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optimal design of lattice structures 
for controllable extremal band gaps
Myung-Jin Choi1, Myung-Hoon oh1, Bonyong Koo2 & seonho Cho  1

this paper presents very large complete band gaps at low audible frequency ranges tailored by gradient-
based design optimizations of periodic two- and three-dimensional lattices. From the given various 
lattice topologies, we proceed to create and enlarge band gap properties through controlling neutral 
axis configuration and cross-section thickness of beam structures, while retaining the periodicity and 
size of the unit cell. Beam neutral axis configuration and cross-section thickness are parameterized by 
higher order B-spline basis functions within the isogeometric analysis framework, and controlled by an 
optimization algorithm using adjoint sensitivity. our optimal curved designs show much more enhanced 
wave attenuation properties at audible low frequency region than previously reported straight or 
simple undulated geometries. Results of harmonic response analyses of beam structures consisting of 
a number of unit cells demonstrate the validity of the optimal designs. A plane wave propagation in 
infinite periodic lattice is analyzed within a unit cell using the Bloch periodic boundary condition.

Acoustic metamaterials with periodic arrangements of components have an important dynamic property of band 
gap that represents a certain frequency range where elastic wave or sound propagation through a material is pro-
hibited. Due to its immense potential for novel applications like vibration and noise mitigations, and waveguides, 
there have been extensive research attentions to enhance the band gap property by engineering constituent mate-
rial properties or structural geometries. The fundamental mechanism of band gap formations has been classified 
into the Bragg scattering and the local resonance of structural elements. In the Bragg-type one, destructive inter-
ferences of wave reflections due to structural periodicity account for the decays of waves at a certain frequency. 
However, since a wavelength in periodic lattices is scaled with unit cell size, the low frequency band gap requires a 
significant increase in overall structural dimension, which is impractical. Thus, for the band gaps of low frequency, 
locally resonating units have been successfully exploited to dissipate the energy of wave propagation around 
their resonance frequency. Liu et al.1 fabricated locally resonant structures, so-called sonic crystals, composed 
of hard spherical inclusion coated with a soft cladding and a stiff matrix, with much lower frequency of band 
gap formation than Bragg-type ones due to the localized vibrational motion of the inclusions. Bacigalupo et al.2  
combined anti-chiral lattice structure with inertial resonators, and designed the number, arrangements, and 
material properties of the resonators to improve band gap properties using a nonlinear optimization algorithm. 
Matlack et al.3 embedded steel cubes as local resonators in a polycarbonate beam lattice, and altered the geomet-
rical parameters of the lattice like the number of constituent beams, cross-section thickness of beams, unit cell 
size, and resonator filling fraction, which shows a variety of band gap formations due to different local resonant 
modes. Jensen4 studied in-plane wave propagation in 1-D and 2-D mass-spring models. This study showed that 
complete band gaps exist for a certain distribution of stiffness and mass, and demonstrated how band gaps can 
be created at low frequency ranges by introducing a local resonator into periodic structures. Martinsson and 
Movchan5 demonstrated that band gaps in lattice structures can be generated and controlled by introducing oscil-
lators, and changing the added mass and the stiffness of supporting structures. Colquitt et al.6 demonstrated the 
filtration and focusing effects of elastic waves due to an elastic lens constructed by a diatomic lattice structure with 
non-uniformly distributed stiffness and mass. Instead of introducing local resonators, it is shown that single mate-
rial systems could have band gaps by local resonances. Krödel et al.7 locally increased the wall thickness of hollow 
trusses, and showed that additional masses at truss junctions lead to broader band gaps at low frequencies due to 
the amplification of microscopic rotatory inertia. Wang et al.8 demonstrated band gap properties in beam lattices 
due to local resonances, and investigated the effects of lattice topologies and joint conditions, where the band gap 
properties are correlated with the average connectivity of a beam network, known as the coordination number. 
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Warmuth et al.9 fabricated a three-dimensional cellular structure made of single phase titanium alloy having low 
frequency band gap using selected electron beam melting, and experimentally verified the band gap property. Li 
et al.10 attached cantilever beams to the structural frame to transfer elastic wave in the frame to the local reso-
nance of attached beams, which consequently generates band gaps. Various lattice topologies of two-dimensional 
structures were suggested through parametric studies on configuration designs, including self-similar fractal11, 
star12, zig-zag13, and chiral14 shaped structures. Also, the introduction of undulated lattice geometries in the liga-
ments has been shown to generate band gap properties. Trainiti et al.15 showed that the wave propagation proper-
ties of lattice structures are significantly affected by the specific pattern of undulation due to the coupling of axial 
and flexural modes. Chen et al.16 also presented that the band gaps of low frequency can be generated within a 
square lattice by introducing sinusoidal undulations. There have also been studied for exploiting mathematical 
optimization methods to obtain the phononic crystal structures of large band gaps. Sigmund and Jensen17 per-
formed a topology optimization, based on the solid isotropic material penalization (SIMP) method, to design 
periodic structures exhibiting band gap properties. Lu et al.18 synthesized a three-dimensional phononic crystal 
structure using the SIMP based topology optimization of two-phase material, where very large size of band gaps 
is generated at high frequency levels. Li et al.19 attained the band gaps of low frequency level by embedding 
inclusions in a base material through the bi-directional evolutionary structural optimization (BESO) process. 
In Wormser et al.20, a two-dimensional design obtained by the combination of shape and topology optimization 
is manually inserted into a three-dimensional structure having an enhanced band gap property. Diaz et al.21  
studied the optimal mass distributions of plane grid structures to create and maximize band gaps, where the 
influence of skew angle of ligaments on band gap distribution was also identified.

