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Active sound production of scarab 
beetle larvae opens up new 
possibilities for species-specific pest 
monitoring in soils
Carolyn-Monika Görres1,2 & David Chesmore3

Root-feeding Scarabaeidae larvae can pose a serious threat to agricultural and forest ecosystems, but 
many details of larval ecology are still unknown. We developed an acoustic data analysis method based 
on active sound production by larvae (i.e. stridulations) for gaining new insights into larval ecology. 
In a laboratory study, third instar larvae of the Common Cockchafer (Melolontha melolontha) (n = 38) 
and the Forest Cockchafer (M. hippocastani) (n = 15) kept in soil-filled containers were acoustically 
monitored for 5 min each, resulting in the first known stridulation recordings for each species. 
Subsequent continuous monitoring of three M. hippocastani larvae over several hours showed that a 
single larva could stridulate more than 70 times per hour, and stridulation rates increased drastically 
with increasing larval abundance. The new fractal dimension-based data analysis method automatically 
detected audio sections with stridulations and provided a semi-quantitative estimate of stridulation 
activity. It is the first data analysis method specifically targeting Scarabaeidae larvae stridulations in 
soils, enabling for the first time non-invasive species-specific pest monitoring.

Melolonthinae, a subfamily of the scarab beetles (Scarabaeidae), comprises of 29 tribes1 of which several pose a 
serious threat to crop and forestry yields all over the world2–4. The adult beetles have strong mandibles for mainly 
eating leaves, however, the most serious damage to trees and agricultural crops is first and foremost caused by the 
soil-dwelling, root-feeding larvae, also known as white grubs3. In Europe, two species of Melolonthinae which are 
considered as important pest insects are Melolontha melolontha (Linnaeus, 1758) (Common Cockchafer) and M. 
hippocastani (Fabricius, 1801) (Forest Cockchafer)2. These two species are very similar in their biology and are 
not host plant specific. While M. melolontha can be found in more open habitats (e.g. pastures, vegetable crops, 
orchards, vineyards), M. hippocastani mainly thrives in deciduous forests5,6. Currently, these two species occur as 
pests in Austria, Czech Republic, France, Germany, Italy, Poland and Switzerland, but the available monitoring 
data is incomplete2, and Melolontha spp. outbreaks are expected to spread again after a decline in population 
sizes in the middle of the last century7. The reasons behind the recovery of Melolontha spp. populations are 
mainly unknown7, but are of serious concern as, for instance, infested forest areas can become more susceptible 
to droughts and secondary diseases, and forest regeneration can be hindered5,6,8.

Strategies to control white grub infestations of Melolontha spp. include mechanical (soil-covering nets, 
ploughing), chemical (pesticides) and biological (Beauveria spp., nematodes) measures. These have been applied 
to various degrees of success during the past century, but until today, there is no generally applicable, environ-
mentally friendly pest control strategy to control white grub infestations at agricultural and forest sites3,9. One 
of the main reasons for this are the difficulties associated with monitoring these soil-dwelling insects10. Due to 
their cryptic lifestyle, white grubs can live for years unnoticed in the soil. The larvae of M. melolontha and M. 
hippocastani live three and four years, respectively, in the soil until they develop into the adult chafer. During this 
time, the larvae pass three different instars. They only reach pest status if the larval abundance surpasses a certain 
crop specific threshold4,8, for instance, two M. melolontha larvae m−2 are already critical for orchards whereas in 
meadows M. melolontha larval abundance of up to 40 larvae m−2 can still be tolerable11.
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The current standard method for monitoring larval abundances and to confirm white grub infestations is to 
excavate the soil. This type of monitoring is invasive, laborious and time-consuming and cannot be performed at 
a high temporal frequency8,10,12. As a result, Melolontha spp. infestations can go unnoticed until severe damage to 
the vegetation becomes visible, larval abundances can be underestimated, and many details of larval behaviour 
cannot be satisfactorily explained or predicted yet (e.g. seasonal variations in larval distribution patterns13, nat-
ural variations in long-term population dynamics7, sensory location of preferred host plants14, and reactions to 
different plant substances6). Therefore, a stringent way of monitoring is essential for efficient and successful appli-
cation of already established pest control measures. It can also provide valuable new insights into a target species’ 
ecology for the development of environmentally friendly pest control measures, such as trap plant selections for 
integrated plant protection schemes4,6.

