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estimation of transcription Factor 
Activity in Knockdown studies
saskia trescher & Ulf Leser

Numerous methods have been developed trying to infer actual regulatory events in a sample. A 
prominent class of methods model genome-wide gene expression as linear equations derived from 
a transcription factor (TF) – gene network and optimizes parameters to fit the measured expression 
intensities. We apply four such methods on experiments with a tF-knockdown (KD) in human and 
E. coli. the transcriptome data provides clear expression signals and thus represents an extremely 
favorable test setting. the methods estimate activity changes of all tFs, which we expect to be highest 
in the KD TF. However, only in 15 out of 54 cases, the KD TFs ranked in the top 5%. We show that this 
poor overall performance cannot be attributed to a low effectiveness of the knockdown or the specific 
regulatory network provided as background knowledge. Further, the ranks of regulators related to the 
KD TF by the network or pathway are not significantly different from a random selection. In general, 
the result overlaps of different methods are small, indicating that they draw very different conclusions 
when presented with the same, presumably simple, inference problem. these results show that the 
investigated methods cannot yield robust tF activity estimates in knockdown schemes.

The regulation of gene expression is a fundamental biological mechanism in all living species. It determines the 
cells’ unique properties and enables them to adapt to the organism’s development, cellular function, the environ-
ment and external stimuli1. Gene regulation also plays an important role in the development and progression of 
various diseases2,3. Thus, the elucidation of human regulatory relationships is an important research field and 
many methods attempting to infer the actual regulatory events in a given sample have been proposed.

In eukaryotes, gene expression is mainly regulated by a complex network of transcription factors (TFs) which 
activate or repress gene transcription1. Several algorithms, such as biRte4 (Bayesian inference of context-specific 
regulator activities), ISMARA5 (Integrated System for Motif Activity Response Analysis), RABIT6 (Regression 
Analysis with Background Integration) and RACER7 (Regression Analysis of Combined Expression Regulation), 
have been presented to model genome-wide gene expression and regulation via the activity and relationships of 
transcription factors. These models allow for the application of mathematical optimization to find parameters 
that minimize the divergence of predicted and measured expression intensities8. They all consider the topology of 
the regulatory TF – gene network to be given and try to infer the actual TF activity developed in a certain disease 
or under a specific experimental condition. Their primary output is a ranked list of TFs, sorted by their activity 
in a given group of samples. A detailed description of the specific methods evaluated in this paper is given in the 
materials and methods section at the end of the paper. Several studies reported that such methods can be used to 
identify biomarkers for specific phenotypes in human cell lines and in vivo samples, for example in innate immu-
nity5, ageing related changes5 or acute myeloid leukemia7.

We previously compared different methods for estimating regulatory activity qualitatively and quantitatively 
in detail8. We used a publicly available human TF – gene network9 together with experimental data from TCGA10 
(The Cancer Genome Atlas) for three cancer types to identify key biomarkers for these specific diseases. The 
results showed that all methods seemed to detect strong signals and find biologically relevant information, but 
sensitivity was low and the mutual result overlaps from different methods were small. We suspected that the 
complexity of gene regulation in cancer was one reason for the questionable performance and low consistency 
of different methods’ results. Therefore, we here focus on much less complex data and use knockdown experi-
ments to evaluate different methods on estimating TF activity changes. We suppose that the highest change in 
activity will occur in the knocked down TF when comparing case and control samples. Many datasets of such 
high-throughput experiments for certain experimental conditions and different species have been published and 
are available in public repositories like GEO11 (Gene Expression Omnibus). In this straightforward and for the 
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methods favorable setting, we expected that the methods would consistently be able to identify the knocked down 
TF.

Here, we compare four different methods, namely biRte4, ISMARA5, RABIT6 and RACER7, to infer transcrip-
tion factor activity from gene expression data in knockdown (KD) experiments. We downloaded transcriptome 
data of four publically available KD experiments from the GEO11 repository including different TF knockdowns 
in human and E. coli cell lines. To better distinguish KD TFs from cell lines or other abbreviations, we will set 
TFs in italics. The three chosen experiments in human cell lines (GEO identifier GSE4583812, GSE1717213,14 and 
GSE1911415) contain data from 8 knocked down genes (BCL6, FOXM1, MYB, bHLH-B2, FOSL2, RUNX1, C/
EBPβ, STAT3) and the double knockdown C/EBPβ & STAT3. The selected experiment in E. coli (GEO identifier 
GSE112116) comprises 5 knocked down genes (AppY, ArcA, Fnr, OxyR, SoxS) and the double knockdown ArcA & 
Fnr. Some of these experiments were conducted in different cell lines or conditions (see Materials and Methods, 
section Transcriptome Data). Overall, we study 25 data sets (combinations of the experiment, the particular TF 
knockdown and different cell lines or growth conditions), 13 from human and 12 from E. coli. For an overview of 
the composition of the experiments, see Figs 1, 2 and 3. Throughout the paper, we refer to the whole KD exper-
iments from GEO as “experiments”, which contain different KDs in cell lines or growth conditions, called “data 
sets”. Together with the transcriptome data, we used two gene regulatory networks (one for human, one for E. 
coli) as input to the methods biRte, RABIT and RACER, whereas ISMARA employs an own, inaccessible under-
lying network. The network including information on human regulatory relationships is based on a text-mining 
approach9 complemented with TF – gene interactions from the public TRANSFAC database17. The network was 
built by text mining the entire Medline and an additional manual curation step of the top-ranking sentences. It 
thereby combines the content of regulatory databases with more than 300 validated regulatory relationships. The 