Hughes et al.22 developed an isogeometric analysis (IGA) method that employs the same NURBS 
(non-uniform rational B-splines) basis functions as used in CAD description. The geometric properties of design 
are embedded into the NURBS basis functions and the control points whose perturbation naturally results in 
shape changes23,24. Thus, exact geometric models can be used in both response and shape sensitivity analyses, 
where normal vector and curvature are continuous over the whole design space, which leads to the enhanced 
shape sensitivity and consequently yields a precise optimal design. Choi and Cho25 synthesized a lattice structure 
of shape memory polymers possessing a target performance during shape recovery process, considering finite 
deformation. Choi et al.26 architected two- and three-dimensional lattice structures having a nearly constant 
extremal Poisson’s ratio −2 during finite deformation.

The previous studies for the analysis of band gap structures have a limitation that the layout of lattice is devised 
intuitively. Also, the sequel design optimization is performed only for topology optimization, which does not 
provide precise performances. This paper presents a systematic synthesis of unified isogeometric design for lattice 
structures achieving the enhanced band gap properties using a gradient-based optimization algorithm that con-
siders both sizing and configuration design variables. We calculate wave dispersion relations in infinite periodic 
lattices using the Bloch theorem which reduces the maximization problem to that of a unit cell. Also, the IGA 
method is employed using the higher order B-spline basis functions for the spatial discretization of the given 
eigenvalue problem. This work paves the way to the systematic design of band gap structures possessing a desig-
nated performance in versatile engineering applications.

Results and Discussions
The goal of the optimization is to maximize the relative band gap size between the two adjacent modes (j) and 
(j + 1). We pursue to maximize the lowest frequency of the overlying bands and minimize the maximum fre-
quency of the underlying bands17. Denoting a set of configuration and sizing design variables as ≡ dd { }i , the 
optimization problem can be stated as: find d such that
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where ΓIBZ, k, and ω represent the perimeter of irreducible Brillouin zone (IBZ), wave vector, and angular fre-
quency, respectively. We define µ µ µμ ≡ { , , }1 2 3  where ik b ( 1, 2, 3)i iµ ≡ ⋅ =  are the wave propagation con-
stants. ∼K and M∼ denote the reduced stiffness and mass matrices, respectively. Eq. (3) represents the geometric 
constraints such that restricts the maximum curvature of ligaments to avoid the entanglement of ligaments due to 
abrupt design changes, and Ωk represents a curve segment corresponding to k-th knot span among total ne knot 
spans, whose length is denoted by Lk (see Methods for more details on the NURBS curve geometry). Also, fκ  and 
κU

f  respectively denote the Frenet-Serret curvature and its selected upper bound. Detailed expressions of calcu-
lating the curvature constraint and its design sensitivity was presented in reference27. In all the examples, the 
Modified Method of Feasible Directions (MMFD) algorithm is used in order to solve the nonlinear constrained 
optimization problems.
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triangular lattice structure. A planar lattice structure composed of regular triangles whose side is 40 mm 
long, as illustrated in Fig. 1(a). Using the Bloch theorem in Supplement A, a unit cell can be defined by a transla-
tional periodicity along the directions of lattice base vectors b1 and b2. We select a rectangular cross-section with 
thickness h0 = 2 mm and depth d0 = 6 mm, and the material properties of Young’s modulus E = 1.14 GPa, Poisson’s 
ratio ν = .0 3, and density ρ = kg m1050 / 3. The reciprocal lattice basis ⁎b1, b2