One way to improve the monitoring of Melolontha spp. larvae is the use of acoustics, which has the potential 
to facilitate non-invasive and real-time continuous soil monitoring10,15,16. Soil is a challenging medium for acous-
tic monitoring due to its heterogeneity. It attenuates sound more strongly than air and plant parts, especially 
at high frequencies, and sound transmission can vary considerably on a scale of a few centimetres depending 
on soil properties (e.g. bulk density, organic matter content, soil moisture, root and stone distribution)15,17,18. 
Nevertheless, acoustic sensors inserted into the soil have already been successfully applied for detecting white 
grub infestations and also for the quantification of larval abundances non-invasively12,15,17, but a major challenge 
is still the correct identification of sounds and the differentiation between pest and nonpest signals17–20. The few 
available acoustic soil studies on Scarabaeidae larvae have only focused on incidental insect sounds (feeding, 
movement) and species identification still had to be confirmed via soil excavations15,21. Several different species 
belonging to the Melolonthinae can co-occur in soils – not all of them necessarily being regarded as pests3 – and 
even for experts it can be difficult to differentiate the species rapidly in the field when they are still in their larval 
stage. Especially differentiation of M. melolontha and M. hippocastani larvae based only on morphological fea-
tures alone does not seem possible22.

One promising way to overcome this problem is to shift the focus of acoustic monitoring from incidental 
sounds to stridulations. Stridulations are actively produced sounds for communication created by rubbing 
together certain body parts23. The larval stridulatory organs in Melolonthinae are located maxilla-mandibular and 
consist of a pars stridens (an area with fine parallel ribs) and a plectrum (sharply confined ridge) which are mov-
ing against each other24,25. Larvae of many Coleoptera families possess stridulatory organs and morphological 
descriptions are available for many species24, the first description for M. melolontha larvae stemming already from 
187425. In contrast to the vast number of morphological descriptions of stridulatory organs, stridulations them-
selves have rarely been studied, their ecological meaning is not well understood, and they have never been uti-
lized in soil monitoring programs19,24,26,27. However, these sounds seem to have species-specific patterns26,28, and 
thus targeting larval stridulations has the potential to greatly improve pest monitoring by enabling non-invasive, 
species-specific monitoring with high spatial and temporal coverage. To access this potential for the development 
of improved soil monitoring tools for Melolontha spp. larvae in particular and Scarabaeidae larvae in general, the 
aim of this study was two-fold: (a) to provide the first description of stridulation patterns of M. melolontha and M. 
hippocastani and to assess their species-specificness, and (b) to develop a data analysis routine for rapid detection 
and quantitative estimation of scarab beetle larvae stridulations in continuous audio recordings, under the prem-
ise of keeping computational costs low to encourage the use of soil acoustics for scarab beetle larvae monitoring.

Material and Methods
Cockchafer larvae for acoustic monitoring experiments.  Acoustic laboratory measurements were 
performed with scarab beetle larvae of the species M. hippocastani and M. melolontha. These species were cho-
sen due to their important pest status in Europe, but they also serve as model organisms for white grubs in 
general. Thirty M. hippocastani larvae (second instar) were excavated in a mixed coniferous forest on sandy soil 
(Hessisches Ried, Pfungstadt, Germany) in November 2015, and individually kept in small plastic containers 
(100 ml) with perforated lids in the laboratory in the dark at near constant room temperature (~17 °C). Each 
container was filled with soil from the excavation site. Approximately every two weeks, carrot slices were added 
to the containers as food source and the soil sprayed with tap water to keep it from drying out. In the laboratory, 
larvae shed their exoskeleton once passing from second to third instar in March 2016. In June 2016, 15 larvae 
were randomly selected for acoustic monitoring in the laboratory. Seventy-five third instar larvae of M. melolon-
tha were excavated in a meadow on sandy soil (Blaubeuren-Weiler, Germany) in May 2017, and transferred to 
the laboratory being kept in the same way as the M. hippocastani larvae. One week after excavation, 38 of these M. 
melolontha larvae were randomly selected for acoustic monitoring.

