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super-resolution modularity 
analysis shows polyhedral 
caveolin-1 oligomers combine to 
form scaffolds and caveolae
Ismail M. Khater1, Qian Liu2, Keng C. Chou  2, Ghassan Hamarneh1 & Ivan Robert Nabi  3

Caveolin-1 (Cav1), the coat protein for caveolae, also forms non-caveolar Cav1 scaffolds. Single 
molecule Cav1 super-resolution microscopy analysis previously identified caveolae and three distinct 
scaffold domains: smaller S1A and S2B scaffolds and larger hemispherical S2 scaffolds. Application here 
of network modularity analysis of SMLM data for endogenous Cav1 labeling in HeLa cells shows that 
small scaffolds combine to form larger scaffolds and caveolae. We find modules within Cav1 blobs by 
maximizing the intra-connectivity between Cav1 molecules within a module and minimizing the inter-
connectivity between Cav1 molecules across modules, which is achieved via spectral decomposition of 
the localizations adjacency matrix. Features of modules are then matched with intact blobs to find the 
similarity between the module-blob pairs of group centers. Our results show that smaller S1A and S1B 
scaffolds are made up of small polygons, that S1B scaffolds correspond to S1A scaffold dimers and that 
caveolae and hemispherical S2 scaffolds are complex, modular structures formed from S1B and S1A 
scaffolds, respectively. Polyhedral interactions of Cav1 oligomers, therefore, leads progressively to the 
formation of larger and more complex scaffold domains and the biogenesis of caveolae.

Caveolae are smooth 50–80 nm plasma membrane invaginations whose formation requires the coat protein Cav1 
and the adaptor protein CAVIN1 (also called PTRF)1. Functional roles of caveolae include: mechanoprotective 
membrane buffers; mechanosensors; signaling hubs; and endocytic transporters2. Cryo-electron microscopy 
(cryoEM) analysis of caveolae has reported that the Cav1 coat is polygonal, formed of distinct edges and sug-
gested to form a dodecahedral cage3,4. CryoEM analysis of Cav1 protein distribution in the caveolae coat, in either 
mammalian cells or following heterologous Cav1 expression in bacteria (h-caveolae), show that Cav1 exhibits 
a highly regular distribution of repeating polygons3,5,6. CAVIN1 forms an outer filamentous coat layer whose 
filamentous structure likely corresponds to the striations observed on caveolae, as well as flattened caveolae, by 
deep-etch EM3,4,6–8. In the absence of CAVIN1, Cav1 is localized to non-caveolar membrane domains known as 
Cav1 scaffolds9,10. While scaffolds have been characterized functionally11,12, defining their structure has proven 
more difficult. Biochemical analysis identifies small 8S oligomers that correspond to SDS-resistant oligomers of 
10–15 Cav1 molecules as well as larger 60S oligomers that correspond to the caveolae coat13,14. CryoEM suggests 
that small 8S oligomers combine to form the caveolar coat3,4. However, the structural relationship of scaffolds to 
caveolae remains an open question. The size of both caveolae and scaffolds is below the diffraction limit of visible 
light (~200–250 nm) and cannot be distinguished by diffraction limited microscopy.

Super-resolution microscopy is therefore ideally suited to identify and characterize these sub-diffraction limit 
cellular structures. Of the various super-resolution microscopy approaches, the best resolution is obtained using 
single-molecule localization microscopy (SMLM), based on the repeated activation (blinking) of small numbers 
of discrete fluorophores, such as dSTORM, PALM, MINFLUX15–18. In dSTORM, precise localization of these 
blinks is determined from a Gaussian fit of the point spread function (PSF) providing ~10–15 nm X-Y (lateral) 
resolution and ~30 nm Z (axial) resolution for astigmatic lens 3D SMLM19,20. SMLM generates point coordinates 
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in 3D space that can then be used to reconstruct localizations with significantly improved resolution and has 
been applied to distinguish invaginated and flattened caveolae based on Cav1 density in clusters21. An alternate 
approach to study point distributions is to visualize them as a graph or network. Graphs are mathematical struc-
tures used to model interactions between entities for many systems, with the entities represented as graph nodes 
and the connections between them as edges22. Real world graphs are frequently complex networks that have many 
different subgraphs or modules23. Networks with high modularity have dense connections (edges) between the 
nodes within modules (sub-networks) and sparse connections between nodes in different modules. The optimi-
zation problem of finding divisions within a network (i.e. modules or communities) has been solved via various 
methods such as normalized-cut graph partitioning and spectral algorithms24–26. Network and subgraph (mod-
ule) analysis are therefore ideally suited to define molecular and subgroup organization between labeled mole-
cules within the 3D SMLM point cloud of macromolecular complexes.

