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Inferring fine-scale spatial structure 
of the brown bear (Ursus arctos) 
population in the Carpathians prior 
to infrastructure development
Ancuta Fedorca1,2, Isa-Rita M. Russo3, Ovidiu Ionescu1,2, Georgeta Ionescu1,2, Marius Popa1,2, 
Mihai Fedorca1,2, Alexandru Lucian Curtu2, Neculae Sofletea2, Gary M. Tabor4 & 
Michael W. Bruford3

Landscape genetics is increasingly being used in landscape planning for biodiversity conservation by 
assessing habitat connectivity and identifying landscape barriers, using intraspecific genetic data and 
quantification of landscape heterogeneity to statistically test the link between genetic variation and 
landscape variability. In this study we used genetic data to understand how landscape features and 
environmental factors influence demographic connectedness in Europe’s largest brown bear population 
and to assist in mitigating planned infrastructure development in Romania. Model-based clustering 
inferred one large and continuous bear population across the Carpathians suggesting that suitable bear 
habitat has not become sufficiently fragmented to restrict movement of individuals. However, at a finer 
scale, large rivers, often located alongside large roads with heavy traffic, were found to restrict gene 
flow significantly, while eastern facing slopes promoted genetic exchange. Since the proposed highway 
infrastructure development threatens to fragment regions of the Carpathians where brown bears occur, 
we develop a decision support tool based on models that assess the landscape configuration needed 
for brown bear conservation using wildlife corridor parameters. Critical brown bear corridors were 
identified through spatial mapping and connectivity models, which may be negatively influenced by 
infrastructure development and which therefore require mitigation. We recommend that current and 
proposed infrastructure developments incorporate these findings into their design and where possible 
avoid construction measures that may further fragment Romania’s brown bear population or include 
mitigation measures where alternative routes are not feasible.

Europe is characterised by a fragmented natural landscape, interspersed with a high density of human settle-
ments and associated infrastructure. Habitat loss, fragmentation and infrastructure development are commonly 
regarded as being among the greatest threats to biodiversity. The construction of highways, has become an issue of 
increasing concern to wildlife populations1. Connectivity models are progressively being used as a tool to address 
the effects of fragmentation induced by barriers such as highways and other human infrastructure, and landscape 
resistance models provide a useful method for mapping potential mitigation corridors2,3. In a recent study it has 
been shown that eastern Europe has some of the highest road densities on the continent4. However, while 14.7% 
of the world’s land mass is covered by Protected Areas (PA), globally only 7.5% is covered by connected PAs5.

One of Europe’s largest brown bear populations (Ursus arctos Linaeus, 1758) is found in the Romanian 
Carpathians. While the population declined significantly after WWII, when only approximately 800 individuals 
remained, it recovered to almost 8,000 individuals by 19886. Within the last two decades the population size has 
been estimated at 6,000 individuals7, and the population in the Carpathians has been shown to be one of the most 
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genetically diverse brown bear populations in the world8,9. While brown bear habitat has become increasingly 
fragmented, the species still occupies the same overall distribution as it did during its recent maximum in the 
1980’s (Ceausescu period).

Recent developments in road infrastructure are likely to fragment this brown bear population, perhaps for 
the first time. Faced with this impending threat, bear conservation measures now focus on the maintenance of 
ecological connectivity. Romanian legislation on ecological corridor assignment (law 57/2007) provides for the 
protection of connectivity by designating spatially explicit wildlife corridors based on field-informed modelling 
and empirical validation.