Acoustic monitoring experiment I.  All acoustic measurements were conducted at room temperature 
(~20 °C) in a plastic box (60 × 40 × 33 cm) insulated with acoustic foam to reduce background noises, a so-called 
silent box. Detailed instructions for replicating the acoustic sensors described in the following paragraphs can be 
obtained from David Chesmore. Each larva was acoustically monitored for 5 min by placing one plastic container 
at a time into the silent box with a low-cost sensor attached to the outside wall of the container. The sensor was 
self-made based on a piezoelectric transducer (amplified, gain 20). It was connected to an external battery box 
which, in turn, was plugged into the microphone input of a commercially available audio recorder (TASCAM 
Linear PCM Recorder DR-05 Version 2, TEAC Europe GmbH, Wiesbaden, Germany). Sounds were recorded 
in. wav format with an audio sampling rate of 44.1 kHz. Audio recordings of individual M. hippocastani and M. 
melolontha larvae were conducted in June 2016 and June 2017, respectively.

Acoustic monitoring experiment II.  The three most sound-producing M. hippocastani larvae were 
selected for a second experiment. An acoustic sensor consisting of a piezoelectric transducer encased in a 
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water-proof, silicone sealed plastic case (length: 21 cm, width: 3 cm, thickness: 0.5 cm) was positioned upright 
in a glass jar (volume: 2.7 l, height: 24 cm, diameter: 10 cm). Subsequently, the glass jar was completely filled 
with sandy soil from the original excavation site of the larvae. In the first step of the experiment, one of the three 
selected M. hippocastani larvae was placed on top of the soil together with fresh carrot slices as food source. The 
larva had to burrow itself into the soil. Upon placing the larva in the glass jar, sounds were recorded continuously 
with the buried sensor for 12 hours. A new audio file was created every 50 min. Two weeks later, the remaining 
two selected M. hippocastani larvae were also added to the jar together with fresh carrot slices. A new continuous 
audio recording was started, this time lasting for 18 hours. Apart from the sensor, the audio recording equipment 
and the audio sampling rate were the same as in the first experiment. This experiment was performed at the same 
temperature and with the same silent box used in the first experiment. During the recordings, the silent box was 
stored in a room with little background noise.

Manual acoustic data analysis.  All raw audio files were bandpass filtered to retain only audio signals 
between 200 and 5000 Hz, their audio waveforms normalized to a maximum amplitude of −1.0 dB, and any 
hardware-introduced DC offset removed to centre all audio waveforms on the 0.0 horizontal line29. Based on 
literature and previous experiments, the frequencies filtered out were considered to contain mainly background 
noise, but not scarab beetle larvae stridulations. Removal of background noise is a standard procedure to improve 
the performance of subsequently applied data analysis methods15.

After pre-processing, each audio file was listened to in real time and visually inspected to manually detect and 
count all stridulation events. Stridulations with the highest recording quality were selected for detailed inspection 
of the audio signals’ waveforms and spectrograms for the description of Melolontha spp. stridulation patterns. The 
entire manual acoustic data analysis was performed with the software Audacity 2.1.329.

Automated acoustic data analysis.  A data analysis routine for rapid automated detection and quan-
titative estimation of stridulation events in continuous audio recordings was developed based on the work of 
Schofield30, who was the first to use fractal dimension analysis for the detection of larval activity sounds, specif-
ically larval feeding bites. Fractal dimension analysis focuses on the time domain (i.e. the waveform) of an audio 
recording, which keeps computational costs low in comparison to other acoustic data analysis methods, and it is 
amplitude independent, which makes it suitable for environments with low signal-to-noise ratios like soils30,31. 
Fractals can be defined as irregular geometric objects and the aim of fractal dimension analysis is to approximate 
their shapes, referred to as geometric complexity, through the calculation of scalar values. These scalar values are 
referred to as fractal dimensions31. The waveform of an audio recording is considered as a geometric shape31 and 
the geometric complexity of stridulation events differs from incidental larval sounds (movement, feeding sounds) 
or background noise (Fig. 1a). The data analysis routine was written with the software R 3.4.332 utilizing the R 
packages “fractaldim_0.8–4”33 and “tuneR_1.3.2”34 (see Supplementary Information for a detailed description of 
the data analysis routine). It was applied to all audio files generated in the second experiment after these files were 
pre-processed in Audacity as described.