Previously, network analysis of SMLM Cav1 data sets in PC3 prostate cancer cells27, that express Cav1 but 
no CAVIN1 and therefore no caveolae1, identified two classes of Cav1 scaffolds corresponding to small Cav1 
homo-oligomers (S1 scaffolds) that correspond to 8S Cav1 oligomers14,28, as well as larger hemispherical S2 scaf-
folds. The formation of curved Cav1 structures in the absence of CAVIN1 is consistent with Cav1 induction of 
invaginated h-caveolae in bacteria and supports a role for Cav1 in membrane curvature5,29. To identify signa-
tures for caveolae, we compared PC3 prostate cancer cells that lack caveolae with PC3 cells transfected with the 
CAVIN1 adaptor required for caveolae formation. Larger hollow caveolae were only detected upon transfection 
of PC3 cells with CAVIN1 (PC3-PTRF cells)27 and their modular nature supported the polyhedral Cav1 coat 
structure observed by cryoEM3,4.

We now process (using spectral decomposition) the array of distances between localizations to find modules 
in endogenous Cav1 domains of HeLa cells. To determine the relationship between Cav1 scaffold domains and 
the multimeric caveolae structure, we leveraged a multi-threshold modularity analysis to extract the modules of 
the various Cav1 blobs. We then matched the blobs with the sub-modules of the various Cav1 domains based 
on the similarity (i.e., smaller Euclidean or L2 norm) between their biosignatures. To enhance localization pre-
cision, we used an SMLM microscope equipped with real-time nanometer-scale drift correction hardware30 and 
included only high-precision localizations to improve localization accuracy31,32. With this in-house built SMLM 
microscope, the localization precision approaches 10 nm33, and the drift is limited to 1 nm in the x-y plane and 
3 nm in the z axis30,34. Modularity analysis and group matching show that S1A scaffolds can dimerize to form S1B 
scaffolds and oligomerize to form hemispherical S2 scaffolds. S1B scaffolds match the modules that make up the 
caveolae coat suggesting that the caveolae coat is built progressively by dimerization of S1A scaffolds, composed 
of the basic polygonal Cav1 units, that then combine to form a polyhedral caveolae coat.

Results and Discussion
Tunable iterative merge algorithm. A major challenge to determining molecular structure by SMLM is 
defining molecular localizations (i.e. the location of the labeled molecule, in this case Cav1) from the millions of 
blinks (i.e. 3D spatial coordinates of the labelled Cav1 fluorescent events) generated from the stochastic blinking 
detected by SMLM. Many blinks derive from the same labeled molecule, particularly when the labeling approach 
is based on antibody labelling (i.e. dSTORM). The same fluorophore can blink twice in succeeding acquisition 
frames dependent on the on-off duty cycle35 and the same molecule can be labeled by different fluorophores, 
either on the same secondary antibody or on different secondaries bound to the same target protein, introducing 
error in blink localization relative to the actual antigen. Each of these blink localizations is in addition subject to 
localization error due to drift and to Gaussian fitting of the PSF. Multiple, distinct blink localizations, therefore, 
derive from the same molecule and generate a dense non-biological network (NBN) with high degree nodes cen-
tred around the actual molecule27,36. Network analysis of the biological network, composed of nodes correspond-
ing to predicted molecular localizations of the labeled proteins, requires reduction/consolidation of the NBNs.