Brown bear distribution is primarily dependent on the availability of food resources. As such, bear home 
ranges vary widely between different countries and regions10. In Scandinavia, male brown bear home ranges vary 
from 833 to 1,055 km2 and from 217 to 280 km2 for females in low-density conditions11, while in Slovenia male 
home ranges are estimated at 350 km2 12. In Romania brown bears have variable home range sizes and have daily 
movements within a broad altitudinal range that can vary seasonally13. Brown bears exhibit female philopatry, 
where females live close to or within their mothers’ home ranges14 while males disperse over considerable dis-
tances10. This combination of relatively large home ranges with sex-biased and often long-distance dispersal15 
makes bears especially susceptible to anthropogenic habitat alteration and barrier effects16. Since urban expan-
sion and habitat fragmentation restricts the movement of bears, knowledge of landscape features promoting 
gene flow is a key factor in the design of wildlife corridors15. To better understand the role of landscape features 
in shaping demographic structure in natural populations, approaches combining genetic analysis with GIS have 
become increasingly popular17. There are a number of emergent tools that can be used to assess landscape con-
nectivity, such as least-cost path or resistance models18. Recently, landscape genetics has seen an expansion of 
new analytical techniques and as such, the usefulness of relatively simple approaches including Mantel19 and 
partial Mantel tests have been debated20. Guillot et al.21 recommended the use of Mantel tests when analysing the 
independence of two matrices, while alternatives such as multiple regression analysis based on distance matri-
ces (MRM) have been successfully implemented in studies regarding the influence of landscape parameters on 
genetic structure22–24. Fine-scale analyses using individual genotype data have been used to determine population 
processes leading to patterns of genetic structure such as isolation-by-distance (IBD) or landscape resistance25,26. 
Individual genotype data has been used to study fine-scale patterns of genetic variation in bears27,28, emphasising 
the possibility that individual-based approaches in heterogeneous landscapes might be the best method to test 
landscape connectivity29. To infer population genetic structure across the country, and assess genetic distances 
among individuals we used the same set of microsatellites as in previous studies conducted in Europe includ-
ing the Carpathians30 and southern Europe31. Nuclear DNA microsatellites have extensively been used in land-
scape genetics studies, and have been shown to demonstrate fine-scale resolution, including genetic structure, in 
these32,33 the genetic patterns uncovered by which, have largely been similar to those obtained by whole genome 
sequencing32.

To improve the performance of these methods and to generate a robust modelling framework, relative support 
(RS) and causal modelling have been implemented to augment the Mantel and partial Mantel test approach33,34.

Here we aimed to determine the landscape features that influence gene flow in a heterogeneous environment 
for brown bears from the Carpathian Mountains by employing a landscape genetics approach, identifying key 
areas needed for connectivity conservation, and developing a decision tool to assist in management and miti-
gation strategies. Any proposed infrastructure development will need to consider mitigation measures in areas 
critical to the health and long-term fitness of brown bears in this region.

Results
Genetic diversity and population structure. Null alleles were detected for markers Mu10, Mu15, G10X 
and Mu09 and these loci were therefore excluded from all subsequent analyses. Deviations from Hardy Weinberg 
equilibrium were observed for six of the analysed markers, which recorded negative FIS-values that could be 
attributed to stochasticity, or non-random sampling35. Bayesian clustering, employed in STRUCTURE, indicated 
K = 1 (Supplementary material Figs 1 and 3) using LnPr (X|K) method. Samples were therefore treated as one 
population and we implemented an individual-based landscape genetics approach.

Spatial autocorrelation. Results showed a higher and significant genetic correlation (class 5 km (P = 0.001, 
r = 0.064) and class 15 km (P = 0.003, r = 0.017)) among individuals than expected within specific classes of dis-
tance (Fig. 1a). Significant genetic correlation among individuals was detected for females within the first distance 
class (0–15 km) (class 5 km (P = 0.001, r = 0.10) and class 15 km (P = 0.001, r = 0.051)) (Fig. 1b). For males we 
detected no significant spatial autocorrelation at any of the distance classes (Fig. 1c).

Landscape resistance modeling. In order for landscape models to be accepted, models had to pass the 
following tests: causal modelling with IBR (isolation by resistance) and the reduced model test. In addition, can-
didate models were also assessed against each other rather than simply against IBR to evaluate models based on 
relative support (RS). First, we will discuss the results for the best univariate models followed by the best multi-
variate models.

The best univariate models of effective resistance (Table 1) based on partial Mantel correlations were: rivers 
(r = 0.175; P = 0.003), roads (r = 0.091; P = 0.016), aspect (r = 0.076; P = 0.042) and slope (r = 0.051; P = 0.003). 
Large rivers explained about 18% of the variation in genetic distance, followed by roads, eastern aspects and by 
relatively small slope gradients. Elevation and land use were not significant and were therefore excluded from any 
further analyses.

Causal modelling with IBR for rivers was defined as such: partial Mantel test between genetic distance and 
rivers after removing the effect of IBR was significant (P = 0.002) and partial Mantel test between genetic distance 
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Figure 1. Spatial autocorrelation correlogram of the entire sample (a), females (b), males (c). Two red dotter 
lines indicate the 95% confidence interval about the null hypothesis of a random distribution of the brown 
bears. The error bars about r indicate 95% confidence interval determined by bootstrapping. (a) All the samples 
showing a significant and positive autocorrelation for two distance classes (5 km and 15 km). (b) Females 
samples showing a significant and positive autocorrelation values within the first two distance classes (5 km and 
15 km). (c) Males correlograms indicating not significant values for autocorrelation.