First, the pre-processed audio files were imported into R and sliced into 2 s long sections (sc), of which only 
the amplitude values of the waveforms were extracted for further analysis (Fig. 1a). The next steps were to divide 
each sc into subsections (=frames) with a fixed length (=frame size), and to calculate a fractal dimension (D) for 
each frame (f) for converting the geometric complexity of the waveform into a D timeseries. Section length and 
frame size depend on the length of the targeted sounds. The targeted sounds should only take up a small sc frac-
tion, thus they can be identified with an outlier detection approach (see following paragraph). Frame size should 
be about the same size as the targeted sounds or smaller. Smaller frame sizes can increase sound detectability, but 
processing time per sc increases as well. For each sc, D for the waveform were calculated twice with the mado-
gram estimator35 and non-overlapping f using a frame size of 88.2 samples (=2 ms) and 176.4 samples (=4 ms), 
respectively. These frame sizes turned out to be most suitable for appropriately capturing Melolontha spp. strid-
ulations by testing different frame sizes on a subset of audio recordings from acoustic monitoring experiment I. 
Non-overlapping frames were chosen to keep processing time per sc as low as possible.

Subsequently for each f in sc, D was converted into a fractal distance (FD) by calculating its median deviation 
from the median (md)36:

= –FD D D D( median ( ))/md( )f f sc sc

The FD timeseries with a frame size of 88.2 samples consisted of 1000 samples for each sc. The FD timeseries 
with a frame size of 176.4 samples was linearly interpolated to comprise the same amount of samples, and then 
both timeseries were summed up (SFD) (Fig. 1b). The SFD timeseries was used for the detection and quantitative 
estimation of stridulations by applying several vertical and horizontal thresholds. The following thresholds were 
derived in the same manner as the frame sizes. First, the R function ‘rle’ (=run length encoding) was used to filter 
out all f with SFD > −4.0. Second, all f were filtered out where SFD < −4.0 for more than 2 adjacent f. Third, the 
time interval (in f) between the remaining f was calculated (TI). Clusters of single f with SFD < −4.0 being spaced 
apart less than 10 TI within the clusters were indicative of stridulation events (Fig. 1c). For each 50 min audio 
file, stridulation activity (STRAC) was automatically estimated by multiplying TI 1 to 10 with their respective 
frequencies and summing up the products.

Ethical approval.  All applicable international, national, and/or institutional guidelines for the care and use 
of animals were followed.
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Results
General stridulation patterns in acoustic monitoring experiments I and II.  Stridulations of the 
two species were easily recognizable and distinguishable by listening to the audio recordings. The common strid-
ulations of M. melolontha and M. hippocastani consisted of short bursts of sound (Fig. 2). They were very similar 
and both peaked at a frequency of ~1700 Hz, however, M. melolontha stridulations lasted longer than those of M. 
hippocastani. Stridulations often occurred in pairs, but repetitions up to 4 times were also recorded. A second type 
of stridulation which was recorded less frequently from both species consisted usually of 4 (seldom only 2 or 3) 
repeated patterns with a duration of ~250 ms each and a frequency peak at 3000 Hz (Fig. 3).

Distribution of stridulation events in acoustic monitoring experiments I and II.  During the 5 min 
manual acoustic screening of individual larvae, only few stridulations were detected. In total, only 5 stridulations 
from 3 different individuals were recorded from the set of 15 M. hippocastani larvae. Of the 38 M. melolontha 
larvae, 5 individuals were caught stridulating, producing 16 stridulations altogether.