Figure 1. Boxplots of log2 normalized expression values for all human KD TFs, comparing respective case 
and control groups. For the double KD C/EBPβ & STAT3, separate boxplots for both TFs are shown. In all 
experiments, expression in case samples is significantly lower than in control samples, except for C/EBPβ (single 
and double KD) in BTICs and RUNX1 KD.

Figure 2. Boxplots of log2 normalized expression values for all E. coli KD TFs, comparing respective case and 
control groups. For the double KD ArcA & Fnr, separate boxplots for both TFs are shown.
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network for E. coli was retrieved from RegulonDB18. The considered datasets are described in detail in the mate-
rials and methods section at the end of the paper.

We predominantly assessed the rank of the TF that was knocked down and the total number of ranked TFs. 
We additionally checked for aliases and we determined the ranks of neighbor TFs in the network, of co-members 
in a pathway and of interacting TFs. To examine whether the methods were able to detect a common signal in 
the data, we compared the overlap of the top 100 ranked regulators of all methods within one data set. We addi-
tionally performed the activity estimation on smaller networks and on networks inferred de-novo by ARACNE19 
(Algorithm for the Reconstruction of Accurate Cellular Networks) to assess the influence of the network on the 
results. To test whether the mere differential expression is a better predictor for TF activity changes, we calculated 
ranks of differential expression for the knocked down TFs and compared those to the activity ranks.

Apart from our own previous work8, we are not aware of any other independent study on the performance 
of optimization-based algorithms for the estimation of whole genome transcription factor activity. Our previous 
results compared the performance on multi-omics data sets where no clear expectations could be formulated and 
also found very low coherence in the results of different methods. This lack of quality estimation of results led us 
to the new experimental design of using knock-down. However, also on this presumable much simpler problem 
the result overlaps are very low and the knocked-down transcription factor was only very rarely identified. We 
conclude that the investigated methods do not yield robust estimates of TF activity in a knockdown scheme.

Results
overview. Our results show that, although almost all KD TFs showed differential expression, their activity 
ranks were only in 15 out of 54 cases within the top 5% of all ranked TFs (compare Fig. 3). In E. coli, the identifica-
tion of the KD TF by activity estimation yielded slightly better results compared to human cell lines. When look-
ing not only at the KD TF but at the regulators related to the KD TF in the network or a pathway, we identified 
only a single case where the mean of the ranks of all related TFs was significantly smaller than expected by chance. 
The overlap of the top 100 ranked regulators of all methods within one data set was small and statistically insig-
nificant. The reduction of the network size or the use of ARACNE’s inferred networks did not improve the results.

Differential expression of knocked down TFs. First, we tested whether the knocked down (KD) TFs 
themselves were differentially expressed, which was the case for all human KD TFs except C/EBPβ in BTICs 
(brain tumor initiating cells), both in the single KD and double KD together with STAT3, see Fig. 1. Unexpectedly, 
the expression of RUNX1 was significantly upregulated in SNB19 case samples compared to the control samples. 
Nonetheless, we included RUNX1 in our analyses since we were only interested in finding absolute TF activity 
changes. In E. coli (see Fig. 2), all KD TFs were significantly downregulated in the corresponding case samples. 
The according p-values are given in Supplementary Table S1.

Figure 3. Ranks of knocked down TFs and total number of ranked TFs per method and data set. Ranks in the 
top 5% of all ranked TFs are marked in green and ranks in the top 5–10% in light green. Two ranks in one table 
cell refer to a combined knockdown of two TFs and are given in the order of the TFs at the beginning of the 
table row. An empty table cell (in ISMARA column) indicates that the method was not applicable to the data set. 
A dash is shown when a TF was not ranked by a method (see text for explanation of different numbers of ranked 
genes).
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Additionally, we checked whether the differential expression per se would be a good predictor for the deter-
mination of knocked down TFs in a data set. Therefore, we computed differential expression separately in each 
data set, contrasting the expression of the corresponding case and control samples and evaluated the ranks of 
differential expression for the KD TFs. The results are shown in Supplementary Fig. S1. In human, in 9 out of the 
13 data sets, TFs were ranked within the top 5%. In E. coli, the number of KD TFs in the top 5% TFs was 3 in the 
aerobic and 5 in the anaerobic condition out of 6 data sets in either condition. As expected, the KD TFs are in 
about two third of the considered data sets amongst the TFs with the highest changes in differential expression.