Landscape variable Parameter values
Partial 
Mantel r P-value

Rivers (riv2) Classified; Rmax = 2 0.175 0.0003

Roads (ro2) Classified; Rmax = 2 0.091 0.016

Aspect (a71) 90°; x = 10; 
Rmax = 2 0.076 0.042

Slope (sl68) 15°; Rmax = 100 0.051 0.0033

RoadLoc (rl2) Classified; Rmax = 2 0.067 0.058

Elevation (de4) 500; Rmax = 100 0.052 0.094

Land Use (clc26) Forest cover; 
Rmax = 100 0.011 0.385

Table 1. The best univariate models of effective landscape resistances based on partial Mantel correlation after 
removing the effect of the IBR (isolation-by-resistance) model. Best-supported model is ranked at the top, we 
reported optimized parameter values, partial Mantel r and significance of support. In bold are indicated the 
supported models.
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and IBR, removing the effect of the rivers was not significant (P = 0.997), suggesting that landscape resistance as a 
function of rivers was supported (Table 2).

Model optimisation based on RS, showed that the best univariate model was rivers when compared to the IBR 
model, followed by aspect and roads (Table 2). Only rivers, aspect and roads have met the IBR causal modelling 
criteria. Rmax values were greater for rivers and roads than in previous univariate models using casual modelling, 
while model parameters for aspect remained constant.

Causal modelling after removing the effect of IBR calculated for Ri + Ro + A (Table 3; Ri – rivers, Ro – roads, 
A – aspect) shown that: (1) partial Mantel test between the genetic distance and Ri + Ro + A after removing 
the effect of IBR (GD ~ (Ri + Ro + A)|IBR was significant (P = 0.037, Table 3; column 1); (2) partial Mantel test 
between genetic distance and IBR partialling out the landscape variable (GD ~ IBR|(Ri + Ro + A) was not signifi-
cant (P = 0.671, Table 3; column 2); (3) the partial Mantel correlation was significant (P = 0.003, Table 3; column 3)  
when partialling out the effect of the reduced model (GD ~ (Ri + Ro + A)|(Ri + Ro); 4) while the opposite 
(GD~(Ri + Ro)|(Ri + Ro + A) was not significant (P = 0.959, Table 3; column 4). Model optimization based on 
RS, indicated that the best multivariate model comprised of aspect and rivers (Table 3, model 1). Relative support 
was calculated with the following formula:

= −|RS A B( ) ( )1 2

Landscape 
variable

Parameter 
values RSIBR

(1)
r

(1)
P

(2)
r

(2)
P Supported

Rivers (riv1000) Classified; 
Rmax = 1000 0.274 0.143 0.002 −0.131 0.997 Yes

Aspect (a71) 90°; x = 10; 
Rmax = 2 0.075 0.076 0.042 0.0007 0.500 Yes

Roads (ro10) Classified; 
Rmax = 10 0.074 0.073 0.042 −0.0007 0.505 Yes

RoaLoc (rl2) Classified; 
Rmax = 2 0.011 0.067 0.058 −0.056 0.913 No

Slope (sl68) 15°; 
Rmax = 100 −0.051 0.051 0.0033 0.102 0.0003 No

Table 2. The best univariate models of landscape resistance based on relative support (RS) and causal 
modelling. Optimized parameter values, RS as compared to IBR, partial Mantel r and significance of support 
are reported. Optimized values include equation parameters for x or SD (contrast; shape of the relationship) 
and Rmax (magnitude of the relationship). (1) partial Mantel test between genetic distance and the landscape 
variable, partialling out the effect of IBR (GD~LV|IBR); (2) partial Mantel test between genetic distance and 
IBR distance, removing the effect of the landscape variable (GD ~ IBR|LV). Mantel r-value is reported in the first 
column of each test while in the second column we reported P-value. We indicated supported models in bold.

Model Parameters RSIBR

(1)
r

(1)
P

(2)
r

(2)
P

(3)
r

(3)
P

(4)
r

(4)
P

(1) Ri + Ro

Ri: Classified; 
Rmax = 2 0.162 0.088 0.019 −0.074 0.964 Ri: 0.039 0.182 Ri: −0.024 0.705

Ro: Classified; 
Rmax = 2 Ro: −0.044 0.843 Ro: 0.058 0.088

(2) Ri + Ro + A

Ri: Classified; 
Rmax = 2 0.097 0.079 0.037 −0.018 0.671 Ri: −0.008 0.012 Ri: 0.018 0.855

