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Reliability of total Grain-size 
Distribution of tephra Deposits
L. pioli1, C. Bonadonna2 & M. pistolesi  3

total Grain-size Distribution (tGsD) of tephra deposits is key to the characterization of explosive 
volcanism, plume-dispersal modeling, and magmatic fragmentation studies. Nonetheless, various 
aspects that includes deposit exposure and data fitting make its determination extremely complex 
and affect its representativeness. In order to shed some lights on the reliability of derived TGSDs, 
we examine a large tGsD dataset in combination with a sensitivity analysis of sampling strategies. 
these analyses are based both on a well-studied tephra deposit and on synthetic deposits associated 
with a variety of initial eruptive and atmospheric conditions. Results demonstrate that tGsDs can be 
satisfactorily fitted by four distributions (lognormal, Rosin-Rammler, and power-law based either on the 
absolute or cumulative number of particles) that capture different distribution features. In particular, 
the Rosin-Rammler distribution best reproduces both the median and the tails of the tGsDs. the 
accuracy of reconstructed tGsDs is strongly controlled by the number and distribution of the sampling 
points. We conclude that tGsDs should be critically assessed based on dedicated sampling strategies 
and should be fitted by one of the mentioned theoretical distributions depending on the specific study 
objective (e.g., tephra-deposit characterization, physical description of explosive eruptions, tephra-
dispersal modeling).

The grain-size distribution of the eruptive mixture injected into the atmosphere during volcanic explosive erup-
tions is an important property of eruptive dynamics and represents a critical parameter both for magma fragmen-
tation studies and for the description of tephra transport and sedimentation1–5. It is also one of the most difficult 
to constrain out of all eruption source parameters (ESPs) needed for numerical simulations of plume and cloud 
dispersal (e.g., total grain-size distribution, plume height, mass eruption rate, erupted mass6).

The grain-size of the eruptive mixture associated with explosive eruptions is primarily controlled by magma 
fragmentation, which is driven by multiple simultaneous processes depending on magma properties (e.g., vis-
cosity, porosity, and permeability), and flow-controlled parameters, such as shearing and gas expansion rates7,8. 
Measurements of the size of settling particles in real time represent the ideal technique for grain-size distribution 
assessment, because they are not affected by issues associated with deposit erosion, remobilization, and contam-
ination with previous or later eruptive phases, which can strongly affect deposit-based strategies9. However, due 
to various technical limitations, no instrument (e.g., satellite sensors, radars, disdrometers) can currently provide 
comprehensive information on the total size range of particles dispersed in the atmosphere and settling on the 
ground10. For this reason, forecasting of tephra dispersal is mostly performed considering specific meteorological 
conditions and column height, but grain-sizes are based on known tephra-deposit characteristics, either generi-
cally assumed3,11 or calculated through statistical models12.

For simplicity, in this paper with Total Grain-Size Distribution (TGSD) we refer to the grain-size distribu-
tion of the whole eruptive mixture ejected during an explosive eruption. It can be recorded as the best available 
approximation by the size distribution of tephra-fallout deposits emplaced on the ground. It is important to note 
that the size distribution at individual tephra outcrops (i.e., of the mixture of particles falling at any given distance 
from the vent) is not representative of the TGSD4,13,14. For this reason, TGSDs needs to be interpolated from 
grainsize distribution of tephra at different locations12,15–18. The accuracy of determination of TGSDs, depends 
not only on the representativeness of the size distribution of the samples collected at each location, which in turn 
relies on sampling methods and sampled volume, but also both on the number of measuring stations/outcrops 
and their spatial distribution6,15. TGSDs are typically calculated based on the weighted average of distributions 
of individual locations either taking into account the deposit mass load per unit area at each sample location or 
using the Voronoi tessellation strategy15. This second method accounts both for the deposit mass load and for the 
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size distribution of particles at each sampling location. In fact, the tephra deposit is divided into Voronoi cells 
whose interior consists of all grid points which are closer to a particular sample point than to any other. Then the 
TGSD is obtained as the area-weighted average of all the Voronoi cells over the whole deposit.

Traditionally, distributions are studied in terms of empirical parameters including median size and standard 
deviation19, with very few attempts to define formal distributions based on comparative studies on known TGSDs 
or theoretical studies based on fragmentation theories1,12,20,21.

Based on a large dataset of most published TGSDs up to date (Table 1), we present a comparative study to 
investigate their average properties and define the best fitting distribution models; we then analyze and discuss 
the results in terms of representativeness and stability of the distribution taking into account sampling issues 
due to partial preservation or poor exposure of the deposits. The fitting strategies are finally tested on synthetic 
deposits which combine a range of ESPs and atmospheric parameters (e.g., known TGSD, column height, and 
wind speed) with variable geometries of sampling sites. Results are used to provide general criteria for the deter-
mination and numerical description of TGSDs as reliable proxies for the initial grain-size distribution of volcanic 
particles injected into the atmosphere. Because no or very few details (i.e., the volume of material, the numbers of 
layers sampled) is usually provided on the specific sampling techniques adopted in each deposit of the dataset, we 
assume that provided GSDs are in all cases representative of the GSDs of the location where they were collected, 
and discard any possible uncertainty deriving from partial, or insufficient sampling of the tephra deposit at any 
single location. For this reason, the representativeness of the TGSDs dataset will be discussed only in terms of 
number and distribution of outcrops.

Results
General significance of tested statistical distributions. Below we show the results of the fitting of 
empirical data (i.e., TGSD derived from field data) according to the lognormal and the Rosin-Rammler (equiv-
alent to the Weibull distribution22), based on the weight distribution, and the power-law distributions, based 
either on the absolute or cumulative number of particles. Despite their ability in fitting the TGSDs, each of these 
distributions has different potential and limitations due to their theoretical basis and constitutive assumptions. 
While lognormal distributions are fitted based on (and thus better reproducing) the median and standard devi-
ation of the distribution, the Rosin-Rammler distributions, being cumulative, better describe its tails. Power-law 
distributions are, in contrast, not suitable to describe the tails of the distribution.