Several methods have been proposed to reduce this artifact using temporal or spatial fluorophore information. 
Annibale et al.37,38 proposed a method to correct the multiple-blinking in PALM by determining the merging 
time for mEos2 photoactivatable fluorescent protein. Other methods39–41 spatially merged nearby localization 
events. Here, to correct for multiple-blinking and estimate molecular localization, we adopt the iterative merging 
algorithm of Khater et al.27, which iteratively merges nearby nodes (blinks), that are within a threshold merging 
distance, until convergence is reached. The process starts with the high network degree nodes and continues 
until the distance between all pairs of reconstructed nodes, that correspond to predicted or estimated molecular 
localizations, is within the threshold merging distance. Nodes in closest proximity are combined first such that 
merging is initiated within the dense NBNs and continues progressively until no nodes within the point cloud are 
closer than the merging proximity threshold (MPT).

3D point clouds of Cav1 from 10 dSTORM images of HeLa cells were processed using the 3D SMLM Network 
Analysis computational pipeline27. To address the multiple-blinking artifact that may bias the quantification 
process, we applied a tunable MPT from 10–20 nm in steps of 1 nm. Importantly, 4 classes were learnt at each 
MPT from 10–20 nm. Further, tuning the MPT from 10–20 nm minimally impacted classification, size, modu-
larity, characteristic path and hollowness of all 4 classes of blobs (Fig. 1A). Machine learning blob classification is 
therefore independent of the merge algorithm for MPTs from 10–20 nm. Not unexpectedly, increasing the MPT 
reduced the predicted molecular localization number per blob. We set the MPT based on the reported 145 Cav1 
proteins per caveolae42. An MPT of 19 nm resulted in an average of 142 localizations for the largest H2 blobs 
(Fig. 1A), that match the PP2 caveolae blobs from PC3-PTRF cells (see Fig. 2A).

Figure 1B shows the 3D point cloud of one of the HeLa cells in our dataset at various stages of the pipeline: 
1) The 3D point cloud of Cav1-labeled HeLa cell generated by real-time drift control SMLM; 2) After iterative 
merging and denoising filtration. The denoising module visits every Cav1 event and predicts whether it is signal 
or noise. This prediction is based on examining the network features for every Cav1 event in our data, as well as 
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Figure 1. MPT tuning does not impact blob identification. (A) Biological signatures of HeLa Cav1 blobs at 
different MPTs (10–20 nm) were obtained by 3D SMLM Network Analysis27. We learn 4 groups/classes of Cav1 
domains at each MPT. Cav1 blob shape, topology, hollowness, and network features are minimally affected 
by MPT tuning while the number of molecular localizations is affected by MPT tuning. Error bars represent 
standard deviation. (B) 3D Cav1 point clouds of a representative HeLa cell imaged with drift-corrected 
dSTORM30,34 before (green) and after (red) iterative blink merging at 19 nm and filtering out noisy localizations. 
Color-coded representations of blobs after segmentation and after identification by machine learning using 3D 
SMLM Network Analysis27 pipeline are shown. We identified four groups of blobs representing different Cav1 
domains in HeLa cells.
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examining corresponding network features of nodes in a random network. If the network features of a Cav1 event 
are similar to those of the random network’s nodes, then that Cav1 event will be declared as noise and removed. 
This denoising process will retain the Cav1 clusters (blobs) and filter out noisy localizations and monomeric Cav1; 
3) After segmentation into separate blobs and extraction of a 28 feature/descriptor vector for every blob; 4) After 
unsupervised machine learning to learn the various Cav1 domains from the extracted blobs and their descriptor 
features.