Ranking of knocked down tFs. We next applied biRte, ISMARA, RABIT and RACER to determine the 
respective KD TFs’ ranks. The KD TFs were only in 15 out of 54 cases within the top 5% of all ranked TFs (4 out of 
18 in human and 11 out of 36 in E. coli). Of the 54 cases, where ranks were provided, 27 resulted from biRte, one 
from ISMARA, 13 from RABIT and 13 from RACER. Due to stringent filtering thresholds within the methods, 
no activity score was assigned to the KD TF in 37 cases, hence the ranking could not be computed in those cases.

The resulting ranks of knocked down TFs and the total number of ranked TFs per method and data set are 
shown in Fig. 3. Favorable results, meaning that the knocked TF was highly ranked, are marked in green.

We observed that biRte provided ranks for nearly all KD TFs. In 3 out of the 13 human data sets, where ranks 
were specified, biRte ranked the knocked down TF in the top 5% (FOXM1, RUNX1 and STAT3 in SNB19). In E. 
coli, the results from biRte were better with 8 out of 14 TFs in the top 5% and another two TFs in the top 10%. 
In all other data sets, the ranks provided by biRte for the TFs in question were quite low. ISMARA could only be 
applied to GSE45838 and GSE17172 since the chips from the other experiments were not supported by the online 
interface. In one data set (MYB) the KD TF was highly ranked (10th out of 602), but ISMARA did not provide any 
ranks for the two other KD TFs (BCL6 and FOXM1). Since the underlying network from ISMARA is not accessi-
ble we cannot discern whether the TF is not present in the network or was not considered important by the rank-
ing procedure. RABIT removes TFs with insignificant cross-sample correlation from the results and therefore 
only provides the ranks of, on average, 56 TFs in our analyses. It did not provide any activity score for the KD TF 
in over half of the data sets (12 in human, 4 in E. coli). In human, not a single KD TF was ranked in the top 20%. 
However, in E. coli RABIT was able to identify AppY (rank 1) and ArcA as knocked down TFs in the anaerobic 
condition (rank 2 in the single KD and rank 1 in the combined KD ArcA & Fnr). In contrast, RACER ranked only 
one KD TF for the human data sets at all (BCL6) and did not rank any KD TF highly in E. coli. In some human 
data sets, RACER even reported the total number of important regulators to be zero.

Ranking of related tFs. We expected that the knockdown of a certain TF should not only affect the activity 
of this TF itself, but also influence the activity of related TFs. Therefore, for each KD TF, we determined the ranks 
of a set of related regulators. We defined as related all TFs directly connected in the same pathway (information 
from SignaLink20 for human respectively EcoCyc21 for E. coli), direct neighbors in the TF – gene network, directly 
interacting TFs (information from TcoF-DB v222, human) and presumed aliases from the GeneCards23 (human) 
and EcoCyc21 database (E. coli) (see Materials and Methods for the procedure and Supplementary Table S2 for 
the collection).

We show the resulting ranks and according p-values of the KD TF and related TFs for one exemplary result 
(MYB KD from GSE17172) in Fig. 4, all other results are given in Supplementary Fig. S2 Again, we observed 
that also the related TFs are rarely ranked highly by any of the methods. Only one related TF (JUN), which is 
directly connected to MYB in the human regulatory network, was ranked among the top 20% TFs by two of the 
four methods (biRte: rank 50, ISMARA: rank 23). Previously, it was shown that JUN contributed to the tran-
scriptional activation of MYB24,25. For each method and data set individually, we evaluated whether the mean of 
the resulting ranks of all related TFs was significantly smaller than the average rank expected at random (total 
number of ranked TFs divided by 2). Only one out of 54 of the mean ranks of the estimated activity changes was 
significantly below the average rank: in E. coli, biRte ranked OxyR and a related TF highly in the anaerobic condi-
tion (p = 0.002). However, since this result was obtained with quite a small sample set (only two ranked TFs), we 
consider it not representative.

Overlap of top 100 TFs. Since the ranks of knocked down and related TFs were quite different in each 
method, we examined whether the methods might detect a common signal in the data such as a drastic change 
elsewhere in the network incurred by the KD. To this end, we compared the overlap of the top 100 ranked regu-
lators of all methods within one data set.

