implicit representation of action possibilities/potentialities of a human-like agent 
present in the scene, both when it was used as a reference frame for a near/far distance judgment (i.e. other-based 
judgment17) and when it was completely task-irrelevant during self-based judgments18. For example, we have 
shown that the presence of a human-like agent looking at an object brings the observer to judge the object as less 
distant in the environmental scene.

Finally, it has been recently shown that priming of leg-related actions, such as walking and running, can signif-
icantly expand the portion of extrapersonal space judged as near in other-based coordinates19 as well as that the 
peripersonal space is significantly extended during full-body actions such as walking (as compared to standing20). 
Taken together, these results are relevant as they show, for the first time, that visual perception of the extended 
physical environment is strongly influenced by action possibilities, capabilities and/or intentionality.

However, a still unexplored question is whether there are perceptual factors or variables of the extrapersonal 
space that directly modulate the planning/execution of a whole-body action such as locomotion. This question 
appears particularly intriguing because it directly taps into the original Gisbonian notion of affordance as an 
intrinsic property of the real-time interactions between animals and their natural environment2. At the evolu-
tionary level, indeed, all animals appear to have an intimate relationship with their extended natural environment 
and locomotion appears to be the main form of spatial exploration of the extended environment. In particular, 
as compared to near extrapersonal locations from which information can be extracted from different sources, 
locomotion is the only available resource to cover distance and to access information from more distant locations 
in the extrapersonal space. It is also important to note that, differently from small objects such as faces and tools, 
environmental scenes/layouts not only develop in depth but also cover a larger portion of the peripheral visual 
field.

Accordingly, at the neurobiological level, not only it has been shown that the representational structure of 
scene-related regions of the ventromedial occipito-temporal cortex21,22 is primarily defined by the spatial char-
acteristics of an environmental scene such as distance (near, far) and expanse (open, closed)23 but also that 
these regions contain a preferential representation of the peripheral (as compared to the central) visual field24. 
Interestingly, a significant bias towards the periphery of the visual field has also been shown in dorso-medial pari-
etal regions associated with ego-motion25 and these two sets of regions (dorso-medial parietal and ventromedial 
occipito-temporal regions) represent the core components of a medial parieto-temporal network dedicated to the 
processing of visual information for the purpose of spatial exploration and navigation26.

On these bases, locomotion might be preferentially guided by distant and peripheral rather than near and 
central positions in the extrapersonal space, as peculiar and distinctive features of the environmental layouts.

Following these predictions, here we investigated whether, as for grasping towards centrally-presented objects 
in the peripersonal space, a facilitation effect could be observed for a walking-related action in response to targets 
located at further vs. nearer and peripheral vs. central positions of the extrapersonal space. Framed differently, 
here we investigated whether visual perception of an environmental scene/layout framing objects from a large 
distance and eccentricity from the observer preferentially affords a walking-related action.

To this aim, we presented a series of pictures of a virtual reality environment containing a target object located 
at different extrapersonal distances (near, far) and eccentricities (central, peripheral) from the observer (see 
Fig. 1) and required participants to execute a single footstep forward (taken as proxy of walking) or a control 
action involving a simple pedal release, in response to the target objects.

Material and Methods
Participants.  The study was conducted on a total sample of 58 right-footed healthy subjects that partici-
pated in the study after providing written informed consent in accordance with the ethical standards of the 1964 
Declaration of Helsinki.

Experiment 1 was conducted on a total of 30 participants (mean age: 22; 13 males) and the execution order of 
the instructed movements (simple release, footstep) was manipulated between groups: half of the subjects per-
formed the footstep action first (Group 1) and the other half performed the release action first (Group 2).

Experiment 2 was conducted on a group of 18 participants (mean age: 25.2; 9 males), with the two movements 
collected in separate sessions.

The remaining 10 participants (mean age: 27, 5 males) were enrolled for a control study on explicit perception 
of the object’s distances employed in the two main studies of the work.

All participants had normal or corrected-to-normal vision and were naïve as to the purposes of the experi-
ments. The protocol was approved by the Ethics Committee of G. d’Annunzio University of Chieti, Italy.