⁎, and the boundary of irreducible first 
Brillouin zone (O-A-B-O) are depicted in Fig. 1(a). The complete expressions of the lattice base vectors can be 
found in Supplement B. Figure 1(b) illustrates the design parameterization of configuration design in coarse level 
discretization by quartic B-spline basis function with 6 control points for each ligament. The X- and Y-directional 
changes of 4 control points depicted by red dots in Fig. 1(b) are selected as the configuration design variables. The 
end control point is fixed during the optimization process to maintain the translational periodicity and the unit 
cell size. The other five ligaments are designed by exploiting the rotational symmetry within the unit cell in the 
original design. Also, 14 thickness control coefficients corresponding to quartic B-spline basis functions are used 
as sizing design variables to parameterize cross-section thickness distribution within a ligament, i.e., 
nth = 14 in Eq. (38).

Figure 2(a) shows that the triangular structure has four complete band gaps within the considered frequency 
range (0~15,655 Hz). Here and hereafter, we plot band diagrams with branches for the lowest 18 eigenmodes. 
Those band gaps are also identified from the drops in response illustrated in the wave transmission plot, where 
the undamped (β = 0) and damped (β = 103) responses are compared, and β denotes the mass-proportional 
damping coefficient (see Methods and Supplement E for more details on the harmonic response analysis and the 
descriptions of finite structures, respectively). In the middle of the fourth band gap frequency range, a response 
peak is observed for the undamped case (β = 0; black line). This can be attributed to a resonance effect due to the 
reflective waves from the boundaries17. When we consider a structural damping (β = 103; red line), the resonance 
peak disappears and relatively low transmission is apparently shown in the frequency range of the fourth band 
gap. Starting from the straight geometry in Fig. 2(a), we perform a design optimization to maximize the first band 
gap between 3rd-4th modes (Case #1). We obtain the optimal design of Fig. 2(b) where the geometry of neutral 
axis does not change but the cross-section of ligament becomes thinner around the junction and thicker in the 
rest of ligaments. The target band gap between 3rd-4th modes is located at lower frequency region than that of the 
original design due to the decrease of stiffness near the junction, and the band gap size slightly increases from 
307 to 318 Hz. Interestingly, in the optimal design, a large band gap appears between 15th and 16th modes in the 
optimal design, and two nearly flat branches between the third and fourth band gaps of the optimal design stand 
for nearly zero group velocity in all the wave propagation directions, which represent isolated (standing) waves. 
We also observe that the damped response in the plot of transmission is much smoother than the undamped case, 
and the response drop in the fourth band gap frequency range is more apparently observed as the local resonance 
peak disappears. Table 1 compares the band gap frequencies of the original and the optimal designs.

An undulated design of Fig. 3(a) is generated by perturbing the first four design variables such that 
d1 = d2 = −2.5 mm and d3 = d4 = 2.5 mm, which turns out to have more band gaps, compared with the original 
straight design, as shown in Fig. 3(a). We perform design optimizations with this original undulated design for 
two cases of target band gaps; a band gap between 3rd and 4th modes (Case #2) and a band gap between 6th and 
7th modes (Case #3). The obtained optimal designs and band diagrams for the two cases are shown in Fig. 3(b,c). 
Table 2 lists the sizes and frequency ranges of their band gaps. In the optimal design of case #2, the cross-section 
of ligament becomes thinner around the junction and thicker in the rest of ligaments, which decreases overall 
stiffness and consequently the first band gap has a lower frequency range than that of the original undulated 
design (from 1,156 to 908 Hz). The band gap size increases from 113 to 313 Hz. In the optimal design of case 
#3, the band gap between 3rd and 4th modes is suppressed but very large band gap appears at the low frequency 
range of 1,290~4,724 Hz. In the band diagram of Fig. 3(c), the first and second band gaps are nearly unified into 
a single band gap, since the branches for the 7th–9th modes are nearly flat and almost coincide at the frequency 
range around 4,471 Hz. In the plots of wave transmission of Fig. 3, by introducing the structural damping, local 
resonance peaks in the band gap ranges are removed, and the band gaps are more clearly identified by the trans-
mission drops.