We found very little overlap in human cell line data. The highest overlap among three methods (biRte, RABIT 
and ISMARA) occurred in FOXM1 with only four common TFs within the top 100 (JUN, MYBL2, NR2F2 and 
FOXO4). These results make sense, as the expression of FOXM1 and MYBL2 as its downstream factor were sig-
nificantly associated with clinical stages and overall survival of glioma patients26 and is very high in Burkitt lym-
phoma27. Further, MYBL2 deregulations occurred in a broad spectrum of cancer entities28,29. FOXM1 is a direct 
target of repression by FOXO proteins. An inactivation of FOXO or overexpression of FOXM1 was associated with 
tumorigenesis and cancer progression30. Nevertheless, the overlap is extremely small and not significantly larger 
than expected at random (p-value = 0.81, tested by simulating the size of the overlap of three lists when sampling 
100.000 times 100 out of 429 TFs per list).

In E. coli, the number of common TFs from biRte, RABIT and RACER was higher, but also not significant 
(p-value = 0.96), with a maximum overlap of 18 TFs (ArcA & Fnr knockdown in the anaerobic condition). The 
overlap contained, for example, ArcA, which is activated in anaerobic conditions31, NtrC, which was shown to 
be upregulated during the transition from anaerobic to aerobic conditions32, and AdiY, which was maximally 
induced under anaerobic conditions33. Although the methods do not find the knocked down TF itself, at least 
in our E. coli datasets they commonly find TFs biologically relevant for the condition under consideration. The 
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results are exemplarily shown for FOXM1 and the combined ArcA & Fnr KD (anaerobic condition) in Fig. 5 and 
in Supplementary Fig. S3 for all other TFs.

Network alterations. The previous results showed that, in a few cases, the methods were able to find bio-
logically plausible information, although they did not identify the knocked down TF or its functional vicinity. 
One possible reason for this observation, which is in contrast to results published with the methods4,6,7, is that the 
regulatory networks used in the original work were much smaller compared to our networks. To assess whether 
the usage of a smaller network improves the results, we restricted the underlying TF – gene network to the neigh-
borhood of each knocked down TF with a distance of two. Note that this design gives a very favorable prior to 
the analysis. An exemplary restricted network for FOSL2 is presented in Fig. 6. We applied biRte, RABIT and 
RACER again using these individual smaller networks for the human data sets and performed TF ranking. The 
resulting TF activities are shown in Fig. 7 and are not better than for the full networks. Only RUNX1 and STAT3 
were ranked within the top 5% and FOXM1 in the top 10% using biRte. This result was already obtained using the 

Figure 4. For experiment GSE17172: Ranks of MYB (bold) and related TFs, total number of ranked TFs per 
method and p-value indicating significance of test whether the mean of the ranks of all related TFs is smaller 
than the average rank. Ranks of TFs in the top 5% of all ranked TFs are marked in dark green, ranks in the top 
5–10% in green and ranks in the top 10–20% in light green. When a TF was not ranked, “−” is shown.

Figure 5. Number of overlapping TFs in the top 100 by estimating TF activity with different methods. Venn 
diagrams are shown for FOXM1 knockdown in human (left) and for the combined ArcA & Fnr knockdown in E. 
coli for the anaerobic condition (right). For RABIT and RACER, the total number of ranked TFs was below 100 
in some cases (see Fig. 3).
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full network (compare Fig. 3). We conclude that the use of smaller and more focused regulatory networks alone 
is not sufficient to obtain more accurate results in human.

To further study the influence of the underlying regulatory network, we applied the popular method 
ARACNE19 to reconstruct ab initio a gene regulatory network from the given transcriptome data exemplarily for 
the FOXM1 KD (human) and AppY KD (E. coli). We used these networks as input to the investigated TF activity 
estimation methods and ranked the resulting TF activity scores. Although the networks inferred by ARACNE 
have a higher density compared to our original networks, the resulting TF activity rankings are comparable (see 
Supplementary Fig. S4). Therefore, the network provided as background knowledge to the methods seems not to 
be the most important element to explain the overall bad performance.

Figure 6. Restricted network for FOSL2. The color of the inner circle corresponds to the differential expression 
of case vs control samples from GSE19114, SNB19 cell line with FOSL2 knockdown (log2 fold changes): blue 
colors correspond to downregulated, red colors to upregulated genes in the case samples; genes with missing 
expression are colored in grey. The color of the outer circle corresponds to the inferred activity score from 
biRte, ranging from 0 (no activity, white) to 1 (high activity, dark green). The edge width corresponds to the 
absolute correlation of the expression values between the two adjacent nodes: small absolute correlation values 
are marked with a thin line, higher absolute correlation values with bolder lines. Edges with missing correlation 
values and self-correlation were given the thinnest line width.