Experiment 1: stimuli, apparatus and procedure.  Stimuli included a selection of pictures from a vir-
tual reality environment, created by means of a 3D modelling software (3D Studio Max 4.2, Autodesk, Discreet) 
representing a square arena of a three-winged palace with a beach umbrella or a marble fountain of similar size 
and color positioned in front of the central wing.
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Before the beginning of the experiment, a movie simulating a regular-speed walk across the environment was 
shown to subjects in order to get them familiar with the environment.

Subjects were instructed to stand on a multi-layer platform positioned in front of a 42″ screen covering about 
70° of visual angle (57 cm distance) and to hold down an in-house customized piano pedal with their right heel. 
A series of pictures of the environment were then presented in which both the distance (near, far) and the eccen-
tricity (central, peripheral) or the target object (the umbrella or the fountain) was manipulated across trials and 
subjects were instructed either to simply release the foot pedal with the heel of their right foot (while keeping the 
foot’s front on the ground) or to release the pedal and execute a footstep ahead at the onset of the picture and to 
get back in the starting position (see Fig. 1 for the experimental set-up).

Figure 1.  Experimental Design. (A) Set up: Experimental subjects were standing on a multi-layer platform 
positioned in front of a screen covering about 70° of visual angle and holding down a foot-related response 
pedal with their right heel. The paradigm was a go/no-go task requiring the execution of a footstep ahead or 
a simple release action in response to pictures of a virtual reality environment containing objects located at 
different distances (near, far) and eccentricities (central, peripheral) from the observer. The go/no-go task 
employed in experiment 1 required a visual discrimination of the target object. The go stimulus (fountain, 
umbrella) was alternated across blocks while the instructed movement (simple release or footstep) was 
counterbalanced across subjects, with half of the subjects that performed the footstep first and the other half 
that performed the simple release first. The go/no-go task employed in experiment 2 was based on picture 
pairs and required an identity judgment (same vs. different) on the whole picture (i.e. go when the target image 
is identical to the prime image and no-go when different). The two instructed movements (simple release, 
footstep) were collected in two separate sessions at about 1 month apart. (B) The panel shows exemplar stimuli 
of the two within-subjects visual factors.
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The subjects’ task was to respond at the onset of the picture when it contained the fountain or the umbrella 
(go/no-go task) with the “go” stimulus alternated across blocks. The reaction time associated with the foot pedal 
release was recorded on each trial. Importantly, the go/no-go task was exclusively employed to ensure that par-
ticipants’ attention was focused on the target object without an explicit coding of its spatial properties. However, 
since the task required a perceptual discrimination of the target stimuli (umbrella vs. fountain), we expected that 
the lower perceptual salience of the targets in far and peripheral positions (compared to near and central) would 
induce a perceptual difficulty confound (i.e. more difficult perceptual discrimination for far and peripheral vs. 
near and central targets). Therefore, the simple release action was included in the design as to control for both 
the perceptual difficulty, as well as for the basic aspect of the footstep action (including the proprioceptive inputs 
from the pressure/release of the foot pedal). We made use of the simple pedal release action as a baseline measure 
that included the perceptual factors of identifying central vs. peripheral targets. This baseline measurement was 
subtracted from the reaction time associated with taking the full forward footstep motion in each condition, 
resulting in a value we dubbed the “walking cost.” In other words, the walking cost is the difference between the 
mean releases times associated with the footstep action vs. the simple release action for each of the four condi-
tions of distance and eccentricity. If a lower walking cost is observed in response to targets positioned in further 
vs. nearer and peripheral vs. central locations of the extrapersonal space, then we will have identified a walking 
facilitation effect for far and peripheral targets, akin to the facilitation of grasping actions for targets presented 
centrally in peripersonal space.