Figure 1. Triangular lattice structure. (a) Unit cell and irreducible first Brillouin zone. (b) Design 
parameterization.
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Hexagonal honeycomb. We consider a planar hexagonal honeycomb structure illustrated in Fig. 4(a). A 
minimal repeated unit, which is arranged in infinite lattice structures by translations in the directions of b1 and 
b2, has a rectangular cross-section with uniform thickness h0 = 2 mm and depth d0 = 6 mm. The corresponding 
reciprocal base vectors and irreducible Brillouin zone is obtained as shown in Fig. 4(a). Material properties of 
Young’s modulus E GPa1 14= . , Poisson’s ratio ν = .0 3, and density ρ = kg m1050 / 3 are selected. A single liga-
ment configuration within the half part of the unit cell is parameterized by 8 configuration design variables which 
are X- and Y-directional position changes of four control points depicted by red dots in Fig. 4(b). The other liga-
ments are parameterized by using a rotational symmetry within the half part and a point symmetry within the 
unit cell. Quartic B-spline basis functions are used. Also, 14 control coefficients are used to represent the contin-
uous thickness of cross-section, i.e., nth = 14.

Figure 5 shows the comparison of band diagrams and wave transmission plots for the various designs. A cou-
ple of complete band gaps are observed in the band diagram of Fig. 5(a), although the wave transmission of the 
undamped case (β = 0; black line) does not show distinctive transmission drops in those frequency ranges. The 
structural damping diminishes the reflective waves from the boundaries, so that it apparently identifies low trans-
missions in the band gap intervals (β = 103; red line). The first very low transmission around 1,600 Hz identifies 
the partial band gap between the 4th and 5th modes. An undulated design of Fig. 5(b) is introduced by perturbing 
design variables as d1 = d2 = 1.25 mm and d3 = d4 = −1.25 mm, and it has four complete band gaps. We select 
two target band gaps; the band gap between 3rd and 4th modes (Case #4) which initially appear very thin and the 
band gap between 9th and 10th modes (Case #5). In the case #4 of optimal undulated design, the target band gap 
between 3rd and 4th modes is significantly enlarged and located at lower frequency level of the region 20~146 Hz. 
Also, several other band gaps show very low wave transmissions. In the case #5 of optimal undulated design, a 
large complete band gap is generated between 9th and 10th modes in the frequency region 182~1,878 Hz, and the 
wave transmission is much lower than that of the original undulated design. The wave transmissions considering 
damping in Fig. 5(b–d) show much smoother responses than the undamped responses, and are free-from local 
peaks in band gap ranges. It is also observed in Fig. 5(c) that the weaker damping (β = 5 × 102; blue dashed line) 
gives more distinctive response drops in band gap ranges. Table 3 compares the sizes and frequency regions of 
band gaps in the original straight design, original undulated design, and two optimal designs.

three-dimensional simple cubic structure. A three-dimensional cubic lattice structure is shown in 
Fig. 6(a). Using the translational periodicity in the direction of bases b1, b2, and b3, a unit cell is defined. We select 
a circular cross-section with a uniform diameter of d0 = 2 mm. Material properties of Young’s modulus 

= .E GPa1 14 , Poisson’s ratio ν = .0 3, and mass density kg m1050 / 3ρ =  are selected. Figure 6(a) shows the 
reciprocal lattice bases b1

⁎, ⁎b2, and ⁎b3 whose detailed expressions are found in Supplement B. A perimeter of irre-
ducible Brillouin zone is indicated by the red lines. Figure 6(b) shows the band diagram and wave transmission, 
where no complete band gap is generated.

Figure 2. Comparison of band structures and frequency responses. (a) Original design, (b) Optimal design 
(Case #1).