Group matching. Machine learning identified four groups of Cav1 domains (H1, H2, H3, and H4) in HeLa 
cells (Fig. 1A). We used the Euclidean distance in 28 dimensions to encode similarity of HeLa groups with groups 
previously identified in PC3 and PC3-PTRF cells27, with similarity proportional to the inverse Euclidean distance. 
As seen in Fig. 2A, for the groups with larger blobs, H2 matches PP2, corresponding to caveolae, and H1 matches 
PP1, corresponding to the larger hemispherical S2 scaffolds. For the smaller S1 scaffolds, H4 matches PP3 and 
H3 matches PP4. Distribution of the different classes of blobs in the different cell types shows that HeLa and 
PC3-PTRF cells present a similar distribution of Cav1 blobs with slightly more caveolae detected in HeLa cells 
(Fig. 2B).

Feature analysis after group matching shows that the four HeLa groups match with high degree the four 
PC3-PTRF groups as well as the S2 and S1A scaffolds present in PC3 cells (Fig. 2C; see also Supp. Fig. S1 for 
additional data on blob features). Relative to the PC3 data27, we observed a doubling in molecular localizations 

Figure 2. 3D SMLM Network Analysis of the HeLa cells dataset. (A) Matching HeLa Cav1 groups with 
previously identified Cav1 domains in PC3 and PC3-PTRF cells27. The numbers are the Euclidean distances that 
capture the similarity/dissimilarity between the groups with smaller numbers indicating increased similarity. 
We matched learned groups from PC3, PC3-PTRF, and HeLa cells and show distances among the feature vector 
of group centers (in bold are the closest matching groups). The table to the right shows color matching of HeLa 
groups with previously identified P1 and P2 Cav1 domains in PC3 cells and PP1, PP2, PP3, and PP4 Cav1 
domains in PC3-PTRF cells27. (B) Distribution of the matched groups from HeLa, PC3-PTRF and PC3 datasets 
are presented for comparison. (C) Signatures of matched groups from HeLa (at 19 nm MPT), PC3 and PC3-
PTRF (at 20 nm MPT) cells show a high degree of correspondence of the individual group features. See Supp. 
Fig. S1 for the rest of the features.
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for S1B scaffolds relative to S1A scaffolds and increased modularity of S1B scaffolds in the HeLa data set that 
we attribute to the improved resolution obtained with the real-time drift control SMLM30,34. Increased Cav1 
localization number in S1B scaffolds parallels the increased size (X-range) and reduced network density of these 
clusters relative to S1A scaffolds, reflecting differences between these structures that led to their classification as 
distinct cluster groups in this and our previous analysis27. Indeed, we observe a progressive increased number of 
localizations (Caveolae > S2 Scaffolds > S1B scaffolds > S1A scaffolds) associated with increased modularity and 
decreased network density (Fig. 2C). Caveolae are the most modular structures (modularity >0.4), then S2, and 
S1B. S1A scaffolds have the least tendency to form modules (modularity <0.04).

Small Cav1 S1 scaffolds combine to build larger scaffolds and caveolae. The variable modularity 
of the different classes of Cav1 blobs led us to extract the blobs’ modules and study their features. To make sure 
that we correctly construct the modules within the blob’s network, we used multi-proximity threshold (PT) net-
work analysis (Fig. 3A) to decompose the blobs’ networks into modules using spectral analysis. For all the groups, 
any PT greater than 60 nm renders every blob a single connected component; the average connected component 
size plateaus and equals the blob size for the different groups at PTs greater than 60 nm. This indicates that at PT 
>60 nm, all post-merge Cav1 localizations in a cluster are within 60 nm of each other. The number of modules 
and of Cav1 localizations per module are stable across the PT range from 60 to 170 nm. This range is therefore 
suitable to determine the number of modules and of Cav1 localizations per module. HeLa caveolae were found to 
be highly modular containing 6–7 modules of ~29 Cav1 localizations, S2 scaffolds 5 modules of ~14 localizations 
and S1B scaffolds ~4 modules of 7–8 localizations each (Fig. 3A). S1A scaffolds have the minimum average num-
ber of modules of ~2 modules per blobs of ~5–6 localizations each.