Concerning the instructed movements, it is worth noticing that during the simple release action (i.e. control 
action) the leg remained still on the response pedal and the body weight loaded on the (left) non-responding foot, 
while during the footstep action, the participants were instructed not only to move the leg for a step length but 
also the entire body ahead as if they were about to start walking. As a result, during the footstep action, the body 
weight was shifted from the non-responding left to the responding right foot and this could be correctly executed 
without falling off the platform or running into the equipment. Notably, we are aware that the footstep action is 
not as natural as walking but, as noted in the Introduction, in the current work we consider this action as a valid 
proxy for walking because there are basic postural, muscular and kinematic elements that are shared between the 
two actions.

Target distance and eccentricity were manipulated across trials by framing the object at 8 possible distances 
(from 5 to 8 virtual meters for the near condition and from 28 to 40 virtual meters for the far condition) and at 
2 levels/amplitudes of visual angle with respect to the observer’s central point of view (0° for the central con-
dition and from 15° to 30° for the peripheral condition). Specifically, the object occupied a fixed position in 
the environment and the pictures framing the target object were rendered by moving the camera at different 
extrapersonal distances along a vector connecting the camera with the target object and by rotating the cam-
era at different degrees of visual angle. This ensured that, for each selected distance, the peripheral and central 
objects were equally distant from the observer. The side of presentation of the target object for the peripheral 
condition (left, right) was balanced and randomized across the different extrapersonal distances. Distances were 
expressed in virtual meters (which have been estimated as approximately doubled with respect to real distances 
in the current environment18) and were selected with particular reference to the Grüsser’s distinction between a 
near-distant and a far-distant extrapersonal action space27. In particular, near and far locations were selected to 
fall very far from the proposed ~8 meters (i.e. 16 virtual) boundary defining a near- vs. far-distant extrapersonal 
action space18,27.

Each participant completed 8 randomized blocks for each instructed movement (i.e. 8 blocks for the footstep 
action and 8 blocks for the simple release action), with each block including 32 go pictures and 8 no-go pic-
tures. Participants did not receive any feedback about their accuracy performance but blocks with more than two 
recorded errors were repeated at the end of the session. In order to make the experiment as more ecological as 
possible, moreover, no specific instructions about fixation were given to the participants.

Pictures were alternated each 3000–4500 ms with a white fixation cross on a black background and were pre-
sented until a response was recorded for a maximum of 2500 ms.

Before starting the experiment, each participant was extensively trained on the task until the movement was 
correctly executed without the need of looking down at the feet and the starting position retrieved before the 
onset of each picture.

Stimulus presentation and response collection were controlled by a customized software based on Cogent 
2000 and implemented in Matlab (The MathWorks Inc., Natick, MA, USA).

Experiment 2: stimuli, apparatus and procedure.  Experiment 2 was based on the same set of visual 
stimuli (i.e. pictures from a virtual reality environment containing a target object located at different extraper-
sonal distances and eccentricities from the observer) and behavioural responses (i.e. simple release, footstep) 
employed in experiment 1 but the two instructed movements were collected in two separate sessions (at about 1 
month apart) and using a different go/no-go paradigm. The paradigm employed in experiment 2, in particular, 
involved the presentation of pictures pairs (i.e. prime and target image) and required subjects to execute the 
instructed movement only when the target picture was identical to the prime picture and to refrain the response 
when the pictures were different (note that the two images for the no-go trials belonged to different distance’ cat-
egories, i.e., near/far and vice versa, thus resulting in a very easy discrimination). Therefore, the current paradigm 
was aimed at avoiding the potential perceptual difficulty confound associated with the discrimination of objects 
at different distances and eccentricity (i.e. more difficult perceptual discrimination for far and peripheral vs. near 
and central objects). Each picture was presented for 700 ms with an SOA of 500 ms between the prime and target 
picture and an ITI of 2000 ms between each pictures pair. As indicated above, the response was provided at the 
onset of the target picture and the reaction time associated with the foot pedal release was recorded on each trial.
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Each participant completed 2 experimental sessions (simple release and footstep) collected at about 1 month 
apart and each session included 6 blocks with 32 go trials (target picture equal to prime picture) and 8 no-go trials 
(target picture different from prime picture).