Figure 7. Ranks of KD TFs and total number of ranked TFs per method and data set for the restricted 
networks. Ranks of KD TFs in the top 5% of all ranked TFs are marked in green and ranks in the top 5–10% in 
light green. When a TF was not ranked, “−” is shown.
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Discussion
We conducted a comparative evaluation of different transcriptome-based TF activity estimation methods using 
knockdown data sets. Our results are easily reproducible since they are based on publically available data sets, 
networks and methods. The results show that the investigated methods do not yield robust estimates of TF activity 
in a knockdown scheme: Only in around a fourth of all cases the KD TF was ranked within the top 5%, and in 
many cases, the methods did not provide any score for the KD TF due to the internal filtering.

This poor overall performance cannot be attributed to a low effectiveness of the knockdown, which had an 
enormous effect on the TF’s gene expression: Nearly all KD TFs showed a significantly high differential expression 
and most of them had one of the highest changes in differential expression of all genes in the respective data set. 
We expected the methods to recognize such a drastic change in expression and activity represented by the KD. 
However, they could only rarely find the KD TF even when its differential expression was very high. This might 
indicate, that the KD itself affects only a small portion of the whole gene expression. Then one could argue, that 
the methods do not detect such particular changes and seem to be robust against limited variation in the input 
data. Nonetheless, the KD signal was clearly present in the data and expected to be found by the methods.

Also, the network size is not a negative factor for prediction performance, since the use of smaller networks 
did not improve the detection of KD TFs for any of the activity estimation methods. When using other underlying 
regulatory networks, like the ones provided by ARACNE, the resulting TF activity rankings were not different 
from previous results. Therefore we conclude that the results are not completely imposed by the network given as 
input to the methods. We can also exclude the number of samples within a data set as a restricting element, as data 
sets with more samples did not achieve better results than those with fewer samples.

Overall, the results from E. coli are better compared to the results from human cell lines, both regarding the 
detection of the KD TF and regarding the agreement among different methods. The gene regulatory network 
of E. coli is probably the best characterized one of all species34 with a gold standard of experimentally validated 
interactions from RegulonDB18. Even under such optimal conditions, the obtained results have only a poor qual-
ity. Conversely, a comprehensive characterization of the human regulatory repertoire is lacking since only about 
half of the estimated 1,500–2,000 TFs in the mammalian genome is known35 and the existing knowledge about 
regulatory effects is scattered over the biological literature and different, partly commercial, databases, impeding 
the construction of comprehensive networks9. We expected that the estimation of TF activity in human is a much 
harder task compared to its estimation in E. coli, which is partly confirmed by our results.

Even in E. coli, some methods were not able to detect the knocked down TF, only biRte yielded moderate 
results. RABIT and RACER discarded too many TFs before the scoring step due to an insignificant cross-sample 
correlation, indicating that the model and feature selection procedures might be too stringent. In some of the 
experiments we chose from GEO11, the sample size was relatively small with on average 4 case and 6 control 
samples per data set and a partly high variation within the groups (compare Figs 1 and 2). However, even in the 
datasets with larger sample size or with smaller variation, the method’s results were not better compared to the 
less favorable datasets.

We further observed that related TFs were rarely ranked highly by any of the methods and their ranks did 
not differ significantly from a random set. Therefore, we examined whether the methods were able to detect a 
common signal in the data at all and compared the overlap of the top 100 ranked regulators of all methods within 
one data set. The overlap in human data was quite small, but consistently larger in E. coli. We attribute the low 
similarity of the results partly to the noisy character of the transcriptome data provided as input. Furthermore, 
gene regulation has an inherent time dependency which is neither covered by the experimental setup nor by 
the mathematical models. Also, many other factors important for regulation, like chromatin structure or post-
transcriptional effects, are ignored. Therefore, finding a knocked down TF seems to be a difficult problem to the 
examined methods. However, in both human and E. coli, the intersection of methods identified some biologically 
plausible TFs for the condition under consideration. In the literature, we found many examples of such evaluation 
procedures4–7, where highly ranked TFs were found to be biologically important.

For the evaluation of the experiments based on human data, we used a gene regulatory network constructed 
by a text mining approach9 and complemented it with TF – gene interactions from the public TRANSFAC data-
base17. The construction of the text mining network included an extensive manual curation step, thus highly 
improving the reliability of the detected relations compared to a completely automated approach. In addition to 
the text-mining, the network also contains interactions reported in the TRANSFAC database, which based on 
biological experiments. In E. coli, the network was retrieved from RegulonDB18, a gold standard in the field. We 
therefore believe that both the human and the E. coli network represent a pertinent choice to provide background 
knowledge to the methods. Further, the use of other networks (restricted versions of the original human and E. 
coli networks or networks inferred by ARACNE) did not improve or change substantially the results.