As an example, the shapes of the four main distribution types fitted to the TGSD of the 1996 Ruapehu (New 
Zealand) are shown in Fig. 1.

Weight vs. particle size distributions (lognormal, Rosin-Rammler). The lognormal distribution satisfactorily fits 
TGSDs for only about 60% of the dataset, with a Pearson correlation coefficient r2 > 0.9 (Fig. 2a). Despite this, the 
fitted median grain-size and standard deviation are within half φ (difference from median (Mdφ) and sorting (σφ) 
of the empirical distribution (Fig. 2b,c) in most cases, with φ being −log2d and d the particle diameter in millim-
eters. There is no apparent correlation between (fitting) median μ and standard deviation σ (Eq. 7), both showing 
a large variability (Fig. 2d; Table 1 in Supplementary Material). Finally, as already observed by previous studies12, 
no clear relationship between σ and eruptive column height can be defined (Fig. 2e).

The Rosin-Rammler distribution fits very well all the datasets, with the Pearson correlation coefficient always 
being >0.94 (Fig. 3a). In literature, the length scale parameter x0 (Eq. 8) has been empirically linked with various 
percentiles of the original distribution22. For the dataset studied here, it correlates linearly with the median size α 
of the empirical distribution, expressed in the same linear unit (m), with the relationship (Fig. 3b):

x 1
3 (1)0 α=

with r2 = 0.9996
The shape parameter l (Eq. 8) quantifies both the material properties and the fragmentation process. In our 

results, it varies from 0.5 to 2.5, and is <1.5 in ~85% of the studied eruptions. Smaller eruptions (with column 
heights <10 km) display the largest variability in terms of l, varying between 2.5 and 0.9, whereas larger eruptions 
have lower l ranging from 1 to 0.5 (Fig. 3c).

Particle number vs. particle size distributions (power-law). A simple power-law fitting of the number of particles 
vs. their size gives the best results, with r2 > 0.9 in more than 90% of the distributions (Fig. 4a) and the lowest 
value of 0.74 corresponding to a co-PDC deposit. Generally, a deviation from the typical power-law trend is seen 
at the smallest particle size classes, and in some cases also at the largest ones (Fig. 1c), marking the size range of 
validity of the distribution (see discussion in Section 3).

For the reasons above, the fitting improves when considering only particles coarser than fine ash (≤5 φ; 
Fig. 4b) or particles with size comprised from lapilli (<−6 φ) to coarse ash (<−1 φ) (Fig. 4c). The slopes of the 
distributions λ range from 1.8 to 3.5 when considering all the particle sizes and increases up to 6.5 in reduced 
size range distributions (Fig. 4d–f), with the larger values attained by co-PDC particle distributions. Cumulative 
particle number (Eq. 5) shows even better fitting, with r2 consistently >0.85 when fitting the complete size 
range (Fig. 5a) and >0.91 when fitting only the distribution of particles larger than fine ash or lapilli to coarse 
ash (Fig. 5b,c), respectively. The slopes of the distributions show very similar variability with respect to simple 
power-law curves. In both cases (power-law and cumulative power-law fittings), the slopes increase with increas-
ing median particle diameter α of the distribution (Fig. 5d–f). The weak correlation between slope D and the 
median size α (expressed in mm scale) becomes significant when excluding the tail of the distributions (i.e., when 
considering only coarse ash and coarse ash and lapilli), with the exception of co-PDC deposits. Co-PDC deposits 
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Eruption
Bulk rock 
composition

Column height 
above vent (km)

MER 
(kg/s)