Data for the two instructed movements were collected in separate sessions to avoid potential order effect 
between execution of the two actions (e.g. simple release action executed as a sort of inhibited/blocked footstep 
when collected immediately following the footstep session). All participants were instructed to maintain fixation 
on the central fixation cross throughout the experiment.

As for experiment 1, before the beginning of the experiment, a brief training was performed on each partici-
pant in order to ensure that the two instructed movements were correctly executed.

The same experimental set-up of experiment 1 was used (i.e. pictures projected on a 42″ screen covering 
about 70° of visual angle) but stimulus presentation was controlled by the E-Prime software and the foot-related 
responses were recorded through a foot-pedal response system connected with the E-Prime software.

Results
Experiment 1.  Analysis of the accuracy performance in experiment 1 indicated that the number of repeated 
blocks (i.e. blocks with more than two recorded errors) was very low (9 repeated blocks over a total of 480 blocks: 
1.8%) with an average number of errors per block of 3.1 (standard deviation: 0.4).

The “error” blocks were then removed from the dataset and analysis of the release times was conducted on 
the original blocks with less than two recorded errors plus the blocks which were repeated at the end of the 
session. As illustrated in Fig. 2 (panel A), the results showed both a general increase of the release times for the 
execution of the footstep action vs. the simple release and a progressive increase of the release times from the 
near-central condition to the far-peripheral condition. Notably, a similar trend was observed in the two groups 
with an inverted order of the two instructed movements. This impression was statistically confirmed by the 
results of a mixed ANOVA with movement order (group that performed the footstep action first, group that 
performed the simple release first) as a between-subjects factor and movement type (simple release, footstep), 
target distance (near, far) and target eccentricity (central, peripheral) as within-subjects factors. The ANOVA 
results, indeed, indicated a no significant effect of movement order (main effect of movement order and inter-
actions between movement order and movement type, target distance and target eccentricity, all p > 0.05) but 
a significant main effect of movement type (F(1,28) = 15.42, p < 0.001), target distance (F(1,28) = 233.7, p < 0.001) 
and target eccentricity (F(1,28) = 386.2, p < 0.001), as well as significant interactions between movement type and 
distance (F(1,28) = 7.02, p = 0.01; Cohen’s d = 0.5; LSD post-hoc comparisons: footstep far > footstep near > release 
far > release near, all p < 0.05) and between distance and eccentricity (F(1,28) = 167.1, p < 0.001; LSD post-hoc 
comparisons: FP > NP > FC > NC, all p < 0.05).

Therefore, in addition to a general cost for the execution of the more complex footstep action, longer release 
times were observed for targets in further and more peripheral positions and this pattern was independent of 
whether the footstep was executed before or after the simple release.

As noted above, however, since these results were attributed to a perceptual confound associated with percep-
tual discrimination of the target object, we next examined modulations by extrapersonal distance and eccentricity 
with respect to a measure defined as “walking cost”, corresponding to the difference between the mean release 
times associated with the footstep action vs. the simple release action for each of the four conditions.

Data inspection indicated that far and peripheral locations were associated with a relatively smaller “walking 
cost” with respect to near and central locations. To examine whether this impression was statistically confirmed, 
a mixed ANOVA was conducted on the “walking cost” with movement order as a between-subjects factor and 
target distance (near, far) and target eccentricity (central, peripheral) as within-subjects factors. Besides replicat-
ing the non-significant effect of movement order already observed in the former ANOVA, this analysis indicated 
a significant main effect of target distance (F(1,28) = 7.03, p = 0.01; Cohen’s d = 0.5) and a marginally significant 
distance by eccentricity interaction (F(1,28) = 3.4, p = 0.07; LSD post-hoc comparisons: FP < NP, FC and NC, all 
p < 0.05).

Therefore, consistent with our predictions, target objects positioned in further and, to some extent, more 
peripheral locations were particularly spared from the extra cost of moving the foot forward.

Experiment 2.  As for experiment 1, data from experiment 2 were analyzed as a function of target distance 
and target eccentricity. However, since the go/no-go task (go when the target image is identical to prime image 
and no-go when different) was specifically aimed at avoiding the perceptual difficulty confound associated with 
the target object discrimination observed in experiment 1, the effect of target distance and target eccentricity was 
directly estimated on the release times associated with the two instructed movements.