Visualization of blobs from the identified groups (Fig. 3B) highlights the modular nature of the various Cav1 
structures. At 80 nm, each blob forms one connected component network and extracted modules for every blob 
are shown in different colors. The presence of small modules (~5–8 molecules) within both S1A and S1B scaf-
folds is indicative of an additional degree of suborganization within these small scaffold domains. 3D cryoEM 
tomography identified a network of 3-way junctions and polygonal arrangements of Cav1 protein densities within 
the caveolae coat3. Similarly, cryoEM analysis of Cav1-induced vesicles in bacteria (h-caveolae) present distinct 
polygonal repeating units on the h-caveolae cage5. We propose that the sub-modules that we detect in S1A and 
S1B scaffolds correspond to these polygonal repeating units that comprise the caveolae coat. The fact that S1A 
scaffolds form one connected component unit and that the number of localizations of S1A scaffolds matches that 
of Cav1 homo-oligomers (~14–15 Cav1s)14,28 suggests that interaction between these polygonal sub-modules 
forms more stable structural units. This is supported by the identification of larger modules in both S2 scaffolds 
and caveolae (Figs 3A and 4A).

Most interestingly, the decomposed modules from the different Cav1 cluster groups show a much higher 
degree of similarity in terms of the shape, topology and network features than the clusters from which they orig-
inate (Fig. 4A). For instance, while Cav1 blob classes show a progressive reduction in network density from S1A 
scaffolds to caveolae, modules from the different blob classes show a similar network density. This suggests that 
differential interaction between modules is responsible for the changes in network density of the different classes 
of Cav1 blobs and that these modules form fundamental building blocks of larger Cav1 structures.

Indeed, many features of caveolae modules match S1B scaffolds while S2 and S1B modules match S1A scaf-
folds. For instance, number of localizations, hollowness, characteristic path, modularity, size, and network density 
of the caveolae modules (blue bars to the right of graphs) are very similar to their corresponding features in the 
S1B blobs (magenta bars to left) (Fig. 4A). We quantitatively assessed module-blob similarity across all features 
using the matching matrix of the features for the various blobs and modules group center using Euclidean dis-
tance (Fig. 4B). The column-wise (i.e. the modules) similarity shows that: S2 scaffold modules match S1A blobs; 
caveolae modules match S1B blobs; and S1B modules match S1A blobs. The close matching of S1B modules with 
S1A blobs and doubling in the number of modules and localizations of S1B modules relative to S1A blobs suggests 
that S1B scaffolds represent dimers of S1A scaffolds. Further, PC3 cells that lack caveolae have only S1A and S2 
scaffolds (Fig. 2B,C)27 supporting the matching between S1A blobs and S2 modules reported here. The dissimi-
larity between caveolae and S2 scaffolds and the modules of any other blob types suggests that these are complex 
structures made up of primitive S1A and S1B scaffolds.

Overall, our data support a model in which Cav1 is organized into smaller units of 5–8 Cav1 localizations that 
correspond to the polygonal base units observed by cryoEM analysis of the Cav1 caveolar coat3,5. These base units 
combine to form larger stable structures of which the smallest is S1A scaffolds, that we propose correspond to 
the previously identified ~14–15 Cav1 homo-oligomers14,28. We also identify S1B scaffolds, previously classified 
as distinct from S1A scaffolds27 as larger structures that may correspond to S1A dimers. Modularity analysis 
and group matching show that S1A scaffolds combine to form both S1B dimers and the larger hemispherical S2 
scaffold structures. Caveolae modules show better matching and correspond in size to S1B and not S1A mod-
ules suggesting that caveolae formation may be a two-step process in which S1A scaffolds first combine to form 
dimers that then interact to form the caveolae coat (Fig. 5, Video S1). Consistent with a role for S1B in caveolae 
formation, PC3 cells that lack caveolae and CAVIN1 do not contain S1B scaffolds27. As cluster size increases, Cav1 
domains show a more pronounced reduction in density relative to their constituent modules. This suggests that 
interaction between smaller S1 scaffolds to form larger structures, including caveolae, is associated with changes 
in how modules interact and are organized. Importantly, our analysis based on TIRF microscopy argues that all 4 
Cav1 domains, from S1A scaffolds to caveolae are present at the plasma membrane. Based on the role of caveolae 
as membrane buffers that flatten in response to mechanical stretching43, we suggest that these modular interac-
tions are dynamic and reversible.