Calculation 
method

Main 
reference

Etna 19-24/07/2001 Basalt 2.5 7.4E + 03 V 44

Etna 27/10/2002 Basalt 3.25 3.0E + 05 V 45

Etna 24/11/2006 Basalt 0.8 5.0E + 03 V 46

Etna 4-5/09/2007 Basalt 2 5.0E + 03 V 47

Etna 12-13/01/2011 Basalt 7 2.5E + 04 V 48

Etna 18-19/05/2016 Basalt 2–2.5 2.0E + 3 V 49

Etna 21/05/2016 Basalt 2–3 7.1E + 02 V 49

Izu Oshima 1986 Basaltic andesite 12 1.1E + 05 W A 50

Fuego 1974 Basaltic andesite 10 3.0E + 06 V 51

Heimaey 1973 Basalt — 1.0E + 05 W A 52

Hekla 1845 Basaltic andesite 19 2.1E + 07 V 53

Hekla 1991 Basalt 11 3.4E + 06 V 54

Hekla 2000 Basaltic andesite 11 7.2E + 07 V 41

Hekla 1104 Rhyolite 20–25 1.2 E + 08 V 55

Hekla 1300-D Dacite 25 1.2 E + 08 V 55

Hekla 1693 Andesite 18 3.2E + 07 V 55

Hekla 1766 Andesite 18 3.2E + 07 V 55

Tecolote Basalt 11 3.2E + 6 V 56

Kilauea Iki, 1959 Basalt 0.6 6.3E + 05 W A 57

Eyjafjallajokull 4-8/05/2010 Benmoreite-Trachyte 7 8.0E + 04 V 10

St. Vincent 1979 Basaltic andesite 11 6.0E + 06 W A 58

Chaiten 06/05/2011 Rhyolite 19 — V 59

Al Madinah 1256 Basalt — — W A 60

Ruapehu 1996 Andesite 6 1.5E + 05 V 15

Mt Spurr Aug 1992 Andesite 12 1.7E + 06 W A 61

Mt Spurr Sept 1992 Andesite 12 1.8E + 06 W A 61

Soufriere Hills 31/03/1997 Andesite — — W A 62

Soufriere Hills 12/09/1997 Andesite 4 — W A 62

Soufriere Hills 15/09/1997 Andesite — — W A 62

Soufriere Hills 21/09/1997 Andesite — — W A 62

Soufriere Hills 26/09/1997 Andesite 11 3.0E + 06 W A 62

Soufriere Hills 28/09/1997 Andesite — — W A 62

Soufriere Hills 01/10/1997 Andesite — — W A 62

Soufriere Hills 02/10/1997 Andesite — — W A 62

Soufriere Hills 10/10/1997 Andesite — — W A 62

Soufriere Hills 18/07/2005 Andesite 10 1.0E + 06 V 63

Soufriere Hills 27/07/2005 Andesite 7 1.0E + 06 V 63

Mt. St. Helens 18/05/1980 Dacite 20 1.9E + 07 I W A 26

Cordón Caulle 2011 Unit I Rhyolite 8-12 5.0E + 06 V 16

Askja 1875 phase C Rhyolite 23 1.0E + 08 W A 64

Askja 1875 phase D Rhyolite 26 8.2E + 07 W A 64

Vesuvius 1906 L2 K tephrite 12 1.0E + 06 V 65

Vesuvius 1906 L3 K tephrite 3-4 1.0E + 05 V 65

Vesuvius 1906 ash K tephrite 6-7 — V 65

Baia Trachyte 17 4.0E + 10 V 66

Pululagua 2450 BP Dacite 25 ± 5 — V 18

El Chichon 1982 Trachyandesite 27 4.0E + 07 W A 67

Cotopaxi layer 3 Andesite 23 4.8E + 08 V 68

Cotopaxi layer 5  Basaltic andesite 26 6.0E + 07 V 68

Rungwe pumice Trachyte 30–35 2-5E + 08 V 69

Table 1. Eruptions considered in this study, magma composition, column height, Mass Eruption Rate (MER), 
method of TGSD calculation (V = Voronoi, W A = Weighted Average on mass load, I W A = Isopach-based 
Weighted Average) and reference details.
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show larger deviations from the main trend when excluding fine particles from the computations (Figs 4d–f and 
5d–f).

The correlations shown in Figs 4 and 5 can be expressed as:

α = λ +alog b (2)

log a D b (3)1 1α = +

When α is expressed in m, the fitting parameters as calculated from the dataset are:
a = −1.91, b = 2.12 with r2 = 0.50 and a1 = −1.71, b1 = 1.68 with r2 = 0.50 calculated over the entire distribu-

tion; a = −1.38, b = 1.16 with r2 = 0.65, a1 = −1.48, b1 = 1.52 with r2 = 0.68 calculated excluding the fine ash com-
ponent; and a = −1.42, b = 1.26 with r2 = 0.72 a1 = −1.48, b1 = 1.49 with r2 = 0.72 calculated for the distribution 
of lapilli to coarse ash particles.

stability of computed grain-size distribution. Sensitivity analysis based on a well-studied tephra 
deposit. The Ruapehu (New Zealand) 1996 deposit, one of the largest sample datasets ever collected on a single 
tephra deposit15, is used here to quantify the effects of sampling on the calculation of TGSDs. In particular, vari-
ous parts of the deposits are selectively removed from the entire dataset (subset I) to assess the influence of deposit 
exposure on derived TGSDs. The decrease in the number of sites (subsets II, III) mostly results in a decrease of the 
sorting of the distribution, while the exclusion of proximal sites (subsets IV, V, VI) results in a decrease in median 
grain-size and sorting. Given that most of the mass of the deposit is confined within 30 km from the vent, there is 
very little difference between the distributions computed for the entire dataset (I) and the subset VII, calculated 
based only on proximal sites (Fig. 6b,c). Mdφ increases (and, therefore, the median grain-size decreases) from 
about −1.5 (entire deposit) to 3.5 (when calculated for the distal deposit only), while σφ decreases from about 2.5 
to 1 (Fig. 6b). The variability among the distributions is marked by a striking linear relation between fitted μ and 
σ of the lognormal distribution (Fig. 6b). These parameters show a large variability of several φ units with a trend 
which is linear (Fig. 6c). The distribution properties described based on the best fitting Rosin-Rammler distribu-
tions vary both in shape and scale (i.e., l and x0), even if within a much more limited range, with l varying from 
0.7 to 1.5 and x0 from 0.0002 to 0.0033 m (Fig. 6d). Both simple and cumulative power-law fittings show a better 
stability of the fitting parameters (D and λ; Fig. 6e,f) calculated over the entire size distribution, with respect to 
fittings done excluding large (bomb) and/or small (fine ash) sizes.

Figure 1. Examples of distribution fittings of the 1996 Ruapehu eruption TGSD. (a) Lognormal (Eq. 8); (b) 
Rosin-Rammler (Eq. 7); (c) Power-law (Eq. 4); (d) Cumulative power-law (Eq. 5). Dashed lines describe the 
fitted distributions. CDF = cumulative density function, PDF = probability density function, d = particle 
diameter, N/N0 = normalized number of particles, N > ND/N0 = normalized number of particles with diameter 
larger than (d). The main parameters of each distribution fitting are enclosed in each graph.
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Further exploration regarding the uncertainty associated with the fit of TGSDs with a Rosin-Rammler dis-
tribution was carried out by comparing the empirical TGSD of the 1996 Ruapehu dataset (black circles in Fig. 7) 
with the Rosin-Rammler distribution best fits obtained after fixing the l parameter at 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 
(i.e., regularly spaced number between the main variability intervals defined in Fig. 3a) (Fig. 7). In other words, 
the uncertainty in the parameter l is artificially reduced by assuming that it varies within the range covered by the 
majority of known TGSDs. The results demonstrate that changing l in such a small interval has relatively minor 
effect on the quality of fitting, which accurately describes the tails of the distribution even though in all cases fails 
in reproducing the slight bimodality of the TGSD (Fig. 7). TGSDs can thus be satisfactorily reconstructed only 
based on the median grain-size of the studied deposit within a given range of the shape parameter l provided by 
literature data.

Sensitivity analysis based on synthetic deposits. In order to test the reliability of TGSDs obtained with different 
fitting techniques based on different sampling strategies, we simulate the dispersal of a synthetic deposit of known 
TGSD. For simplicity, the TGSD reproduces that of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador), 
which was combined with four different scenarios based on variable ESPs (e.g., variable column heights and wind 
speeds at the tropopause).