Ro: Classified; 
Rmax = 2 Ro: 0.009 0.417 Ro: 0.038 0.183

A: 90°; x = 10; 
Rmax = 2 A: −0.074 0.003 A: 0.113 0.959

Table 3. The best multivariate models based on relative support (RS), causal modelling after removing the 
effect of the isolation-by-resistance (IBR) model (1, 2) and causal modelling criteria with the reduced model 
(3, 4). We reported optimized parameter values, RS as compared to IBR, partial Mantel r and significance of 
support. Optimized values include equation parameters for x or SD (contrast; shape of the relationship) and 
Rmax (magnitude of the relationship). Causal modeling after removing the effect of the IBR consisted in: partial 
Mantel test between genetic distance and the landscape variable, partialling out the effect of IBR (GD ~ LV|IBR) 
and partial Mantel test between genetic distance and IBR, removing the effect of the landscape variable 
(GD ~ IBR|LV). Causal modeling criteria with the reduced model was: (3) partial Mantel test between genetic 
distance and landscape model after removing the effect of the reduced model GD ~ LM|) and partial Mantel test 
between genetic distance and the reduced model, partialling out the effects of the landscape model (G ~ |LM). 
Mantel r-value is reported in the first column for each test while the second column is reported the P-value. 
Abbreviation: Ri – River, Ro – Road, A – Aspect.
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where (A) was the partial Mantel test between genetic distance and landscape variable 1 (LV1), partialling out the 
effect of second landscape variable (LV2) and (B) was the partial Mantel test between genetic distance and LV2 
partialling out the effect of LV1. In order to be supported, RS of the first model compared to the second model 
should be positive in every comparison. Including aspect in multivariate model 1 did not improve the RS value 
(0.097). The RS for model 2 compared to model 1 was slightly lower, but this model still passed the causal mode-
ling criteria. This model included the same parameters as in the univariate analysis (Table 1). In addition, model 
Ri + Ro + A performed significantly better (r = 0.079, P = 0.037) than resistance distance alone (r = −0.018, 
P = 0.671).

The best multivariate model based on the partial Mantel correlation after partialling out the IBR model 
(Table 3, column 1: P = 0.019; column 2: P = 0.964) included rivers and roads (model 1). Roads, rivers and aspect 
(model 2) were supported based on the partial Mantel correlation after removing the effect of IBR (Table 3).

The best-supported model using the AICc statistic consisted of a combination of aspect, rivers, roads and 
slope (C: R2 = 0.021, wi = 1). When VIF values were calculated we observed collinearity between roads and rivers. 
We therefore calculated MRM excluding rivers (model C1; R2 = 0.020, wi = 1; Table 4). When we excluded roads, 
model C2 showed a lower AICc value (Table 4). Rivers, aspect and slope were identified as the landscape predic-
tors influencing gene flow.

Current density maps and connectivity. Using the best multivariate model, a map highlighting core 
areas with the highest current density (areas of connectedness) for brown bears along the Carpathians was gener-
ated. The current map of the most probable routes of gene flow indicated the presence of wildlife corridors which 
plays a major role in maintaining gene flow within this large brown bear population (Fig. 2). We therefore iden-
tified several wildlife corridors in areas were development has been planned (Fig. 3a): Prahova Valley (Fig. 3b, 3 
corridors), Olt Valley (Fig. 3c, 3 corridors), Apuseni (Fig. 3d, 3 large areas with small corridors) and Targu Mures 
– Iasi (Fig. 3e, 5 corridors). Some of the corridors are large, while others are very small. However, they are not 
the only ones, there are others that have not been the subject of this study. Moreover, we generated a framework 
of decision (Fig. 4) for new highways to be built based on our landscape genetic model outputs: (a) identifying 
if the infrastructure passing through an area where bears are known to occur; (b) identifying if the proposed 