Band gap # Band gap size (Hz)

Lower bound of band gap

Mode # Frequency (Hz)

Original design

1 307.0 3 1316.6

2 31.5 6 3521.9

3 533.0 12 10325.9

4 862.0 14 12162.7

Optimal design (case #1)

1 318.0 3 916.9

2 496.2 12 8812.6

3 510.2 13 10400.7

4 2010.9 15 11029.3

Table 1. Comparison of sizes and frequency ranges.
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A single ligament configuration is parameterized by 8 configuration design variables. 24 thickness control 
coefficients are used. We introduce a geometric undulation of ligaments as illustrated in Fig. 7(a), then the undu-
lated design shows a couple of complete band gaps. The first band gap between 15th and 16th modes apparently 
shows low wave transmissions. From this undulated design, we perform design optimization to maximize the first 
band gap (Case #6), and finally obtain the optimal design shown in Fig. 7(b), where the optimal design attained 
significantly larger band gap in the frequency range of 166~1,019 Hz with enhanced wave attenuation, compared 
with those of original undulated design. Table 4 compares the sizes and frequency regions of band gaps in the 
original undulated and optimal designs.

For more design cases, the readers refer to Supplement C (square lattice) and Supplement D (Kagomé lattice). 
The histories of design optimization for the cases are found in Supplement F.

Methods
Isogeometric analysis of elastic wave propagation in shear-deformable beam structures. We 
briefly introduce the construction of NURBS basis, and a representation of NURBS curve. Also, we explain the 
isogeometric analysis of elastic wave propagation in shear-deformable (Timoshenko) beam structures.

NURBS curves. The geometry of neutral axis and the distribution of cross-sectional thickness are expressed by 
NURBS basis functions constructed from B-splines. A set of knots in one dimension consists of coordinates in 
parametric space, denoted by

{ }, , , , (5)n p1 2 1ξ ξ ξξ = + +

Figure 3. Comparison of band structures and frequency responses. (a) Undulated design result, (b) Optimal 
design result (Case #2), (c) Optimal design result (Case #3).
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where p and n are respectively the order of basis function, and the number of control points. We term an interval 
between two distinct consecutive knots as a knot span, which subdivides a NURBS curve into curve segments, i.e., 
elements. The B-spline basis functions are obtained, in a recursive manner, as

ξ
ξ ξ ξ
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The NURBS basis function of order p has Cp-k continuity at a knot multiplicity k. A geometric point x on a 
beam neutral axis is expressed, in terms of NURBS basis function ξW ( )I  and control point BN, as

∑ξ ξ= = Wx B( ) ( ) , (9)N
n

N N1

where n denotes the number of control points, and the variation of control point BN results in configuration 
changes.

Band gap # Band gap size (Hz)

Lower bound of band gap

Mode# Frequency (Hz)

Original undulated design

1 113.1 3 1156.0

2 841.3 6 2789.4

3 196.1 9 5168.1

4 1513.9 11 6402.3

5 337.5 14 10972.9

6 301.1 15 12243.6

7 3263.7 17 14693.8

Optimal design (case #2)

1 312.9 3 908.0

2 46.6 6 2393.4

3 582.6 9 8837.6

4 1705.4 12 11192.2

Optimal design (case #3)

1 3181.2 6 1290.1

2 252.7 9 4471.3

3 311.0 12 5078.8

4 321.9 15 7117.5

5 1142.2 17 9304.7

Table 2. Comparison of band gap sizes and frequency ranges.

Figure 4. Hexagonal honeycomb structure. (a) Unit cell and irreducible first Brillouin zone, (b) Design 
parameterization.
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Linear kinematics and governing equations. We consider structural dynamics with infinitesimal amplitudes, 
where a linearized kinematics consistently derived from a general nonlinear formulation28 is utilized. A neutral 
axis of beams is parameterized using an arc-length coordinate s. A cross-sectional orientation is defined by an 
orthonormal frame with base vectors ∈s s sj j j R( ), ( ), ( )1 2 3

3, where the unit tangent vector is obtained by 
ϕ≡sj ( ) s1 0,  due to the arc-length parameterization, and assumed to be orthogonal to the cross-section. ⋅( ) s,  

denotes the partial differentiation with respect to the arc-length parameter. We also define the global Cartesian 
base vectors by e e e R, ,1 2 3

3∈ . The linearized (material form) axial-shear and bending-torsional strain measures 
derived in the reference29 are respectively evaluated at an undeformed state, which result in

Γ Λ θ≡
∂
∂

+ ×{ }s t s
s

sz j( , ) ( ) ( ) ,
(10)

T
t t0 1

and

Figure 5. Comparison of band structures and frequency responses. (a) Straight design, (b) Undulated design, 
(c) Optimal undulated design (Case #4), (d) Optimal undulated design (Case #5).