Figure 2. Results of lognormal fitting of the TGSDs. (a) Pearson correlation coefficient r2 of the lognormal 
fitting vs. median grain-size of the distribution (μ); (b) median of the empirical distribution (Mdφ) vs. median 
grain-size of the distribution (μ); (c) sorting (σφ) of the empirical distribution vs. standard deviation of the 
lognormal distribution (σ); (d) μ vs. σ; (e) μ vs. plume height of the associated eruptions. Red circles: size 
distributions of co-PDC deposits. Black circles: all other size distributions.

Figure 3. (a) Pearson correlation coefficient r2 of the Rosin-Rammler distribution fitting vs. l of the studied 
distributions. (b) Variability of the parameter x0 of the Rosin-Rammler distribution fitting vs. the empirical 
median diameter (α) of the studied distributions. The dashed line indicates the best-fit linear correlation 
between the two parameters. (c) Variability of the parameter l vs. column height of the associated eruptions. 
Symbols as in Fig. 2.
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The most significant result of our sensitivity analysis based on synthetic deposits is that the reconstructed 
TGSDs never fully matches the input distribution (Fig. 8). Mdφ is reproduced within ±30% φ error by 30% of the 
reconstructed TGSDs, and σφ is reproduced within ±30% of relative error by 70% of the reconstructed TGSDs 
(Fig. 8a,b). It is important also to note that while Mdφ could be either over- or underestimated with respect to the 
input one, σφ can only be improved (i.e., it decreases). The widely spaced geometry (WS) is the best sampling 
strategy at reproducing the Mdφ and the σφ of the distribution, followed by points downwind, along the dispersal 

Figure 4. Variability of λ versus Pearson correlation coefficient r2 for number of particles obtained from the 
power-law fitting of all the TGSDs considered (Eq. 2, Table 1); (a) entire distribution; (b) particles coarser than 
fine ash (>0.063 mm); (c) lapilli (64–2 mm) to coarse ash (2–0.063 mm) particles. Variability of median particle 
diameter α versus λ: (d) calculated over the entire distribution; (e) calculated only for distribution comprising 
particles coarser than fine ash; (f) lapilli to coarse ash. Dashed lines are best fitting lines calculated for the 
empirical dataset not taking into account co-PDC distributions. Symbols as in Fig. 2.

Figure 5. Variability of D versus Pearson correlation coefficient r2 obtained from the power-law fitting of 
cumulative number of particles all the TGSDs considered (Eq. 5, Table 1); (a) entire distribution; (b) particles 
coarser than fine ash (<0.64 mm); (c) lapilli (64–2 mm) to coarse ash (2–0.063 mm) particles. Variability of 
median particle diameter α versus: (d) D calculated over the entire distribution. (e) D calculated only for 
particles coarser than fine ash; and (f) lapilli to coarse ash. Symbols as in Fig. 2. Dashed lines are best fitting lines 
calculated for the empirical dataset not taking into account co-PDC distributions (red dots).
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Figure 6. Variability of fitting parameter for TGSD estimated for the Ruapehu 1996 eruption tephra blanket 
using different sites combinations (see main text for more details). (a) Map of the deposit of the Ruapehu 1996 
eruption (areas shaded in red tones). Different red tones areas mark isolines of mass distribution (numbers 
represent mass loads in kg/m2), based on38. The grey areas and roman numbers highlight the areas sampled 
for combinations IV, V, VI, and VII. (see text for details). (b) Mdφ and sorting of the distributions; (c) fitting 
parameters of the lognormal distribution; (d) x0 and l parameters of the Rosin-Rammler distribution. (d) 
Pearson correlation coefficient r2 vs. D of the fitted cumulative power-law distribution. (e) Pearson correlation 
coefficient r2 vs. D of the fitted cumulative power-law distribution. (f) Pearson correlation coefficient r2 vs. λ 
of the fitted power-law distribution. In plots (e, f) black dots represent distribution calculated over the entire 
particle size range, open black dots refer to distribution of particles coarser than fine ash, red crossed dots refer 
to distributions calculated over the lapilli particle sizes only. These last two types of distributions overlap in most 
cases. Points are labelled according to the different sampling sub-sets.

Figure 7. Results of variation of l parameter in the Rosin-Rammler distribution fitting of the 1996 Ruapehu 
TGSD. (a) Real distribution (black dots) and distribution fitted after fixing the l parameter to 0.5, 0.6, 0.7, 
0.8, 0.9, and 1 (colored curves); (b) weight-fraction based (χ) distributions for the same fittings as in (a); 
(c) residuals (difference of calculated weight fraction χcalc and the empirical weight fraction (χreal) of the 
distribution fitting, according to the same distribution as in (a). l values are indicated by different colors 
according to legend of (a). Wd is the weight fraction of particles of diameter smaller or equal to d.
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axis (DW) and points along the dispersal and a crosswind axis (DC) geometries. The points along two cross-
wind axes sampling geometry (CW) never gives satisfactory results, with discrepancies of distribution parameters 
always being larger than 30% (Fig. 8a,b).

The fitting parameters of the Rosin-Rammler distributions differ from the deposit TGSD of up to 30% in only 
30% of the cases (Fig. 8c, d). The parameter x0 of the reconstructed TGSD, which could be empirically linked to 
the median size (Eq. 1), could either under- or overestimate that of the deposit, while the shape parameter l is 
equal or larger than the one corresponding to the input TGSD. The sampling strategies which best reproduce the 
input distribution parameters are the DW, DC, and WS. The parameters of the distributions derived from the CW 
sampling strategy display the largest discrepancy with respect to the input distribution parameters.

Finally, the TGSD obtained from 10 or 20 points distributed based on the sampling strategy DW have very 
similar Mdφ, and slightly different σφ (Fig. 8). We also note that in one case (WS sampling strategy for the 30 
km-high plume and 30 m/s wind intensity) the reconstructed distribution is slightly bimodal even though the 
original distribution has a unimodal shape.