In contrast to the first experiment, numerous stridulations were observed while manually screening the con-
tinuous acoustic monitoring of M. hippocastani larvae in the second experiment (Fig. 4). The first larva which 
was placed in the soil-filled glass jar stridulated 75 times in the first 50 min after placement. The stridulation 
rate dropped to 15 stridulations h−1 over the next 4 h and subsequently, the larva almost completely stopped 
stridulating except for a few single stridulation events. In total, the larva produced 188 stridulations during 12 h 
of continuous recording. Stridulation activity drastically increased in the soil-filled glass jar after adding 2 more 
larvae. In the first 2.5 h alone, the 3 M. hippocastani larvae stridulated 682 times. Afterwards, the stridulation rate 
levelled below 70 stridulations h−1 with periods of high activity alternating with periods of very low activity. Over 
the course of 18 h of continuous recording, the 3 larvae produced 1100 stridulations.

Automated acoustic data analysis.  For the fractal dimension analysis, the chosen f sizes of 88.2 and 176.4 
samples were best suited for describing the geometric complexity of stridulation events in the time domain, and 
thus for detecting them in the amplitude timeseries. For stridulation events, FD became more negative in compar-
ison to incidental sounds (movement and feeding sounds, background noise, and interferences). Summing up the 
two FD time series for each analysed sc enhanced that effect, separating stridulations from incidental sounds even 
further along the y-axis. A threshold value of −4.0 was determined to be most suitable for separating stridulations 
from incidental sounds. Positive SFD values were associated with background noise and could be completely 
disregarded in any further analysis (Fig. 1b).

Figure 1.  Detection of cockchafer larvae stridulations using fractal dimension analysis (see text for details). (a) 
Audio recording with two stridulations (at ~650 ms and ~1100 ms) and larval moving sounds (from ~1700 ms 
onwards). (b) Summed fractal distance (SFD) for every 2 ms (=frame) of the audio recording. Peaks crossing a 
threshold of −4.0 are first indicators of stridulation events. (c) Number of frames between adjacent peaks (TI) 
crossing the threshold in (b). A distance of less than 10 frames is indicative of a peak of clusters crossing the 
threshold in (b), and thus a stridulation event.
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Figure 2.  Comparison of acoustic patterns produced by stridulation of larvae (third instar) of Melolontha 
melolontha and M. hippocastani.

Figure 3.  Acoustic pattern produced by stridulation of a third instar Melolontha hippocastani.

Figure 4.  Stridulations manually counted in continuous audio recordings of third instar Melolontha 
hippocastani activities in laboratory soil incubations with 1 and 3 larvae, respectively. Each audio file was 50 min 
long. For the incubation with 1 larva, only 14 audio files were sequentially recorded.
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The SFD threshold value of −4.0 filtered out most of the incidental sounds, but for some of them SFD also 
fell below −4.0. However, the short bursts of sounds which made up one stridulation event translated into a SFD 
timeseries in which a cluster of peaks with individual peak widths of 1 or 2f and spacing between peaks ranging 
from 2 to 10f passed the threshold (Fig. 1b, c). For larval movement sounds and interferences, SFD peaks passing 
the threshold were usually wider than 2f, and not clustered. Thus, including the second and third filter step in the 
data analysis routine significantly improved its capability for detecting stridulations while ignoring the majority 
of other sounds regardless of their origin.

The data analysis routine based on fractal dimension did not provide a direct count of stridulation events or 
of sound bursts within single stridulations in an audio recording. The combined 1288 stridulations in the second 
experiment were spread only over 893 sc (=30 min) of the entire audio recordings. Stridulations were directly 
identified by the data analysis routine in 379 sc (42%). 274 sc (31%) with stridulations contained only one SFD 
peak passing the −4.0 threshold, no SFD peak clusters, and 240 sc (27%) with stridulations were not detected. 
However, the automatically calculated STRAC could be used as an estimator for the manually determined stridu-
lation activity (Fig. 5). When excluding the three highest values shown in Fig. 5, the R2

adj. of the linear regression 
was still 0.72.