Model Name Variables β P R2 P VIF AICc ∆AICc
Weight 
(wi) RI

0.0530 0.0010 36300.3 1.27 0.625 5.31

A

Aspect 0.102 2.97

Rivers 0.001 782.65

RoadLoc 0.850 172.16

Roads 0.170 38.76

Slope 0.613 3.76

IBR 0.001 858.97

Excluding IBR 0.0229 0.0180 35714.5 4.05 0.883 2.3

B

Aspect 0.105 2.97

Rivers 0.417 103.03

RoadLoc 0.140 159.63

Roads 0.230 38.60

Slope 0.421 3.75

Excluding RoadLoc 0.0211 0.0130 35682.2 0.00 1 2.12

C

Aspect 0.012 2.96

Rivers 0.131 28.61

Roads 0.235 24.69

Slope 0.228 3.68

Excluding Rivers 0.0200 0.0080 35661.5 0.00 1 2

C1

Aspect 0.013 2.90

Roads 0.023 4.13

Slope 0.022 3.29

Excluding Roads 0.0183 0.0120 35630.2 0.00 1 1.83

C2

Aspect 0.1253 0.002 2.94

Rivers 0.0748 0.000 4.79

Slope −0.0770 0.000 3.66

Table 4. Multiple regressions on distance matrices (MRM) indicating the relationship between pairwise genetic 
distances and the resistance distances for different landscape variables. In the model C1 and C2 we alternately 
removed roads and rivers in order to minimize colinearity among predictors. We reported β = intercept only for 
the best-supported model while P = P-value and VIF = Variance Inflation Factor were reported for each model. 
We present the results of matrix regressions (model R2) and Akaike’s Information Criterion (AICc, ∆AICc, wi). 
Models with the highest AIC support are in bold (∆AICc ≤ 2).
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infrastructure bisect bear dispersal routes; (c) inferring if the proposed infrastructure pass through regions of 
high bear connectedness as a result of the landscape analysis; (d) analysing if the road can be re-routed without 
major disruption to the environment and at acceptable cost; (e) identifying mitigation measures (bear tunnels, 
green bridges, other solutions) which can be included into highway design; (f) given the landscape and results of 
the landscape genetics analysis, identifying the most suitable and cost-effective mitigation measure (bear tunnel 
at valley bottom, green bridge on valley slope with forest, etc.).

Discussion
Model-based clustering inferred one large population; the overall lack of genetic sub-structure suggests high lev-
els of dispersal and gene flow. This implies that bear habitat has yet to become fragmented to restrict movement 
of individuals. This is also the case in nearby Croatia where a single population for brown bears was detected and 
highlighted the importance of habitat connectivity36. Spatial autocorrelation revealed a significant genetic corre-
lation among females at relatively fine spatial scales (up to 14 km) supporting observations of female philopatric 
behaviour14. A previous study37 showed that females can disperse up to 10 km while males disperse on aver-
age over distances of 30 km. These observations are supported by telemetry research carried out at the National 
Institute for Research and Development in Forestry Marin Dracea (INCDS Marin Dracea) in order to establish 
home ranges of brown bears in Romania (10 to 25 km2 for females). The pattern detected of fine-scale spatial cor-
relation in females could be explained by young females establishing their home ranges close to their mothers14, 
although we did not have information on the age of the approximately 50 females analysed here. As expected, 
males did not show significant spatial correlation, confirming ecological evidence for long-distance juvenile male 
dispersal38.

The optimal landscape model predicting genetic connectivity among individuals comprised a combination 
of rivers and eastern facing slopes. Large rivers, often located alongside villages and large roads featuring heavy 
traffic, were found to restrict gene flow, while eastern facing slopes promoted dispersal. These results are surpris-
ingly similar as to those recently found for giant panda in the Qinling mountains in China, and could be linked 
to abundant vegetation and food resources39. In our study, land cover did not significantly correlate with gene 
flow. This is likely to be due to a lack of fragmentation of forest regions at a national level in Romania40. Similarly, 
other studies have reported a lack of correlation with land cover34, thus we infer that bear preferences for slope 
and specifically eastern facing slopes could be determined by forest type and food availability (as with the giant 
panda)41. A recent study carried out in the eastern Romanian Carpathians using telemetry showed that during 
hyperphagia bears seeking food were capable of moving along altitudinal gradients of high variability42, moreover, 
when analysing an extensive telemetry dataset of 70964 GPS locations collected from 32 brown bears (from which 
9 were males) across Romania (INCDS Marin Dracea research projects, unpublished results) a high preference for 

Figure 2. Best-supported map of the landscape parameters that are influencing gene flow, existing highways 
(green) and future developing infrastructure layer (red). Blue and green cells (1 km × 1 km) represents the 
highest probability for movement, while orange cells (1 km × 1 km) represents a lower probability for brown 
bear movement paths.
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the forest (especially mixed Norway spruce-silver-fir-beech and beech dominant forest) was revealed (Figs S5 and 
S6). In Romania, European beech and Norway spruce are found in large stands and high intrapatch/interpatch 
connectivity has been observed40 suggesting that bears benefit from these favorable conditions in terms of food 
availability, shelter and movement. Slope aspect in beech forests seems to be an extremely important for herba-
ceous composition: a lower number of species but with more mature vegetation are present on north-eastern 
aspects from April to August, suggesting that north-eastern slopes could have higher biomass production due to 
more humid soil and competition for light43, facilitating thus bear movement in accordance with food availability. 
Moreover, Ciucci et al.44 described the preference of the brown bears for consumption of herbaceous vegetation in 
spring and early summer, berries in latte summer and hard mast in the autumn (periodically available from beech 
(Fagus sylvatica), oak (Quercus) and common hazel (Corylus avellana)).