In general, the selection of experiments might affect the outcome of the methods. We used experiments from 
the GEO platform, an established and extensive repository for genomic data sets, to ensure an easy and public 
access to the data and to allow other researchers to replicate our results. We chose data from different species, 
different cells of origin and cell lines, from various contributors, data measured on different arrays, and of 13 
different KD TFs to ensure that our results are generalizable and depend less on the specific datasets. However, 
the chosen experiments had to fulfill certain criteria: obviously, they had to contain a KD scenario and we chose 
to include only experiments with at least three samples per condition. Further, as we wanted to include ISMARA 
as a method for estimating TF activity, we had to choose experiments whose Affymetrix chips were supported by 
its web service. All these constraints limited the number of possible data sets. Of course, the use of other exper-
imental data, different underlying networks or additional methods might affect the results. However, since we 
draw our conclusions from a total of 25 evaluated data sets, amongst which we did not detect a pattern justifying 
an especially good or bad performance, we argue that our results show not only individual artefacts but are gen-
eralizable to the estimation of TF activity in KD studies.
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Altogether, the investigated methods for estimating TF activity were not able to robustly detect knocked down 
TFs neither in human nor in E. coli data. We believe that the main reason for this deficiency is the simplistic 
model of cellular processes used in the more complex methods like ISMARA. We can only speculate which 
aspects are primarily responsible for the limited performance. All considered methods only used gene expression 
data whereas other important regulatory processes such as epigenetic mechanisms like DNA methylation, chro-
matin remodeling, complex promoter structures, and posttranscriptional regulatory processes via microRNAs are 
disregarded. The inclusion of further data types would probably change the outcome of the methods and might 
improve results8. Also, all models assume linear relationships between TFs and lack a notion of kinetic or tem-
poral effects36. Although time series expression data from TF knockdown or TF induction experiments exist37,38, 
the selected methods cannot make use of this type of data. Another possible reason for the failure of the methods 
might be their inability to model TF self-regulation and feedback loops despite their known importance for gene 
regulation39,40.

Materials and Methods
transcriptome data. We downloaded publicly available transcriptome data for different TF knockdowns in 
human and E. coli cell lines from the GEO repository11. We chose three different experiments for TF silencing in 
human cell lines (GSE4583812, GSE1717213,14, GSE1911415) and one experiment in E. coli (GSE112116). They con-
tain data from 8 human knocked down genes (BCL6, FOXM1, MYB, bHLH-B2, FOSL2, RUNX1, C/EBPβ, STAT3 
and double knockdown C/EBPβ & STAT3) and 5 knocked down genes (AppY, ArcA, Fnr, OxyR, SoxS and double 
knockdown ArcA & Fnr) from E. coli. PCA plots for all data sets are provided in Supplementary Fig. S5 showing 
the separation of treated and control samples. We mapped the given probe identifiers to HGNC Symbols (human 
data) or gene symbols from UniGene (E. coli). When multiple probes mapped to one gene we computed a t-test 
comparing case and control group and kept the probe with smallest p-value.

GSE4583812 contains data from the knock-down of BCL6 expression in human diffuse Large B-Cell Lymphoma 
cell lines. This experiment was performed in OCI-Ly7 and Pfeiffer GCB-DLBCL cell lines as triplicates, providing 
three case and three control samples per cell line. Gene expression was profiled on H-GU133plus2 Affymetrix 
gene chips. We analyzed the samples in dependence of their cell line origin and treated them as two independent 
data sets since they were clearly separated in a PCA plot (see Supplementary Fig. S5, panel a).

GSE1717213,14 consists of samples of Human Burkitt’s lymphoma ST486 cells which were transduced either 
with non-target control shRNA lentiviral vectors, FOXM1 shRNA or MYB shRNA lentiviral vectors (three sam-
ples in each condition). cRNA was hybridized in Affymetrix Human Genome U95 Version 2 Arrays. We used the 
MAS541 normalized data as provided on GEO.

GSE1911415 includes 74 samples from knockdown experiments in human glioma cell line SNB19 and glioblas-
toma multiforme-derived brain tumour initiating cells (BTICs). shRNA-mediated silencing targeted bHLH-B2, 
FOSL2, RUNX1, C/EBPβ and STAT3. For SNB19, 10 control samples were available together with 4 samples with 
bHLH-B2 knockdown, 4 with FOSL2 knockdown and 3 samples each for C/EBPβ, STAT3 and the combined C/
EBPβ & STAT3 knockdown. Data was available for C/EBPβ, STAT3, combined C/EBPβ & STAT3 knockdown and 
a control condition for 11 samples in each group in BTICs. RNA was hybridized on Illumina HumanHT-12v3 
expression BeadChip. Since the samples were clearly separated in a PCA plot by their cell type (see Supplementary 
Fig. S5, panel c), we treated data from SNB19 and BTICs independently.