Band gap # Band gap size (Hz)

Lower bound of band gap

Mode # Frequency (Hz)

Original design
1 151.6 6 3162.1

2 719.2 14 10281.7

Original undulated design

1 29.6 3 1165.9

2 501.7 6 2582.4

3 1513.7 9 4489.5

4 1597.8 13 8114.7

Optimal design (case #4)

1 125.8 3 20.4

2 227.4 7 258.2

3 38.2 9 550.9

4 272.2 12 683.9

5 177.5 15 1050.1

Optimal design (case #5)
1 1695.9 9 182.4

2 136.1 15 1981.0

Table 3. Comparison of band gap sizes and frequency ranges in hexagonal honeycomb lattice.
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Ω Λ
θ

≡
∂
∂

.s t s
s

( , ) ( ) (11)
T t

0

s tz z( , )t ≡  denotes the displacement, and θ θ≡ s t( , )t  denote the infinitesimal rotation vector that describes the 
motion of rigid cross-section. Λ ≡s s s sj j j( ) [ ( ), ( ), ( )]0 1 2 3  defines the rotational transformation matrix such that

s s Ij e( ) ( ) , 1, 2, 3 (12)I I0Λ= = .

Figure 6. Simple cubic lattice structure. (a) Straight design, (b) Band structure and frequency response.

Figure 7. Comparison of band structures and frequency responses. (a) Original undulated design, (b) Optimal 
undulated design.

Band gap #

Band gap size Lower bound of band gap

(Hz) Mode # Frequency (Hz)

Original
undulated design

1 387.9 15 3198.9

2 24.9 16 3875.1

Optimal design 1 853.7 15 165.6

Table 4. Comparison of band gap sizes and frequency ranges in simple cubic lattice.
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An elastic strain energy is defined by

∫ Γ Ω≡ ⋅ + ⋅
Ω

U s t s t s t s t dsN M1
2

{ ( , ) ( , ) ( , ) ( , )} , (13)

where N(s, t) and M(s, t) are the material form resultant force and moment over the cross-section, which are 
related to spatial forms through
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diag[a, b, c] represents a diagonal matrix of components a, b, and c. A represents the cross-sectional area, and 
≡A k A2 2 , A k A3 3≡  where k2 and k3 denote the shear correction factors. Ip denotes the polar moment of inertia, 

and I2 and I3 mean two principal moments of inertia. E and G denote Young’s modulus and shear modulus, 
respectively. We also define a kinetic energy by

∫ θ θρ≡ ⋅ + ⋅ ρ
Ω

T A dsz z I1
2

{ ( )} , (17)t t t t t t t t, , , ,

where ⋅( ) t,  denotes the partial differentiation with respect to the time. ρ and diag I I II [ , , ]p 2 3ρ≡ ⋅ρ  respectively 
denote the mass density and inertia tensor. A work done by external loads is expressed as

∫ θ≡ ⋅ + ⋅
Ω

W s s t s s t dsn z m{ ( ) ( , ) ( ) ( , )} , (18)ext ext

where next(s) and mext(s) denotes the distributed external force and moment, respectively. To derive equilibrium 
equations from time t1 to time t2, we employ the Hamilton’s principle such that30

U T W dt( ) 0,
(19)

t

t1

2

∫δ − − =

where ( )δ ⋅  defines the first variation. Substituting Eqs. (13), (17), and (18) into Eq. (19), and applying the integra-
tion by parts and homogeneous boundary conditions lead to the following linear and angular momentum balance 
equations

An n z
m j n m I ,

(20)

t s ext t tt

t s t ext t tt

, ,

, 1 ,

ρ
θ

+ =
+ × + =





ρ

where s tn n( , )t ≡ , ≡ s tm m( , )t , and ( ) tt,⋅  denotes the second-order partial derivative with respect to the time. 
Assuming time-harmonic solutions, we have the following.

s t s e
s t s e

z z( , ) ( )
( , ) ( )

,
(21)

i t

i tθ θ
=

=







ω

ω

−

−

where ω denotes the angular frequency. In the IGA method, the linear and angular displacements are discretized 
using the same NURBS basis function W ( )N ξ  used to express the geometry in Eq. (9) and the response coefficients 
yN and θN as

∑
∑

ξ ξ

ξ ξθ θ

=

=








.=

=

s W

s W

z y( ( )) ( )

( ( )) ( ) (22)

N
n

N N

N
n

N N

1

1

It is noted that, hereafter, the argument s( )ξ  is often omitted for brevity. The linearized translational and rota-
tional strains are discretized as