In our study, bears were inferred to use the gentlest slopes available and this likely reflects the energetic cost 
of dispersal45. However, topographic variables were not significant in a previous, broad-scale habitat model for 
brown bears across Poland46, while studies in other parts of Europe47–49 implied a preference for rugged terrain. 
This observation might be explained by the geography of the Romanian Carpathian Mountain range, which is 
of low to medium altitude and no wider than 100 km, deeply fragmented by longitudinal and transverse valleys 
crossed by several major rivers; surrounded by large ground cavities. These features are expected to facilitate the 
movement of brown bear individuals by selecting the easiest paths due to energetic constraints.

When superimposed on the future infrastructure map, our landscape model suggested the presence of 
wildlife corridors in important areas for connectivity (Fig. 3a): (1) the Prahova Valley (Fig. 3b) also features a 
European-level road with extremely heavy traffic and a railway, crossing one of the most popular tourist destina-
tions in the country (Sinaia, Busteni, Predeal, Azuga); (2) the gorge of the Olt River which includes many artificial 
lakes, and features extremely heavy traffic and a railway line (Olt Valley, Fig. 3c); while 3) Apuseni (Fig. 3d) and 
(4) Targu Mures – Iasi (Fig. 3e) are included in the future development plan. The influence of European roads/
highways is likely to be considerable, especially due to their collinearity with large rivers, and they are likely to 
have become more and more restrictive due to traffic intensification during the last two decades. However, high-
ways with properly designed mitigation measures can ensure connectivity despite roads/railways/river systems.

Romanian bear habitat remains among the least fragmented in Europe (Joint EEA-FOEN report). If current 
traffic density plays an important role in restricting dispersal and gene flow in brown bears and road/railway 
mortalities confirms this (see Fig. S7), the proposed extension of the developing transport network could have a 
substantial impact on brown bears, which are not currently affected by dispersal constraints. Over the next few 

Figure 3. Case studies location general view (a,b) Prahova Valley, (c) Olt Valley, (d) Apuseni, (e) Targu Mures 
– Iasi. For all the maps blue and green cells (1km x1km) represents the highest probability for movement, while 
orange cells (1 km × 1 km) represents a lower probability for brown bear movement paths. (b) Prahova Valley: 
two major and one small wildlife corridors (black rectangles) for each of the areas. The existing roads already 
exercise pressure on species movement due to very high traffic intensity and the topography of the valley. (c) 
Olt Valley: one major and two small wildlife corridors (black rectangles) for each of the areas. The existing 
roads already exercise pressure on species movement due to very high traffic intensity and the topography of 
the valley. (d) Apuseni: a network of small wildlife corridors within four rectangles (black colour) which are 
grouped in two large rectangles (black colour) at regional levels. (e) Targu Mures – Iasi: a network of three small 
corridors and two large ones grouped in a regional rectangle (black colour).
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years, governmental road infrastructure development will include the construction of highways crossing core 
brown bear habitat and this is likely to cause further fragmentation if connectivity is not ensured. Since anthro-
pogenic fragmentation acts rapidly and can affect the adaptive potential of populations50, investigating its effects 
post hoc can be obscured by time lags in response to disturbance51. However, landscape resistance models are a 
useful tool in mapping potential corridors and predicting connectivity prior to the construction process52, as we 
have attempted to apply here.

While economic development is seen as critical for any country, we advocate the use of landscape analyses 
to drive ‘smart’ development, by suggesting optimal mitigation measures. Restoration of wildlife habitats and 
ecosystem functionality is far more expensive than applying measures in advance to reduce fragmentation risks.

At a national level, landscape modelling can act as a decision-support tool for stakeholders to inform connec-
tivity management and to encourage evidence-based conservation. Fine-scale maps of landscape resistance can 
be used to counteract the potential effects of habitat fragmentation and anthropogenic disturbance. Our approach 
can be seen as a means to inform authorities about ongoing ecological changes and could encourage a proactive 
approach to the design of infrastructure development through the proposed decision tool described in Fig. 4.