Discussion
Our systematic analysis of the largest available dataset of reconstructed TGSDs of tephra deposits shows a large 
variability of both shape and length scales. The associated Mdφ values range from −4 to 5 φ and σφ from 0.8 to 3.4 
φ, with no apparent relationship with ESPs (Table 1).

Effect of sampling strategy on TGSD reconstruction. Given that particle transport in volcanic clouds 
is mostly controlled by their terminal velocity, atmospheric profile and plume dynamics, the size of the sedi-
mented particles negatively correlates with the sedimentation distance (i.e., large particles fall closer to the vent 
with respect to small ones)13,23,24. For this reason, the GSD at individual locations within tephra deposits varies 
with distance from the vent and along the crosswind direction, and at any point cannot be considered as repre-
sentative of the TGSD. Moreover, due to a combination of advection-diffusion processes, the GSD at any location 
in the deposit is expected to be approximately lognormal around the median size corresponding to the typical 
terminal velocity for that distance from the vent. Such a lognormal character can, however, be affected by various 
size-selective sedimentation processes that can significantly change the shape of the distribution (e.g., particle 
aggregation, gravitational instabilities25). As a result, multiple GSDs need to be integrated in order to estimate the 
TGSD. The representativeness of the TGSD, and, therefore, the potential of the reconstructed TGSD to well reflect 
eruptive dynamics, depends on the number and distribution of the sampling locations considered.

Figure 8. Variation of the reconstructed TGSD (a) Mdφ and (b) σφ vs. the input TGSDs (no fitting); (c) x0 and 
(d) l of the Rosin-Rammler fitting vs. the input TSGD. The black lines mark 1:1 ratio between the reconstructed 
and the deposit parameters, dotted lines enclose reconstructed TGSDs parameters with values within 30% 
(almost 1 φ) of the corresponding deposit ones. Symbols: red full circles = CW sampling; blue full circles = WS 
sampling; pink open circles = DW sampling with 10 points; black open circles = DW sampling with 20 points; 
green open circles = DC sampling.
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The extreme sensitivity of the Mdφ and σφ of the reconstructed TGSD to the distribution and number of sam-
pled sites could introduce significant bias in the results15,26 (Figs 6a and 8). In our sensitivity study of the TGSD 
reconstruction associated with the 1996 Ruapehu eruption tephra blanket, we demonstrate that both parameters 
are affected not only by the areal extent of the sampling, but also by the number of samples used for the compu-
tation. In the case study considered here, reducing the number of samples but not the sampled area (subsets I, II 
and III) results in variations of up of 0.8 φ in Mdφ but has a more limited effect on σφ (up to 0.3 φ). Reducing the 
areal extent has no effect when the majority of the deposit mass (subset VII) is included in the sampled area, but 
results in a significant decrease in both Mdφ (up to 3 φ) and σφ (up to 1 φ) when a large fraction of the deposit 
mass is excluded (subsets IV, V, and VI).

The study on the synthetic deposits generated for variable eruptive conditions show that none of the tested 
sampling strategies (DW, CW, WS, DC; Fig. 9) could exactly reproduce the TGSD based on integration of GSDs 
from 20 locations, a number which is loosely representative of most published studies12. Of the tested sampling 
strategies used on synthetic deposits calculated for four eruption cases, the WS (randomly widely spaced sam-
pling points) and the DW (points chosen along the dispersal axis) are best reproducing the input TGSD in terms 
of both Mdφ and σφ (Fig. 8).

Finally, we note that in all the case studies, and given that an incomplete sampling likely results into a smaller 
range of detected grain-sizes considered, the reconstructed TGSD is always better or equally sorted with respect 
to the TGSD of the synthetic deposit (or the most extensive sampling of the 1996 Ruapehu tephra). This result 
suggests that good sorting is not a criterion for representativeness of the reconstructed TGSD.

Our results also suggest that the lack of any systematic pattern linking reconstructed TGSDs to ESPs (e.g., 
plume height or mass eruption rate; Fig. 2e) could be mostly due to the extreme diversity in deposit exposure, 
and, therefore, in sampling strategies used to derive TGSDs. It is, therefore, advisable not to attempt TGSD recon-
struction in cases where a significant mass fraction of the deposit is either not preserved or accessible or if the 
sampling sites are not widely dispersed. In this case, the resulting TGSD could be misleading and, certainly, 
poorly representative of the size distribution of particles at the vent.

shape of the distributions. Four main types of distributions, generally used to describe the result of frag-
mentation processes, can satisfactorily fit the empirical dataset analyzed in this paper: a lognormal distribution, 
commonly used in sedimentology, the Rosin-Rammler distribution, and both simple and cumulative power-law 
distributions. Among these, the Rosin-Rammler distribution appears to be the most successful (i.e., giving 

Figure 9. Sampling strategies over the dispersal of the deposit simulated for an eruption with column height 
of 10 km and maximum wind speed of 10 m/s. Stars indicate the position of the volcanic vent. Colored dots 
indicate the sampling points. The labels on top right correspond to the sampling strategy acronym (section 5.4). 
Black dots enclose the deposit areal dispersal.
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consistently larger r2) in reproducing the distributions of the dataset (Fig. 3), and the simple and cumulative 
power-law distributions are the most stable even in the case of incomplete sampling. However, a very large uncer-
tainty is introduced when converting weight-based distributions, which are primarily determined by sieving 
techniques, to number-based distributions, such as the power-law distributions. The source of uncertainty derives 
from: i) the weighing error, which introduces a larger (i.e., several orders of magnitude) bias for small particles 
with respect to large ones; ii) the assumption that all particles have the same volume (necessary because of the 
lack of information on the particle distribution within a size (φ) class) (Eq. 6); and iii) the lack of information 
regarding of density variation with size of the particles.

These results suggest that, when a distribution model is necessary either for statistical or modeling studies, 
TGSDs are best approximated by a Rosin-Rammler distribution. Because of its ability in describing the tails of 
the distribution, the Rosin Rammler fitting is also particularly useful when it is necessary to estimate the fraction 
of fine or very fine particles (e.g., for health hazard assessment). However, because partial or inefficient sampling 
of the tephra deposit could affect both shape and scale of the reconstructed TGSD, a critical assessment on the 
representativeness of the distribution should be carried out based on the characteristic of the empirical dataset.