W W

W

y j( )
,

(23)

T
N
n

N s N N N
T

N
n

N s N

0 1 , 1

0 1 ,

∑
∑

Γ Λ θ

Ω Λ θ

= + ×

=








=

=
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where WN,S defines the differentiation of NURBS basis function with respect to the arc-length coordinate, calcu-
lated by using a chain rule of differentiation31. From the governing equations of Eq. (20), using the principle of 
virtual work and substituting Eq. (21), we have the following variational equation for response z( , )η θ≡ .

a d Z( , ) ( , ), , (24)2ωη η η η η= ∀ ∈

where Z  defines the space of kinematically admissible virtual response z( , )η θ≡ , and the strain and kinetic 
energy bilinear forms are obtained by

∫η η Γ Γ Ω Ω≡ +
Ω

a dsC C( , ) ( ) , (25)
T

F
T

M

and

∫η η θ θρ≡ + .ρ
Ω

d A dsz z I( , ) ( ) (26)
T T

( ) ( )δ⋅ ≡ ⋅  denotes the first variation or the virtual quantity, that is, z( , )Γ Γ θ≡  and Ω Ω θ≡ ( ). From Eq. (24), 
using Eqs (22) and (23), we have the following discretized form of a generalized eigenvalue problem.

ω− =K M u 0( ) , (27)2

where K and M respectively denote the assembled global stiffness and mass matrices, and u is a global assembly 
of response coefficient vectors yN and θN.

Bloch periodic boundary condition. From the Bloch periodic condition, we have the following transformation.

μ=u T u( ) , (28)

where u denotes a global assembly of reduced response coefficients. Substituting Eq. (28) into Eq. (27) and 
pre-multiplying the resulting equation with T(μ)H yields the following generalized Hermitian eigenvalue problem 
within a unit cell32,33

ωμ μ− =
∼ ∼K M u 0{ ( ) ( )} , (29)2



where μ μ μ≡
∼K T KT( ) ( ) ( )H  and M T MT( ) ( ) ( )Hμ μ μ≡

∼  defines the reduced stiffness and mass matrices, and ( )H⋅  
denotes the conjugate transpose. Eq. (29) gives the eigenvalues ζ ω≡ 2 for a given propagation constants 

{ , , }1 2 3µ µ µμ ≡ .

Adjoint design sensitivity analysis. Configuration design sensitivity analysis. A configuration design 
velocity field implies a mapping rate between the original design and the perturbed one, and is given by a linear 
combination of NURBS basis function and the perturbation of control points as

WV B( ) (30)N
n

N N1∑ ξ δ= .=

For a given propagation constant IBZμ ∈ Γ , Eq. (24) can be rewritten for a response z( , )η θ≡  within a unit 
cell satisfying the Bloch periodic boundary condition, as

µ η η µ η η ηζ= ∀ ∈a d( ; , ) ( ; , ), , (31)

where ζ ω≡ 2 and  defines the complex space of kinematically admissible virtual responses. ΓIBZ denotes a 
perimeter of irreducible Brillouin zone (IBZ). Assuming that the translational periodicity and unit cell dimension 
do not have design dependences, taking the material derivative of both sides of Eq. (31) and rearranging. terms 
gives the following.

a a d d
d

( ; , ) ( ; , ) { ( ; , ) ( ; , )}
( ; , ), , (32)

V V


 



ζ

ζ

μ η η μ η η μ η η μ η η
μ η η η

+ ′ = + ′

+ ∀ ∈

where ⋅⋅( ) denotes a material derivative or configuration design sensitivity, and sometimes we denote the material 
derivative by a superscript dot ⋅ ⋅( ) for convenience. Evaluating Eq. (32) at η η=  since they belong to the same 
function space  and using the normalization condition of μ η η =d( ; , ) 1, we have the configuration design 
sensitivity expression for eigenvalues.

 a d( ; , ) ( ; , ) (33)V Vζ ζμ η η μ η η= ′ − ′ .

The explicit design dependence terms of strain and kinetic energy forms are given by

a ds
C C C

C C C V
( ; , )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) { ( ) ( ) ( ) ( )} (34)
V

V
H

F V
H

M
H

F V
H

M V
H

F
H

M s
∫μ η η

Γ′ η Γ η Ω′ η Ω η Γ η Γ′ η

Ω η Ω′ η Γ η Γ η Ω η Ω η
′ ≡









+ +

+ + + ∇ ⋅







Ω

and
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( )d A dsz z I V( ; , ) , (35)V
H H

s∫μ η η θ θ′ ≡ + ∇ ⋅ρ ρ
Ω

where ∇ ⋅ ≡ ⋅V V js s, 1 and the following are used.