As illustrated in Fig. 3A, in addition to a general increase of the release times for the execution of the footstep 
action vs. simple release, the results of experiment 2 showed relatively shorter release times for execution of the 
footstep action in response to objects positioned in further vs. nearer locations. Statistically, this was confirmed by 
a significant main effect of movement type (F(1,17) = 23.9, p < 0.001) and a significant movement type by distance 
interaction (F(1, 17) = 7.72, p = 0.01; Cohen’s d = 0.67) in a repeated-measures ANOVA with movement type (sim-
ple release, footstep), target distance (near, far) and target eccentricity (central, peripheral) as factors. Post-hoc 
comparisons (LSD) on the interaction confirmed a significant advantage for execution of the footstep action, and 
not the simple release action, in response to target objects in far vs. near locations (far vs. near, footstep action: 
p = 0.01; far vs. near, simple release: p = 0.22).

Therefore, consistent with our predictions, data from experiment 2 showed a facilitation effect, in the form of 
a classical reaction-time advantage, for a walking-related as compared to a control action in response to targets 
positioned in further vs. nearer locations of the extrapersonal space (also see Fig. 3B for a plot of the “walking 
cost” in the different conditions).
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As far as the accuracy performance, instead, data were analyzed by conducting an ANOVA on the percentage 
of correct responses during the “go” trials with movement type (simple release, footstep), target distance (near, 
far) and target eccentricity (central, peripheral) as factors. Consistent with our expectations, the accuracy perfor-
mance was quite high during the experiment (mean accuracy = 99%) with no significant difference between con-
ditions (all p > 0.05). Moreover, the false alarms rate, defined as the percentage of trials with a recorded response 
during the no-go trials, was very low (2.6%).

As a final control analysis, in a separate group of subjects we examined whether the employed distances 
were perceived correctly by requiring an explicit categorical judgment of the distance (near vs. far). The results 
showed that the perceived category corresponded to our categorization of the distances (mean accuracy = 97%, 
3% of mismatch trials predominantly occurring during judgments of the most distant position within the near 
category).

Discussion
Summing up, based on previous behavioural and neuro-functional evidence, here we investigated whether far and 
peripheral spatial locations within the environmental extrapersonal space are able to facilitate a walking-related 
action.

Figure 2.  Results of Experiment 1. (A) The graph displays the release times associated with the execution of the 
footstep action and the simple release action as a function of target distance (near, far) and target eccentricity 
(central, peripheral) mediated across the two groups that performed the two instructed movements with an 
inverted order. (B) The graph displays the “walking cost” (i.e. the difference between the mean release time 
associated with the footstep action vs. the mean release time associated with the simple release action) as a 
function of target distance and target eccentricity.
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The results showed a facilitation effect, both in the form of a reduced cost for moving the foot forward vs. sim-
ply releasing the foot pedal (experiment 1) and as a more classical reaction-time advantage for a walking-related 
action as compared to a control action (experiment 2), in response to target positioned in distant locations of the 
extrapersonal space.

Importantly, since the employed tasks did not require an explicit coding of the object’s spatial properties, the 
walking-related facilitation effect observed in this study was completely implicit.

Notably, moreover, since in the current study we were specifically interested in the study of walking-related 
modulation in the extrapersonal space, all targets objects were presented to fall beyond the reaching space. 
Therefore, although all the positions would require locomotion to be reached, the crucial result is that further 
positions were more relevant than nearer positions for guiding locomotion.