An exploration of the uncertainty associated with the Rosin Rammler distribution has been carried out by fit-
ting the 1996 Ruapehu TGSD after fixing x0 and varying the l parameter between 0.5, and 1.0 (the main variability 
interval defined in Fig. 3a). The results demonstrate that changing l in such small interval has relatively minor 
effect of the quality of fitting, which accurately describes the tail of the distribution but fails in reproducing the 
slight bimodality of the TGSD (Fig. 7). This implies that even if l is not known, the tails of the distribution can 
be satisfactorily described by modeling the TGSD by a Rosin-Rammler distribution after empirical estimation of 
the deposit median grain-size (or xo) assuming that l lies in the range of most of published TGSDs (0.5–1; Fig. 3).

Conclusive Remarks
The reconstruction of TGSDs is crucial to many aspects of explosive volcanism (e.g., magma fragmentation, 
explosive potential, tephra dispersal, volcanic impact), and, therefore, our general understanding is based on 
a critical interpretation of the associated empirical and theoretical distributions used to fit field observations. 
Theoretical fitting helps to better describe TGSDs with the potential of providing more information on the dis-
tribution characteristics (e.g., distribution tails) and minimize uncertainties associated with sampling. Given the 
lack of studies linking specific distribution shapes (i.e., lognormal, Rosin-Rammler, Gamma, etc.) with explosive 
magmatic fragmentation styles (i.e., Plinian, Strombolian, Vulcanian, etc.), TGSDs can be traditionally modelled 
using empirical distributions based on rock fragmentation studies. Among them, the lognormal, Rosin-Rammler, 
and power-law distributions adequately describe known TGSDs. Power-law distributions, despite their good fit-
ting potential and stability (e.g., Figs 4 to 6), are affected by large uncertainties associated with the conversion 
of particle mass to numbers. Amongst all tested strategies used to fit particle distributions, the Rosin-Rammler 
shows the best compromise between fitting capacity (e.g., highest Pearson correlation coefficient) and stability 
with respect to sampling bias. We have also shown that TGSDs can be satisfactorily reconstructed only based on 
xo (which is related to the median grain-size) within a given range of the shape parameter l provided by literature 
data; in particular, the Rosin-Rammler distribution cannot well describe bimodality but can best reproduce the 
TGSD tails even when the parameter l is not well constrained.

The choice of empirical and theoretical parameters to best describe TGSDs depends on the final objective. As 
an example, empirical parameters (i.e., Mdφ and σφ) are the most objective and can be used for a first order char-
acterization of the distribution, while theoretical parameters (i.e, l, x0, μ and σ) are more stable and can be better 
used to estimate specific parameters of the distribution (e.g., estimate of the percentiles of ash or block-sized 
pyroclasts based on the distribution tails). There are no obvious relations between published TGSD parame-
ters (e.g., Mdφ and σφ) and ESPs. We note that many of them (Table 1) were calculated after a limited number 
of samples with limited deposit exposure and 2 different reconstruction methodologies were uses, such as the 
Voronoi tessellation method and the weighted average, and thus might only partially reproduce the real TGSD of 
the corresponding deposits and not be fully comparable. This fact, combined with the complexity of magmatic 
fragmentation processes, could explain the very limited potential in unraveling functional relationships of known 
TGSDs with ESPs and conduit processes in general.

Numerical simulations and a sensitivity study carried out on a synthetic tephra deposit have confirmed that 
the reconstruction of the TGSD is extremely sensitive to sampling strategy. First, the reconstruction of TGSD 
should cover the whole deposit (i.e., WS strategy in Fig. 8), while sampling along the dispersal axis and crosswind 
sections do not necessarily provide good results. Second, TGSDs computed over widely distributed sampling sites 
appear to provide reliable median sizes but not necessarily representative sorting. Finally, TGSD is best recon-
structed when most of the erupted mass is accounted for (i.e., considering sampling locations with the highest 
mass loads). This implies that proximal sampling is more critical to the representativity of the final TGSD than 
distal sampling. However, given the grain-size decrease with distance from the source, proximal sampling alone 
might not be able to describe the fine tail of the distribution.

Methods and study Dataset
study Dataset. The amount of observations of tephra deposits has considerably increased during the last 
decade and grain-size distributions from eruptions of different styles (Hawaiian to Strombolian, Vulcanian to 
Subplinian and Plinian) are now better characterized11,12. Data from 50 eruptions (available from published data; 
Table 1) encompassing a wide range of eruptive styles, intensities, and magma compositions have been analyzed 
and compared to find common properties and empirical correlations. These eruptions were fed by magmas with 
compositions ranging from basalt to rhyolite and tracyhte and crystal content ranging from 0.5 to 40 vol.%; they 
were characterized by variable intensity and style, ranging from Hawaiian to Vulcanian, Subplinian and Plinian. 
Some distributions are associated with co-pyroclastic density currents (co-PDCs) deposits (Table 1).
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As already mentioned, the representativeness of each available TGSD depends not only on the validity of the 
numerical method of integration of outcrop data, but also on the sampling geometry (number and distribution 
of sampling points). The latter is often limited by several factors, including geographical constraints (as in the 
case of volcanic islands and large urban or vegetated areas), accuracy of stratigraphic reconstruction/correlation, 
sampling issues (e.g., in the case of very thick or very fine layers), erosional processes, and deposit contamination 
by co-PDC fallout, ash re-suspension or late ash explosive phases. Even in the case of a tephra deposited from 
a single plume, TGSD can result from several fragmentation processes and their interaction, including co-PDC 
coexisting with a main sustained plume and non-steady plume dynamics. Both these processes could eventually 
form deposits with bimodal size distributions, such as the well-documented case of the 1980 Mount St. Helens 
eruption25,27. Given the difficulty to assess the influence of deposit exposure and of eruption dynamics on the 
reconstructed TGSD for each specific eruption, all available TGSDs were indistinctly included in our analysis to 
explore first order characteristics.