In this work, we applied multi-threshold modularity analysis to networks/blobs constructed from 3D point 
clouds of Cav1 localizations acquired via SMLM. Classification of endogenous Cav1 domains in HeLa cells 
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matched those previously identified in CAVIN1-transfected PC3 prostate cancer cells27. Spectral decomposition 
allowed us to define the relationship between the different Cav1 blobs and their extracted sub-networks/mod-
ules via biosignature similarity and matching across the various domains/groups. This approach is applicable for 
modular analysis of other oligomeric macromolecular biological structures improving our understanding of their 
architecture by disassembling them into their basic building components.

Figure 3. Modularity analysis of Cav1 blobs. (A) Multi-proximity threshold modularity analysis shows the 
number of connected components, number of modules and localizations per module (at 19 nm MPT) for HeLa 
blobs at different proximity thresholds. (B) Representative blobs from the different HeLa Cav1 domains are 
shown. The visualization shows the blob’s localizations, the localizations’ connections, and the blob’s modules.
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Materials and Methods
Cell culture and immunofluorescent labeling. HeLa cells were tested for mycoplasma by PCR (Applied 
Biomaterial, Vancouver, BC, Canada) and cultured in Dulbecco’s Modified Eagle’s medium (DMEM; Invitrogen) con-
taining 10% fetal bovine serum (Invitrogen). For SMLM imaging, cells were plated on fibronectin coated coverslips 
(No. 1.5 H) for 24 h prior to fixation with 3% paraformaldehyde (PFA) for 15 min at room temperature. Fixed cells were 
rinsed with PBS/CM (phosphate buffered saline complemented with 1 mM MgCl2 and 0.1 mM CaCl2), permeabilized 
with 0.2% Triton X-100 in PBS/CM, and blocked with 10% goat serum and 1% bovine serum albumin (BSA; Sigma-
Aldrich Inc.) in PBS/CM before incubation with rabbit anti-caveolin-1 (BD Transduction Inc.) for 12 h at 4 °C and then 
Alexa Fluor 647-conjugated goat anti-rabbit (Thermo-Fisher Scientific Inc.) for 1 h at room temperature. Primary and 
secondary antibodies, at saturating concentrations of antibodies, were diluted in SSC (saline sodium citrate) buffer 
containing 1% BSA, 2% goat serum and 0.05% Triton X-100. Cells were washed extensively after each antibody incu-
bation with SSC buffer containing 0.05% Triton X-100 and post-fixed using 3% PFA for 15 min followed by extensive 
washing with PBS/CM. Near-infrared fiducial markers (diameter 100 nm; Thermo Fisher Scientific) were added for 
real-time drift correction. Immediately prior to imaging, cells were mounted and sealed on glass depression slides in 
freshly prepared imaging buffer (10% glucose, 0.5 mg/ml glucose oxidase, 40 μg/mL catalase, 50 mM Tris, 10 mM NaCl 
and 50 mM β-mercaptoethylamine (Sigma-Aldrich Inc.) in double-distilled water20,35.

SMLM Imaging. Imaging of Hela cells was performed on an in-house built SMLM system equipped with 
an apochromatic TIRF oil immersion objective lens (60×/1.49; Nikon Instruments) and a real-time drift cor-
rection system which limits the lateral drift to ~1 nm and the axial drift to ~3 nm. A 639 nm laser line (Genesis 
MX639, Coherent Inc., USA) was used to excite Alexa Fluor 647 fluorophores and near-infrared fiducial markers. 
A 405 nm laser line (Laserglow Technologies) was used to activate Alexa Fluor 647. The detailed optical setup and 
the imaging acquisition procedure were described previously30,34.