As far as the eccentricity factor, however, the analysis of the release times for both the movement types in 
experiment 1 have highlighted a significant main effect of eccentricity and a significant eccentricity by distance 
interaction trivially due to a perceptual difficulty confound (i.e. higher release times for far and peripheral spatial 
locations), while interestingly the relevant data on the walking cost showed only a marginally significant eccen-
tricity by distance interaction towards the opposite direction (i.e. lower release times for far and peripheral spatial 
locations). Data of experiment 2, moreover, have showed no significant effect of target eccentricity. Therefore, 
albeit the neurophysiological literature reported in the introduction suggested a role for the eccentricity factor in 
our study, we failed to observe a robust effect of this factor. This might be explained by a series of methodological 
factors including the specific features of the experimental task which was not particularly challenging with respect 

Figure 3.  Results of Experiment 2. (A) The graph displays the release times associated with the execution of the 
footstep action and the simple release action as a function of target distance (near, far) and target eccentricity 
(central, peripheral). (B) Data are displayed as in Fig. 2B.
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to the coding of the peripheral information (e.g. no obstacles were included in the environment), the lack of fixa-
tion monitoring or the limited extension of the peripheral visual stimulation. Further studies using an immersive 
virtual reality environment with a wider stimulation of the visual periphery and an accurate control of fixation 
might hopefully clarify this issue.

In our view, the present finding, which closely follows the original2 and more recent1 definition of affordance 
as a general property of the real-time interactions between animals and their extended natural environment, is 
notable for two main reasons. First, because, differently from grasping actions, whole-body actions, such as walk-
ing, have never been studied in relation to spatial coding and in particular to extrapersonal space coding, while 
it is incontrovertible that these actions typically operate within this space portion. Second, because, for the first 
time, they investigate the nature of the mechanisms underlying spatial coding of the extrapersonal space from a 
motor perspective, and in particular from the perspective of the afforded action, thus paralleling the extensive 
research tradition on grasping-related affordance. In particular, it has been extensively demonstrated that features 
of an object (the so-called micro-affordances) are able to potentiate specific movements (e.g.5) that are best suited 
for interacting with the object itself (reach-to-grasp motor acts) and that such an effect is modulated by the object 
location, i.e. it is observed only when the object is located within the reachable peripersonal space6,7. Here we 
found an analog of the motor facilitation effect found in these studies, but within the extrapersonal space: while 
the specific features of an object located in the peripersonal space automatically triggers a reach-to-grasp action, 
the specific spatial locations of objects within the extrapersonal/environmental space facilitate a walking action. 
Therefore, based on the parallelism with the behavioural literature on micro-affordances, we suggest the term of 
“macro-affordances” to describe such a relationship.

From a theoretical point of view, the affordance in question can be surely interpreted at an intuitive level by 
hypothesizing that when participants anticipate walking further their action starts faster or, in other words, that 
the more a condition (in this case the far condition) requires an action (i.e. walking more), the more that action 
will be facilitated. However, along with this basic interpretation of the effect, which is based on the “reachability”, 
of the target object (i.e. objects in further positions require more or faster walking to be reached), we propose that 
far locations also automatically activate mechanisms for spatial exploration, which in turn facilitate the walking 
action. In particular, since distant locations of the extrapersonal space mark the boundaries of the visually defined 
surrounding environment, and thus constitute the peculiar perceptual features that define the spatial layout as 
a stimulus, one appealing hypothesis for the behavioural facilitation observed in this study is that the execu-
tion of a walking-related action is intrinsically linked to the representation of the spatial layout. That is to say, 
while a reach-to-grasp action, triggered by the features of an object, is best suited for interacting with the object 
itself, a walking action, afforded by far and, to some extent, peripheral locations of a spatial layout, is best suited 
for exploring the environment in all its extent through locomotion. Therefore, we speculate that the facilitation 
observed might be mostly guided by the nature of the environmental stimulus itself and that such effect might 
have an evolutionary significance/basis associated with the exploration of the surrounding environment.