For uniformity, all the TGSDs of the dataset were analyzed as 1 φ interval distribution, recalculating frequen-
cies for the distribution originally published with half φ size intervals.

statistical models. TGSDs have been traditionally described as weight percent of φ classes (where φ cor-
responds to –log2 of the particle diameter), in analogy with classical sedimentology methods. Measured outcrop 
and deposit distributions are primarily described by two main empirical parameters in φ units, median (Mdφ) and 
sorting (σφ), which were defined to describe single location grain-size distributions (GSDs)17,19.

Size distributions of fragmented particles can be conveniently fitted in several ways28. The two key parameters, 
which fully constrain any statistical distribution used to describe TGSDs, are generically called the shape of the 
distribution and the distribution length scale. The first parameter describes the actual form of the distribution, 
and changes based on the distribution model used, whereas the second one generally depends either to the mean 
or median particle size29. Defined mathematical expression of these parameters correspond to any theoretical 
grainsize distribution, such as the l, x0 parameters of the Rosin-Rammler distribution and the μ and σ parameters 
of the log-normal distribution.

Several empirical or theoretical distributions have been proposed to fit both natural size distributions and 
experimental fragmentation data. They either describe the variation of particle number with particle size (if the 
fragmentation event produced a small number of particles which could be individually counted), or particle mass 
with particle size (when the particles produced are too many and their empirical distribution is constrained by 
sieving and weighing). These different approaches lead to a substantial gap between experimental studies, mostly 
based on particle number distribution, to empirical studies on fragmentation in natural systems, mostly based on 
the analysis of mass distributions.

Among the particle number distributions, the most used by the volcanology community is the power-law 
(including the fractal distribution proposed for magmatic fragmentation1,12,30); whereas the Mott and the Poisson 
distributions, proposed for ballistic studies31, are traditionally employed for rock fragmentation studies.

A power-law fitting probability density function has the form:

= λ−kdn (4)d

where nd is the number of particles of diameter d, and the parameter λ is the slope of the distribution, and k is 
a scaling factor which depends on the total number of particles. The cumulative power-law distribution has the 
form:

> = −N n d k d( ) (5)D
1

where N (n > d) is the number of particles of diameter larger than d, D is the slope of the distribution (also called 
the fractal dimension), and k1 is again a scaling factor which depends on the total number of particles. Because 
it is not possible to count directly the number of particles of a tephra deposit, a power-law fitting requires the 
calculation of the normalized number of particles in each size class given their weight derived from sieving data. 
The exact calculation requires shape, density, and size distribution within each φ class to be known and cannot 
be easily generalized. For this reason, the average particle diameter is calculated based on the average φ value 
between each class and its coarser neighbor assuming a generic spherical shape. The distributions are calculated 
based on the normalized number of particles ndm in each size class that corresponds to:
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where nφ is the number of particles calculated after the sieving weight distribution, No is the total number of par-
ticles erupted, dm is the average diameter of the φ size considered (usually expressed in m), and ρφ is the average 
density of particles in each φ class.

We note that, even disregarding the uncertainty in the size distribution within each φ class, a high uncer-
tainty is associated with the conversion of the weight in number of particles. In detail, the uncertainty in weight 
propagates exponentially and scales of a factor of 3 with φ. Consequently, an uncertainty of 0.1% in the weight 
corresponds to an uncertainty in number of particles of <1 for −10 φ but 1012.5 for particles with 4 φ diameter.

The dependency of pyroclasts vesicularity and density on their size has already been shown32. Clast density 
typically varies from two end members, the lowest corresponding to the average vesicularity of lapilli size particles 
and the largest corresponding to the glass or powder density (or DRE, dense rock equivalent). The transition from 
these two values is, with good approximation, linear to sigmoidal in φ but the threshold φ sizes are not constant 
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and change within each eruption depending on the original bubble size distribution and number density32,33. 
Calculating particle numbers based on a (uncalibrated) fixed density-φ trend would introduce artificial kinks 
in the distribution. For this reason, especially when comparing distribution of clasts with very different textures. 
The assumption of constant density is more accurate unless specific studies are available for the pyroclasts of each 
TGSD dataset.

Among the particle mass distributions, the most used is the lognormal, usually proposed for sedimentology 
studies22, the Rosin-Rammler /Weibull distributions (recently proposed for TGSDs12), and the Schuhmann dis-
tribution, largely used in metallurgical and industrial applications34,35. In particular, the Rosin-Rammler was first 
introduced by36 to describe particle size analysis of rock comminution processes. It was subsequently formalized 
by37 in an alternative mathematical form known as the Weibull distribution. This results in two mathematical 
distribution which are equivalent but fitted by distinct parameters which can be compared using conversion 
factors22.

All these distributions were developed either based on empirical or theoretical studies of fragmentation of 
rigid materials and have different descriptive potentials in terms of fragmentation dynamics, energy and key 
distribution characteristics. Some of these distributions (such as the lognormal and the Rosin-Rammler22) are 
considered as valid over the entire particle range displayed in the dataset, because they describe not only the 
central part but also the tails of the distributions. They are fitted based on two distinct parameters corresponding 
to the shape of the distribution, and the distribution length scale: the first parameter describes the actual form 
of the distribution and changes based on the distribution model used, whereas the second one is generally equal 
either to the mean or median particle size or to a definite percentile29. Other distributions (i.e., the power-law) 
are valid only in the central size range but do not describe the tails of the distributions and are still fitted by two 
characteristic parameters. The limits of power-law distributions are defined by the smaller and larger sizes than a 
given threshold value, i.e., the fragmentation length scales29. The upper-length threshold (i.e., the largest particle 
size) is primarily controlled by the initial magma body length scale (i.e., the length scales of the volume of magma 
involved). The lower-length threshold (i.e., the smallest size at which the distribution is valid) is instead con-
trolled by the textural, physical, elastic properties of the magma, and total energy, and the stress rate associated 
with the fragmentation event. In the case of magmatic fragmentation, the determination of these length scales 
requires precise constraints of pre-eruptive conditions and magma properties, and their effect on the fragmenta-
tion dynamics, which are typically not available.