Discussion
In this study, we present, to our knowledge, the first verified audio recordings of larval stridulations from M. 
melolontha and M. hippocastani. The stridulations of the two species sounded similar, but were still distinguish-
able for a trained listener, with the main difference laying in the overall duration of a single stridulation. Since 
third instar larvae M. melolontha are significantly larger than that of M. hippocastani, and larger stridulatory 
organs possibly allow longer scraping times, this length difference might have simply been the result of size 
differences between the larvae of the two studied species. If, indeed, this was the case, a stridulating second 
instar M. melolontha might not be distinguishable from a third instar M. hippocastani in areas where both species 
co-occur. However, for pest control purposes it is already of great value to have an overview of the distribution 
of the genus Melolontha in the soil. Although we have no stridulation recordings of soil-dwelling Scarabaeidae 
larvae co-occurring with Melolontha spp. yet, it has already been shown for saproxylic Scarabaeidae larvae that 
stridulations can be used for non-invasive species-specific monitoring26.

The ecological meaning of Scarabaeidae larval stridulations is not well understood24 although they are mostly 
interpreted as a territorial defence technique, i.e. stridulating larvae signal their presence to other larvae to avoid 
competition for resources and to forgo cannibalism28. Cannibalism is not uncommon28,37 and is also known for 
Melolontha spp larvae. In a laboratory experiment it was observed that Lucanus cervus (LINNAEUS, 1758) larvae 
stridulated much more frequently directly after they were placed in a terrarium than later on27. We observed the 
same stridulation behaviour with M. hippocastani in our second acoustic monitoring experiment. A likely expla-
nation for this behaviour is that larvae use stridulations to orient themselves in a new environment, but stridu-
lations diminish once the larvae have settled in their new position27. Apart from this, it is not known if there are 
specific times in a Scarabaeidae larval life cycle during which stridulations occur more frequently than in others, 
if the larvae have a diurnal or seasonal rhythm, or what their complete repertoire of sounds is. In our fast screen-
ing of larvae, we only detected very few stridulations, and thus far, only one stridulation of a M. hippocastani larva 
has been recorded in the field in undisturbed soil during a survey measurement (data not shown).

To gain a better understanding of Scarabaeidae larval stridulations and to utilise them for species-specific pest 
monitoring in soils, further laboratory and especially field studies are necessary. One focus of these studies should 
be the further development of automated sound detection and classification tools. Acoustic monitoring can easily 
produce large data volumes, whose analysis is very time-consuming if performed manually, and thus presents 
a bottleneck for widespread application of this monitoring method38. We developed the first semi-automated 
data analysis routine specifically targeting Melolonthinae larval stridulations in soil. The principle idea of this 
data analysis routine is to consider target sounds in an audio recording as outliers which can be separated from 
the background noise by simple outlier detection approaches30,36. Schofield measured fractal dimensions within 
a recording as distances from the mean value in multiples of the standard deviation and used a vertical thresh-
old level of 3 to detect larval feeding bites30. For larval feeding bites, the f size for FD calculation should ideally 
be equal to the length of the targeted event31. This is not feasible for Melolontha spp. stridulation events which 

Figure 5.  Linear regression of manually counted stridulations on automatically calculated stridulation activity 
(STRAC). Each data point came from a 50 min audio recording. The stridulation data were the same as in 
Fig. 4, but without differentiation between the numbers of larvae in the soil. Stridulation activity was calculated 
by multiplying TI 1 to 10 (see Fig. 1) with their respective frequencies in each 50 min audio recording and 
summing up the resulting products.
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are significantly longer than feeding bites and the likelihood to falsely detect background noise increases with 
increasing f size. Instead, f sizes were kept small to target the single pulses within stridulations. That stridulations 
take up a much larger proportion in a recording than feeding bites also significantly affects the standard deviation 
around the mean. For the implementation of a vertical stridulation detection threshold, it proved more successful 
(a) to use the median deviation around the median as a more robust measure of dispersion36, and (b) to separate 
the FD of stridulations and background noise further along the y-axis by combining the results of two frame sizes 
similarly able to capture stridulation pulses. The vertical SFD detection threshold separates stridulations pulses 
and incidental sounds with similar geometrical complexity from any other sounds. Stridulations within this sub-
set can then be targeted by the newly developed horizontal filter, which takes into account the distinct temporal 
pattern of Melolontha spp. stridulations. It is unknown how stable the observed temporal stridulation pattern is, 
but this uncertainty is accounted for in the data analysis routine by targeting single stridulation pulses instead of 
entire stridulations.