With particular reference to the spatial variables examined in our study, we manipulated the radial dimen-
sion by selecting metric distances on the basis of a previous study conducted in our lab using the same virtual 
reality environment and showing a threshold of ~16 virtual meters (corresponding to ~8 real meters) between 
the near and far extrapersonal space18. Notably, such a near/far extrapersonal threshold also corresponds to 
the sub-division between a near-distant and a far-distant action extrapersonal space proposed by Grüsser27 
on the basis of a blind-walking paradigm in which subjects were trained to walk over an environmental path. 
Interestingly, our results confirm such a distinction between a near and a far extrapersonal space since they 
differently trigger a walking action. More importantly, they offer the brand-new motor evidence that the far 
extrapersonal space is intrinsically linked to action and specifically to a whole-body action like walking, thus 
complementing the action-related effects observed during the perception of the extended physical environment28. 
Our observation also helps to better define the properties of the extrapersonal space. Inspection of the traditional 
neuropsychological literature on the perception of 3-D visual space reveals, indeed, that this space has been 
typically considered in relation to oculomotor exploration29 while being never explicitly or directly associated 
with the walking action. The Grüsser’s far-distant space is essentially a visual space, with a partial contribution of 
vestibular and auditory signals27. In a similar vein, according to the 3-D space partitioning model proposed by 
Previc12, the space portion extending from approximately 2 to 30 meters from the body, which is referred to as 
“action extrapersonal”, is mainly concerned with head, eyes and trunk movements, while lower limbs have been 
associated with the sector of space extending to the outermost boundaries of the visual field, which is labeled 
as “ambient extrapersonal”. Concerning the functional specialization of these different space sectors, however, 
while the action extrapersonal space has been explicitly associated with spatial orienting and navigation, the 
ambient extrapersonal space has been only associated with maintenance of a correct upright stance with respect 
to gravitationally references during locomotion. Therefore, classical models have somehow detached lower limbs 
movements from their role in active exploratory behaviour within the extrapersonal space. Interestingly, however, 
an emerging idea in this very same literature is that spatial interactions in 3-D space are also differently regulated 
at the level of the brain neurochemical systems, with a specific role of the noradrenergic system in peripersonal 
functions, including sensory-motor coordination during consummatory behaviours, and of the dopaminergic 
system in exploratory behaviour in the extrapersonal space30. We speculate that this notion of a dopaminergic 
system that “facilitates behaviours in extrapersonal space, toward which active, psychomotor drive mechanisms 
are directed”12 is reminiscent of a system that is associated with walking/locomotion and that might be triggered 
by distant stimuli. Accordingly, both animal and clinical studies consider the locomotor exploratory profile as an 
important behavioural index, with particular reference to the dopaminergic system31.

Future studies will be needed, however, to address several questions that remain open from this study. With 
respect to the question concerning the nature of the environmental stimulus, in particular, it would be relevant to 
investigate whether the facilitation effect is preferentially associated with stable objects in the environment (i.e. 
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landmarks) or whether it is independent of the object’s navigational features, and whether it can be modulated by 
incentive-motivational variables associated with the rewarding nature of the environmental stimuli that might 
increase the psychomotor drive toward them. It would also be relevant to determine whether the facilitation effect 
observed in our study is associated with the visual perception of the spatial positions and execution of the walking 
action with respect to specific reference frames. Since in the current study participants were required to perform a 
forward footstep thus always maintaining a frontal heading aligned to the starting position, the position of objects 
in the environment remained unvaried (i.e. central or peripheral) with respect to the trunk orientation. Therefore, 
it remains to be tested whether, as for the peripersonal space32, the trunk is the most relevant body part to which 
the extrapersonal space representation is anchored. Finally, the modulation of distance on the walking-related 
action was observed despite the spatial scale of the virtual reality environment was more consistent with the defi-
nition of a “vista space”, i.e., a space that can be visually apprehended from a single location or with little explora-
tory movements (viewed within a glimpse), rather than with a proper “navigational space”, i.e. a space that can be 
experienced only through locomotion33. Therefore, a question worth exploring is whether the facilitation effect 
observed in this study could be even more evident when requiring a walking-related action towards imagined 
locations within a complex topographical environment.

To conclude, our findings provide an important extension of the general notion of affordance, which goes 
beyond the notion of micro-affordance, by offering the one of ‘macro-affordance’.

Such a notion denotes the evidence that not only the features of an object located in the “reachable” periper-
sonal space, but also the spatial position of objects in the far extrapersonal space is able to provide the perceiver 
with the perception of a possible action. In other words, our results suggest that far extrapersonal space is “ready 
to walk”.
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