Areas where wildlife corridors might have the highest benefits for bear connectivity should be prioritised 
(Prahova Valley (Fig. 3b), Olt Valley (Fig. 3c), Apuseni (Fig. 3d) and Targu Mures-Iasi (Fig. 3d)) and barrier 
mitigation measures should be considered for improving connectivity e.g. considering these particular cases: (1) 
when European/national roads have very high volumes of traffic (while no highway is planned to be developed in 
the area) and wildlife corridors are identified and still used by brown bears, local measures should be applied: e.g. 
signs for reducing speed, warnings to drivers, improving driver visibility, installing an audible system to alarm 
wildlife when they are approaching a road; and (2) when a highway/railway is due to be constructed, mitigation 
measures such as overpasses and underpasses should be considered from the early planning stages (Fig. 4). Such 
an approach will reduce costs compared to when measures are adopted at later stages. While our results are 
robust with respect to recent changes in the landscape, fragmentation effects can be biased by time lags in species 
response, and corridor mitigation should be considered when implementing future developments. Brown bear 
conservation will depend on the management of corridors, monitoring of wildlife populations, evidence-based 
science outputs, collaborations between scientists, stakeholders and policy makers, and clear policies on land-
scape connectivity for wildlife species.

Furthermore, ensuring connectivity would have multiple benefits not only for biodiversity but also for other 
environmental objectives, while avoiding unnecessary or potentially bureaucratic mitigation planning. With 
these connectivity measures in place that will promote gene flow in the Carpathians, brown bear has a unique 
chance to co-exist with economic development.

Figure 4. Decision tool for identifying the most suitable measures and cost effective for mitigating the impact 
of new highway development based on the landscape genetics models. The steps to be follow are meant to ease 
decision-making and to identify cost effective measures for gene flow to thrive.
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Materials and Methods
Study area, sample location and genotyping. The study was carried out in the Romanian Carpathians, 
covering an area of approximately 69,000 km2 (Supplementary Material; Fig. S4). A total of 199 tissue samples 
were collected (Supplementary Material; Fig. S4) over three years under the annual minimum level of interven-
tions for derogation. DNA was extracted from tissue samples preserved in 99% ethanol using the Maxwell®16 
Tissue DNA Purification Kit (Promega, USA) following an optimised protocol53. Seventeen fluoro-labelled 
microsatellite markers54–57 were used, divided into four multiplexes: Multiplex I (Mu50, Mu59, Mu09, Mu10, 
Mu15), Multiplex II (G10B, G10L, G1A, Mu51), Multiplex III (G10J, G10M, Mu61, G10X), Multiplex IV (G10C, 
G10D, G10P) and a singleplex reaction (SRY). Amplification was performed in 15 μl containing 7.5 μl of the 
Qiagen Multiplex PCR mix, 50–100 ng/ul DNA and 0.2 and 0.4 μM of forward and reverse primers respectively. 
Fragment analysis was performed using a GenomeLab™ GeXP Genetic Analysis System.

Statistical analysis. Microsatellite data was tested for the presence of null alleles using MICROCHECKER58. 
Observed and expected heterozygosity was estimated for each locus using GENETIX 4.0559, while 
Hardy-Weinberg equilibrium was analysed for each locus using GENEPOP v.4.260. Statistical significance was 
assessed by P-values using a sequential Bonferroni correction for multiple comparisons61.

We used a Bayesian clustering method in STRUCTURE v 2.3.462,63 to infer population structure using 
1,000,000 simulations preceded by 100,000 burn-in replicates assuming an admixture model and correlated 
alleles frequencies. K values varied from one to ten and we performed ten repetitions for each K value. Both the 
posterior probability of the data for the given value of K (Ln Pr(X|K)) and its rate of change (ΔK) were used to 
identify the number of population clusters64. We generated genetic distances between individuals based on the 
proportion of shared alleles (Dps) in MSA65. We estimated pairwise Euclidean geographic distances between 
all sampling points allowing to test for the presence of a simple (isolation-by-distance) IBD66 model, which 
assumes genetic differentiation is a by-product of geographic distance without taking any landscape features into 
account. IBD was calculated in GenAlEx v 6.567 using 10,000 random permutations. We investigated the genetic 
autocorrelation of multilocus genotypes at multiple spatial scales using GenAlEx v 6.567. We then performed 
spatial autocorrelation, in addition, spatial autocorrelation was examined within males and females to test for 
sex-specific differences in autocorrelation. The 95% confidence interval around the point estimate of correlation 
(r) was obtained by bootstrapping with replacement. A value of r was considered statistically significant if its 95% 
confidence interval was above the null hypothesis of r = 0. We also performed multiple regressions on distance 
matrices MRM (R; “ecodist” package)68 and this method was used to identify the contribution of each landscape 
variable to the overall variance in the dependent variable (genetic distance), since analysing data using only one 
method could result in false, method-dependent outcomes69,70. AICc weights (wi) were calculated by using the 
“MuMIn” R package71. Second-order Akaike Information Criterion values (AICc) were calculated among all 
competing models based on resistance distances, in order to select the best model (smallest AICc)72. Models that 
registered the lowest change in the AICc score (∆AICc = 0) and the highest Akaike weight were considered opti-
mal73. To test for collinearity, the Variance Inflation Factor (VIF) was calculated for each predictor74 in the model 
using the “VIF” R package. The presence of multi-collinearity, VIF values >1075 revealed a linear association 
between two explanatory variables. Beta values (β) was calculated for the best model, in order to detect which 
of the independent variables had a greater effect on the dependent variable76 using the R package “QuantPsyc77”. 
Raster maps for aspect, elevation, and slope were extracted from a Digital Elevation Model (DEM) at a resolution 
of 1 km square pixels. In addition, land cover (CLC 2012), rivers and roads maps with the same resolution were 
used. In order to assign resistance values to each cell the “Reclass” function78 in ArcGIS v 10.1 (ESRI 2012) was 
used and rasters were converted to ASCII files to be used in CIRCUITSCAPE v.3.579. The landscape parameters 
considered in this study are listed in Table S2 (Supplementary Materials).