The fractal dimension-based method is a fast and non-compute-intensive method for pinpointing target 
sounds in continuous audio recordings in comparison to the spectral profile analysis generally used in acoustic 
soil studies on Scarabaeidae larvae21,30. It can be easily adjusted for detecting different sound types if needed 
by adjusting f sizes and the thresholds for the vertical and horizontal SFD filter. For the laboratory experiment, 
the result of the horizontal filter could be used to calculate a stridulation estimator (STRAC), which correlated 
well with the manually counted stridulations. Furthermore, the number of stridulations clearly increased with 
increasing larval abundance. If such a relationship between the newly developed stridulation estimator and larval 
abundances can be verified in the field, it would allow non-invasive species-specific larval abundance measure-
ments with a single acoustic sensor per monitoring plot for the first time. Previous studies using a single acoustic 
sensor to monitor incidental larval sounds were able to determine with high accuracy the presence or absence 
of Scarabaeidae infestations, but found only a weak correlation between sound rate and larval abundance21. One 
study managed to predict larval abundances based on incidental sounds by using four sensors at a recording 
point, but such set-ups are more time-consuming to operate than a single sensor system17,39.

The newly developed data analysis routine is simple to use even for non-statistically trained ecologists and pest 
monitoring practitioners, but it comes with two limitations. It cannot provide an absolute stridulation count, and 
the detected sounds have to be verified manually by an experienced user. The performance of the fractal dimen-
sion analysis ultimately depends on what other sounds are present in the targeted audio recording even when 
applying a robust measure of dispersion as filter. The geometrical complexity of incidental sounds can vary widely 
and overlap with the geometrical complexity of stridulations leading to false positives, whereas stridulations can 
be distorted during transmission through soil in a way that they are not detectable anymore with the chosen fil-
ters. These limitations could be overcome by utilising artificial intelligence-based technologies or machine learn-
ing algorithms for automated stridulation pattern detection. Such tools have proven very effective and efficient in 
sound recognition and categorization38,40, for instance for acoustic cicada and bird detections41,42. However, they 
come with their own caveats which can discourage pest monitoring practitioners from using them38. In addition 
to higher computational costs, advanced programming or math skills are necessary to further develop and cus-
tomize the used algorithms30,38,40. Furthermore, advanced classification algorithms often need large training data-
sets which are not available yet for soil-dwelling Scarabaeidae larvae42,43. To accommodate the needs of different 
users, a combination of simple and advanced (semi-)automated sound recognition and classification tools could 
be a promising way forward in acoustic soil pest monitoring.

In conclusion, this study presents the first stridulation audio recordings of M. melolontha and M. hippocastani 
larvae and demonstrates their applicability for easy identification of these two species. We also designed a new 
data analysis routine for rapid detection and quantitative estimation of Melolontha spp. stridulation events in soil 
audio recordings based on fractal dimension. Melolontha spp. were chosen due to their pest status in Europe, but 
they also serve as model organisms for white grubs in general. The acoustic data analysis method presented here 
should be easily transferable to other soil-dwelling Melolonthinae and Scarabaeidae species, providing for the 
first time the basis for the development of tools for non-invasive, species-specific, and rapid pest monitoring in 
soils. Acoustic monitoring should not be restricted to incidental sounds, but also include stridulations to make 
use of its full potential for gaining significant new insights into insect ecology and biodiversity in general, and 
pest monitoring in particular.

Data Availability
The datasets generated and analysed during the current study are available in the Dryad Digital Repository 
(https://doi.org/10.5061/dryad.2j87692).
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