The dataset used in this work consists of 10 fields of view (FOV) of Cav1-labeled HeLa cells. Each HeLa FOV is  
54 × 54 × 1 µm3 which is 9 times larger than the FOV in the PC3 cell study (18 × 18 × 1 µm3), acquired using a 
Leica GSDIM microscope equipped with a 160X objective27. Each HeLa FOV therefore included multiple cells and 
this study analyzed a larger number of cells than the PC3 study. We collected 40,000 frames per super-resolution 
image. The total number of collected localizations that we processed per image ranged from 1.6 to 6.7 million. 
The 3D SMLM Network Analysis method was able to process the whole FOV. Details of the 3D SMLM Network 
Analysis approach can be found in27.

Figure 4. Module-blob matching between Cav1 domains. (A) Signatures of Cav1 blobs and blob modules 
shows that some module features are similar to blob features. For example, the right bars that represent the 
caveolae modules (blue) are very similar to the left bars that represent the S1B blobs (magenta). (B) We 
extracted 28 features (e.g. shape, topology, hollowness, network) for every blob and module. The table encodes 
the module-blob similarity between the different Cav1 domains (blobs) and the modules of each type as 
Euclidean distances between every pair of group centres.

https://doi.org/10.1038/s41598-019-46174-z


8Scientific RepoRts |          (2019) 9:9888  | https://doi.org/10.1038/s41598-019-46174-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Multi-proximity threshold network modularity analysis. For every blob of 3D localizations, more 
than one network can be constructed; one per each proximity threshold in the set {PT1, PT2,…, PTT} (i.e. blobi 
has T networks {Gi

1, Gi
2,…, Gi

T}, where Gi
t is composed of a set of nodes Vi and edges Ei

t to form Gi
t(Vi, Ei

t)). Vi, 
unaffected by PTt, represents the molecules of blobi and Ei

t is the set of edges connecting all pairs of molecules 
interacting within PTt nm.

We leverage a spectral decomposition algorithm to find modules within Cav1 blobs. Given Gi
t, a blobi’s net-

work at PTt, we find its modules (communities) using the Newman method24–26. Specifically, we first calculate an 
adjacency matrix whose element m, n encodes the distance between the m-th and n-th localizations. A spectral 
decomposition method calculates the eigenvector representation of this adjacency matrix. This eigendecompo-
sition defines the modules as it maximizes the intra-connectivity between Cav1 molecules within a module and 
minimizes inter-connectivity between Cav1 molecules across modules.

Given Gi
t, a blobi’s network at PTt, we find the optimal number of modules (communities) using eigenvectors 

of the network adjacency matrix. At small PTs, the molecules of a blob might not form one connected network 
(i.e. the network might consist of more than one connected component). A blob network containing non-dense 
and non-connected regions cannot be used to extract modules (i.e. as per definition, networks with high modu-
larity have dense connection between the nodes within modules and sparse connections between nodes in differ-
ent modules). Hence, PTs that generate networks with more than one connected component should be avoided 
when extracting the modules.

Features extraction and module-blob similarity. For every segmented Cav1 blob, we extracted 28 
features that are then used to group the blobs into classes using the 3D SMLM Network Analysis pipeline27. The 
learned classes from HeLa dataset are then matched with the previously identified Cav1 domains from PC3 and 
PC3-PTRF datasets27. The modules of the HeLa Cav1 blobs are then extracted using the multi-proximity thresh-
old network modularity analysis described in the previous subsection. We extracted 28 features for every module. 
To find the similarity/dissimilarity among the extracted modules and the various blobs, we leveraged the match-
ing analysis to match blob modules with intact blobs using the Euclidean distance of group centers.
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