GSE112116 contains three samples of six E. coli strains with knockouts of transcriptional regulators in the oxy-
gen response (AppY, ArcA, Fnr, OxyR, SoxS and the double knockout ArcA & Fnr) in both aerobic and anaerobic 
conditions. Additionally, three (aerobic condition) and four (anaerobic condition) wild type samples were availa-
ble. Gene expression was profiled on Affymetrix E. coli Antisense Genome Arrays. We analyzed the data from the 
two oxygen conditions independently.

tF – gene network. We provided a human TF – gene network8,9 and one from E. coli18 as input for biRte, 
RABIT and RACER, which are available as supplementary files. ISMARA can only be used with its own underly-
ing regulatory network model, which is not accessible explicitly.

Human. We used a publicly available TF – gene network9 based on a text-mining approach complemented with 
TF – gene interactions from the public TRANSFAC database17 (http://www.gene-regulation.com/pub/databases.
html, release 7.0). This network includes 2894 interactions between 429 TFs and 1218 genes. The network is pro-
vided as supplementary material.

E. coli. We downloaded TF – gene interactions from RegulonDB18 version 9.0, Release 9.4 and kept those inter-
actions for which at least one entry in the column “Evidence that supports the existence of the regulatory inter-
action” was mentioned. The network contains 4273 interactions between 206 TFs and 1798 genes and is provided 
as supplementary material.

Methods for estimating tF activity. The considered methods for estimating TF activity model 
genome-wide gene regulation as sets of equations over the activity of transcription factors. All methods assume 
both the set of TFs and the topology of the regulatory network to be given. By combining this background knowl-
edge with transcriptome data, they try to infer the activity of regulators in a certain experimental condition or dis-
ease using mathematical optimization to find parameters minimizing the divergence of predicted and measured 
gene expression intensities. The methods predominantly produce a ranked list of TFs, sorted by their activity in a 
given group of samples. Here, we briefly explain the functioning of each method and state our parameter settings 
if applicable. For a detailed description of each method refer our previously published review8 or the according 
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original paper. The investigated methods are publically available as web service, downloadable program or R 
package.

BiRte. BiRte4 (Bayesian inference of context-specific regulator activities) uses a probabilistic framework to 
estimate regulatory activities from differential gene expression data and a TF – gene network. The set of active 
regulators can be seen as hidden state variables which are estimated with help of the Markov Chain Monte Carlo 
method. Thereby, the posterior probability for each regulator and condition to influence the expression of its tar-
get genes is estimated. Simultaneously, a variable selection procedure is applied to achieve sparsity of the model.

BiRte is available as a bioconductor R package. We used R version 3.2.0 with biRte version 1.10.0 and applied 
the method “birteLimma” to estimate regulatory activities with the options “niter” and “nburnin” set to 10000. 
As biRte has a randomized component, the resulting TF activities are not exactly the same for different runs. We 
averaged the final activity scores over 100 iterations of birteLimma.

ISMARA. ISMARA5 (Integrated System for Motif Activity Response Analysis) infers the activity of regula-
tory motifs (short nucleotide sequences) and thereby indirectly deduces the effects of TFs. The input signal lev-
els, which are computed from gene expression data, are modelled linearly in terms of binding site predictions 
and unknown motif activities. ISMARA employs a Bayesian procedure with a Gaussian likelihood model and a 
Gaussian prior distribution for inferred motif activity profiles to avoid overfitting.

In contrast to all other investigated methods, TF – gene relationships are not provided by the user. ISMARA 
can only be run with its proprietary underlying regulatory network model. Further, only raw data provided as 
CEL, FASTQ, BED, BAM or SAM files can be uploaded. Therefore, the results from ISMARA are only partly com-
parable to the results from other methods here.

ISMARA is available via a web service (https://ismara.unibas.ch/fcgi/mara). We uploaded raw CEL files and 
grouped the samples according to their origin or treatment to compare the average regulatory activity between 
different conditions. Since Illumina chips in general and the Affymetrix E. coli Antisense Genome Array in par-
ticular are not supported, we could only run ISMARA on the data sets with BCL6 (GSE45838) and FOXM1/MYB 
(GSE17172) knockdown.

RABIT. RABIT6 (Regression Analysis with Background Integration) applies a linear regression model to 
estimate TF activities. First, RABIT tests in each sample whether the target genes of each TF are differentially 
expressed. A score indicating regulatory activity is defined by the t-value (regression coefficient divided by stand-
ard error). To find a subset of TFs among those screened before, a stepwise forward selection is applied optimizing 
the model error. Lastly, TFs with insignificant cross-sample correlation are removed from the results.

The authors of RABIT published a C++ implementation accessible under http://rabit.dfci.harvard.edu which 
we adopted with the FDR option set to 1. We used the difference of expression values between case and control 
group as input and ordered the activity of TFs by t-value as proposed in the RABIT paper.