In this article we describe the four distributions which best describe the dataset. Similar analyses were also 
carried out for the Schumann and Mott distributions which are commonly used to model rock fragmentation31, 
but did not provide acceptable fits (Pearson correlation coefficient r2 are always lower than the models proposed 
in this paper) and, therefore, are only presented as Supplementary Material.

The probability density function of the lognormal distribution is:
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where wφ is the weight fraction of the material in each φ class, dφ is the particle diameter in φ, μ is the median 
grain-size, and σ is the standard deviation of the distribution.

The cumulative probability density function of the Rosin-Rammler distribution can be described as:
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where wd is the weight fraction of particles of diameter smaller or equal to a given diameter (d) in m. The two 
fitting parameters provide information on the distribution shape (l), which is a pure number, and on the length 
scale (x0), which is expressed in the same length units as the particle diameter (here expressed in m). In literature, 
x0 has been empirically linked with various percentiles of the original distribution22.

Empirical study on the effect of incomplete sampling. The effect of the number and distribution of 
sampled sites used to compute the TGSD can be evaluated by calculating the TGSD of the same deposit based 
on a variable number of site GSDs. This test was performed on the 1996 Ruapehu eruption tephra deposit (New 
Zealand), which represents the most extensive dataset used for the compilation of a TGSD15,38. We considered 
the distributions calculated using I) the entire dataset, consisting of 105 sampling sites distributed over an area of 
about 104 km2 and located up to 160 km from the vent; II) 50% of the original sites, maintaining a similar distribu-
tion arrangement; III) 10% of the sites, maintaining a similar distribution arrangement; IV) sites at distances from 
the vent exceeding 5 km; V) sites at distances from the vent exceeding 30 km; VI) sites at 50 km or more from the 
vent; and VII) sites at distances smaller than 30 km from the vent. The extent of sampling for the different combi-
nations is shown in Fig. 6a. The deposit is marked by a rapid mass load decay with distance from the source. The 
tephra deposited within 5 km, 30 km, and 50 km from the vent, calculated after the isomass distribution shown in 
Fig. 6a based on the strategy of39, accounts for 42, 52, and 70% of the total deposit, respectively.

Numerical simulations. In order to test the performance of different sampling techniques, we simulate the 
dispersal of a synthetic deposit of known TGSD. For simplicity, the TGSD reproduces that of the 2450 BP Plinian 
eruption of Pululagua volcano (Ecuador), having Mdφ = 0.24 and σφ = 1.9118. The distribution is unimodal and, 
due to the limited amount of fine ash, aggregation processes affecting deposition patterns by mobilizing of fine 
particles into larger aggregates can be considered negligible.
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We initially combine four different scenarios based on variable ESPs. These include two column heights 
(10 km and 25 km above the vent) and two wind speeds at the tropopause (10 m/s and 30 m/s, with a standard 
vertical profile and constantly blowing W—E; Fig. S1). The dispersal of the erupted mass (4.5 × 1011 kg18) on a 
hypothetical flat topography from an ideal vent at 750 m above sea level is produced by using the numerical model 
TEPHRA240,41. TEPHRA2 relies on an analytical solution of the advection–diffusion equation, which accounts 
for various regimes of sedimentation based on the terminal velocity of particles and size-dependent atmospheric 
diffusion. Regardless of its simplicity, TEPHRA2 has been successfully applied to simulate the particle deposition 
of both strong plumes (e.g., Tarawera volcano, New Zealand40; Cotopaxi volcano, Ecuador42) and weak plumes 
(Ruapehu volcano, New Zealand40; Etna volcano, Italy43). Before setting up the sampling geometries, we initially 
made four runs with TEPHRA2 to check in which area most of the erupted mass (>95 wt%) was emplaced. In 
order to do this, we integrated the deposit grain-size computed at the nodes of a 1-km-spaced grid, 600 × 600 km 
(600 × 1000 km in the case of a column of 25 km with a wind speed of 30 m/s) for a total of 3.6 × 105 points 
(Fig. S2).

Once the tephra accumulation on the ground and the grain-size distribution at each grid point was obtained, 
we applied the Voronoi tessellation technique to reconstruct the TGSD15. As zero lines (required by the tessel-
lation technique) we used the isolines of mass loading >0.001 g/m2 obtained for each run. We first verified that 
with the complete grids the reconstructed TGSDs were virtually identical to the input distribution (i.e., marked 
by very similar distribution shapes and parameters), and as a next step we designed four different geometries of 
20 points on the ground corresponding to variable sampling strategies (Fig. 8). This number is representative of 
the average sites used to reconstruct TGSD in literature (ref.12 and dataset analyzed in this work). In particular, 
we chose a distance of 5 km from the vent as the most proximal site and the zero line as the farthest point, given 
that deposits are rarely sampled in very proximal areas due to poor accessibility and/or preservation. The geome-
tries include: (i) a distribution of 20 widely spaced points covering the entire deposit area (WS); (ii) a downwind 
distribution (DW) along the dispersal axis with exponentially increasing distance between points; (iii) two N—S 
crosswind distributions (CW), 10 points each at 1/3 and 2/3 of the total distance; (iv) a combined geometry of 
8 points along the downwind axis with exponentially increasing distance coupled with two perpendicular, N-S 
distributions of six points each (DC). The four geometries were used with all the combinations of column heights 
and wind speeds, for a total of 16 cases. The DW geometry was also tested with only 10 points (DWs) to assess the 
reliability of smaller datasets (Fig. 9).

For each eruption case and sampling strategy, the TGSD obtained by integrating the points using the Voronoi 
tessellation method (Fig. S3) was compared with the input TGSD (i.e., the TGSD obtained by integrating the 
grain-size of the deposit in all nodes of the grid constrained by the 0.001 g/m2 contour).
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