η θ θ η ηΓ Λ Λ Λ Λ Γ Γ Γ= − × + − ∇ ⋅ − × + ≡ ⋅ + ′⋅ ⋅ ˙˙ ˙z j z V j{ ( )} ( ) { ( ) } ( ) ( ), (36)
T

s
T

s s
T

V0 , 1 0 , 1 0 0

and

η θ θ η ηΩ Λ Λ Λ Λ Ω Ω Ω′= ⋅ + − ∇ ⋅ + ⋅ ≡ + .⋅ ˙V{ ( )} { ( ) } ( ) ( ) (37)T
s

T
s s

T
V0 , 0 , 0 0

Compared with the finite element sensitivity, the isogeometric approach prevents the loss of higher order 
geometric information so that designers can obtain more precise configuration design sensitivity, which leads to 
a precise result of configuration design optimization23.

Sizing design sensitivity analysis. The cross-section thickness distributions along beam members can be con-
tinuously parameterized by combining thickness coefficients assigned to control points and the NURBS basis 
functions, as34

∑ ξ= =h h W ( ), (38)I
n

I I1
th

where hI denotes the I-th thickness control coefficient, and nth denotes the number of thickness control coeffi-
cients in each patch. The sizing design sensitivity can be evaluated by

ζ ζμ η η μ η η′ = ′ − ′δ δa d( ; , ) ( ; , ), (39)u u

where ⋅ ′( )  denotes the first variation or partial derivative with respect to a design variable. The explicit design 
dependence terms of the strain and kinetic energy forms are given by

∫μ η η Γ ′ Γ Ω ′ Ω′ ≡ +δ
Ω

a dsC C( ; , ) ( ) (40)
H

F
H

Mu

and

∫ ρμ η η θ ′ θ′ ≡ ′ +δ ρ
Ω ( )d A dsz z I( ; , ) , (41)

H H
u

where the partial derivatives of the constitutive matrices and the cross-section properties can be evaluated using 
A h/ K∂ ∂  and ∂ ∂ρ hI / K, respectively. The partial derivative of the cross-sectional area and the inertial tensor with 

respect to hK can be obtained, using the chain rule of differentiation and Eq. (38), as34

ξ∂
∂

=
∂
∂

A
h

A
h

W ( )
(42)K

K

and

ξ
∂

∂
=

∂

∂
.ρ ρ

h h
W

I I
( )

(43)K
K

Harmonic response analysis. To investigate wave transmissions of finite size models constructed by tes-
sellating primitive cells, we perform harmonic response analyses. Considering a harmonic external loading, we 
assume a harmonic response described as

s t s e
s t s e

z z( , ) ( )
( , ) ( )

,
(44)

i t

i tθ θ
=

=







− Ω

− Ω

where Ω is the excitation (angular) frequency. Then, we obtain17

+ Ω − Ω =iK C M u f( ) , (45)2

where f denotes the applied harmonic force/moment load. The responses of dynamic system in Eq. (45) are com-
puted by applying a given harmonic excitation at different values of frequencies (Ω). In this paper, the excitation 
is enforced by prescribing a displacement on a boundary point of the lattice, then collecting the magnitude of the 
response on the other side of the lattice. A damping matrix C is added to incorporate a structural damping, and it 
takes the form of Rayleigh (mass-proportional) damping such that

β=C M, (46)

where β denotes the damping coefficient. The wave transmission coefficient (unit: dB) is calculated as

https://doi.org/10.1038/s41598-019-46089-9


1 2Scientific RepoRts |          (2019) 9:9976  | https://doi.org/10.1038/s41598-019-46089-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

=










T U
U

20 log ,
(47)

out

in
10

where Uin and Uout, respectively, denote the magnitude of input and output displacement vectors. We note that for 
the case of damped response, Uin and Uout of Eq. (47) are obtained by the magnitude of complex number compo-
nents of the response u. This coefficient T quantifies the wave transmission at a specified frequency such that very 
low values of T means the applied perturbation quickly decays near the excitation point. A significant drop of T 
is associated with the band gap.
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