Landscape resistance. An isolation-by-resistance (IBR) raster was generated in CIRCUITSCAPE v.3.5 by 
assigning a value of 1 to all pixels. Resistance distances between individuals were generated in CIRCUITSCAPE 
v.3.5, using the pairwise modelling mode with focal points and connected to eight neighbours80. We determined 
the best univariate models of effective landscape resistances based on partial Mantel correlation after remov-
ing the effect of the IBR model using the “vegan” R package81. In addition, a causal modelling approaches were 
used82–84 that consisted of two steps: the first step suggests that if a resistance hypothesis model is supported 
independently of the null model then partial Mantel tests between the genetic distance and the environmental 
variable would be significant after removing the effect of IBR; partial Mantel tests between genetic distance and 
IBR distance would not be significant, partialling out the environmental variable. The second step allows for the 
comparison of causal modelling with a reduced model. If the true model is supported independently of the other 
candidate models then partial Mantel tests between genetic distance and the true model would be significant, 
removing the effect of the reduced model and partial Mantel tests between genetic distance and the reduced 
model would not be significant, partialling out the effect of the true model.

Scaled transformations85 for each landscape variable were ranked based on partial Mantel correlation coeffi-
cients after removing the effect of IBR using 9,999 permutations19. The function with the highest partial Mantel 
r-value (significant P-value) was included in the next step of the analyses. Further, the best univariate models 
based on relative support (RS) and causal modelling were evaluated after removing the effect of IBR, thus we 
tested if landscape resistance was supported independently by the null model86.

Models were ranked by model support values. Optimized values included parameter equations for x or SD 
(contrast and the shape of the relationship, respectively) and Rmax (magnitude of the relationship). The first step 
included a partial Mantel test between genetic distance and the landscape variable (LV), partialling out the effect 
of IBR (A = GD ~ LV|IBR); while the second step included a partial Mantel test between genetic distance and the 
IBR model, removing the effect of the landscape variable (B = GD ~ IBR|LV). In order for a landscape variable to 

https://doi.org/10.1038/s41598-019-45999-y


1 0Scientific RepoRts |          (2019) 9:9494  | https://doi.org/10.1038/s41598-019-45999-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

be included in the final multivariate model, it had to pass the causal modeling criteria with the reduced model. 
We report optimized parameter values, RS compared to IBR, partial Mantel r-values and significance of support.

Multivariate resistance surfaces were built by generating rasters equal to the sum of univariate model rasters 
for each landscape feature. First models were built using the best two landscape variables (rivers and roads, high-
est partial Mantel r) by maintaining parameters of the first variable constant, while the second variable parameters 
were varying. We identified the best-supported model for the second variable by analysing the partial Mantel cor-
relation (after removing IBR). The optimum parameter of the first variable was obtained by keeping the parameter 
of the second variable constant. Additional landscape variables (aspect and slope) were added one at a time by 
keeping the first two constant until the best-supported model did not change. We also evaluated multivariate 
models by their RS rather than just removing the effect of IBR. Both procedures were repeated until all parameters 
were stable.

Cumulative current maps were generated in CIRCUITSCAPE v.3.5, best-supported maps of the landscape 
parameters that influenced gene flow have been generated by combining the cumulative currents maps in ArcGIS, 
displaying the road infrastructure layer and the current infrastructure development plan.

Data Availability
Distance (genetic and resistance) matrices; raw microsatellite data and GIS layers will be archived on DRYAD.
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