RACeR. RACER7 (Regression Analysis of Combined Expression Regulation) consists of a two-stage lin-
ear regression. Optimization is applied twice to reduce model complexity, where the method first infers 
sample-specific TF activities and uses these, in a second step, to compute general TF – gene interactions. Sparsity 
of the solution is obtained through elastic-net regularized generalized linear models. A supplementary feature 
selection procedure comparing the full model to a restricted model leaving one TF out provides the most pre-
dominant regulators.

We used the available R scripts from http://www.cs.utoronto.ca/~yueli/racer.html to run RACER and set 
miRNA expression data, copy number variation and methylation scores, which have to be provided, to zero. The 
obligatory miRNA – gene network was artificially created where all dummy miRNAs and genes were connected. 
We computed separate models for case and control group and extracted the resulting sample-specific regulatory 
activities. TFs were ranked by their activity difference between the two groups.

Ranking. For all ranking assignments, we appointed TFs that compared equal the same rank. Subsequently, 
a gap was left in the ranking numbers which size was equal to the number of items that compared equal minus 1.

Differential expression ranking. We calculated the differential expression between case and control group for all 
genes in all data sets via a two-sided t-test. We ranked the genes according to the p-value of the t-test (smallest 
p-value corresponds to rank 1). We did not apply any multiple test correction, since we were not interested in the 
precise p-value but only the order of p-values to assign ranks.

TF activity score ranking. In each data set, we compared the results of each method by ranking the absolute 
values of the computed TF activity scores (highest absolute activity value corresponds to rank 1). Activities equal 
to zero were not considered. Therefore, the total number of ranked TFs is different in each method and data set. 
We predominantly assessed the rank of the TF that was knocked down in particular. Additionally to the KD TF, 
we evaluated the ranks (if existing) of

•	 directly connected TFs in the network
•	 aliases provided in the GeneCards23 database version 4.8.0 Build 5 (available under www.genecards.org) for 

human TFs respectively synonyms from the EcoCyc21 database (ecocyc.org) for E. coli.
•	 TFs directly connected in a pathway from SignaLink20 2.0 (signalink.org) for human TFs respectively from 

the EcoCyc21 database (ecocyc.org) for E. coli.
•	 TFs directly interacting with the KD TF given in TcoF-DB22 version 2.2.2 available under http://tools.

sschmeier.com/tcof/home for human.
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We call the union of these TFs related TFs. An overview is available in Supplementary Table S2. The table 
shows all TFs that were found, irrespective whether they appear in our regulatory networks or not. For each 
method and data set individually, we evaluated whether the resulting ranks of all related TFs are significantly 
smaller than the average rank. We applied a one-sided one-sample t-test to compare the mean rank against the 
average rank (total number of ranked TFs divided by 2) and considered p-values < 0.05 as significant. Since the 
total number of t-test is still quite small (54) and nearly all p-values were above the significance level anyway, we 
did not apply multiple testing correction.

Overlap. We computed the number of overlapping TFs in the top 10 and top 100 lists comparing all applied 
methods within one data set. The resulting Venn diagrams are shown in Supplementary Fig. S3.

Small networks. To evaluate the influence of the human gene regulatory network, we reduced the network to the 
close neighborhood of the knocked down TF with a distance of 2, thus giving smaller gene regulatory networks 
for each knocked down TF.

ARACNE. We applied ARACNE19 (Algorithm for the Reconstruction of Accurate Cellular Networks) to recon-
struct a gene regulatory network using the FOXM1 (human) and AppY (E. coli) KD transcriptome data. We used 
the implementation of the “minet” bioconductor package42 in R (version 3.38) and built the mutual information 
matrix with Spearman’s correlation. The threshold for removing an edge in the aracne function was set to 0.1. We 
used the resulting gene regulatory networks as input to biRte4, RABIT6 and RACER7 and ranked the estimated TF 
activity scores as described above.

Data Availability
The data sets analyzed during the current study are available in the GEO repository under the following acces-
sion codes: GSE45838, GSE17172, GSE19114 and GSE1121. Human TF – gene interactions were obtained from 
text mining based on the paper by Thomas et al.9 (available via the FastForward DNA database under http://
fastforward.sys-bio.net) and complemented with interactions from the TRANSFAC database (release 7.0, http://
www.gene-regulation.com/pub/databases.html). The network is provided as supplementary material in file “hu-
man_tf_gene_network.txt”. The TF – gene network for E. coli was downloaded from RegulonDB18 version 9.0, 
Release 9.4 (http://regulondb.ccg.unam.mx/menu/download/datasets/index.jsp). The network is provided as sup-
plementary material in file “ecoli_tf_gene_network.txt”.
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