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Fusion of multiple heterogeneous 
networks for predicting circRNA-
disease associations
Lei Deng1, Wei Zhang1, Yechuan shi1 & Yongjun tang2

Circular RNAs (circRNAs) are a newly identified type of non-coding RNA (ncRNA) that plays crucial roles 
in many cellular processes and human diseases, and are potential disease biomarkers and therapeutic 
targets in human diseases. However, experimentally verified circRNA-disease associations are very 
rare. Hence, developing an accurate and efficient method to predict the association between circRNA 
and disease may be beneficial to disease prevention, diagnosis, and treatment. Here, we propose a 
computational method named KAtZCpDA, which is based on the KAtZ method and the integrations 
among circRNAs, proteins, and diseases to predict circRNA-disease associations. KAtZCpDA not only 
verifies existing circRNA-disease associations but also predicts unknown associations. As demonstrated 
by leave-one-out and 10-fold cross-validation, KATZCPDA achieves AUC values of 0.959 and 0.958, 
respectively. the performance of KAtZCpDA was substantially higher than those of previously 
developed network-based methods. To further demonstrate the effectiveness of KATZCPDA, we 
apply KAtZCpDA to predict the associated circRNAs of Colorectal cancer, glioma, breast cancer, and 
tuberculosis. the results illustrated that the predicted circRNA-disease associations could rank the top 
10 of the experimentally verified associations.

Circular RNA (circRNA) is a class of non-coding RNA recently discovered. Unlike linear RNA, circRNA forms a 
continuous cycle of covalent closures and is highly represented in the eukaryotic transcriptome. Previous research 
has found thousands of prototype circRNAs in human, mouse and nematode cells1–4. As the report goes, circu-
lar RNA in higher organisms were produced by reverse splicing events and synthesized from all regions of the 
genome, mainly from exons, and a few from antisense, intergenic, intragenic and intron regions5.

The expression level of circRNA is low, and thus, it was initially thought that circRNA was a by-product of 
splice-mediated splicing errors or an intermediate that escaped from the intron lariat6–8. Therefore, circRNA 
received little attention in the past. However, with the development of high-throughput sequencing technology 
and computational analysis techniques, thousands of circRNAs have been discovered in many species ranging 
from archaea to humans, and the expression level of some circRNAs was ten-fold higher than those obtained from 
the standard linear transcription of homologous genes3,4,9–13.

A large number of studies have revealed many circRNA functions, such as serving as scaffolds in the assembly 
of protein complexes, isolating proteins from their natural subcellular localization, regulating the expression of 
parental genes, modulating alternative splicing and RNA-protein interactions, and functioning as microRNA 
(miRNA) sponges10,14–18. In addition to their potential function such as significant regulators of gene expression, 
circRNAs were reported to be related to many different human diseases, including neurodegenerative disorders 
and cerebrovascular diseases. In particular, experiments have shown that many circRNAs are closely related to 
cancer19–21, and some experimental evidence demonstrated that circRNA plays an essential role in atherosclerotic 
vascular diseases, prion diseases and cancers of the nervous system, especially exhibiting abnormal expression 
level in colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC). In this way, the circRNA could 
act as a biomarker for the diagnosis and prediction of some diseases in the future.

Several circRNA related resource databases have recently been established. The circBase database22 combines 
data from several circRNAs, including circular RNA IDs, genomic coordinates, and optimal transcripts, into a 
standardized database. The CircNet database23 provides a new circRNA identification tool that offers annotation 
of genomic circRNA isoforms and circRNA subtype sequences by integrating circRNA-miRNA-mRNA regulatory 

1School of Computer Science and Engineering, Central South University, Changsha, 410075, China. 2Department of 
Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, China. Correspondence and requests for 
materials should be addressed to Y.t. (email: tangyj11bhyc@163.com)

Received: 22 January 2019

Accepted: 18 June 2019

Published: xx xx xxxx

opeN

https://doi.org/10.1038/s41598-019-45954-x
mailto:tangyj11bhyc@163.com


2Scientific RepoRts |          (2019) 9:9605  | https://doi.org/10.1038/s41598-019-45954-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

networks. The Tissue-Specific CircRNA Database (TSCD)24 provides circRNAs obtained from cancer cells with 
four algorithms, and the corresponding features of circRNAs, such as cancer-specific circRNAs (CS-circRNAs), 
RBP-binding sites in CS-circRNAs, cancer-specific alternative splicing associated with CS-circRNAs, miRNA 
target sites in CS-circRNAs, and possible open reading frames in CS-circRNAs. The CircInteractome database25 
maps RNA-binding protein (RBP) sites on circRNAs, which can be used to search for potential interactions 
between circRNAs and RBPs or miRNAs, and for potential internal ribosomal entry sites. SomamiR2.026 provides 
target sites for mutations in tumor cells or miRNA cells, while this kind of mutation might alter the interaction of 
miRNAs with circRNAs. Circ2Traits27 first validated the interaction between circRNAs and miRNAs, calculating 
those circRNAs which are likely to be associated with a disease. This database then identified the Argonaute (Ago) 
interaction site on circRNAs. The Cancer-Specific CircRNA Database (CSCD)28 provides circRNAs obtained 
from cancer cells using four algorithms and the corresponding features of circRNAs, such as cancer-specific 
circRNAs (CS-circRNAs), RBP-binding sites in CS-circRNAs, cancer-specific alternative splicing associated 
with CS-circRNAs, miRNA target sites in CS-circRNAs, and potential open reading frames in CS-circRNAs. 
The CircR2Disease database29 provides experimentally demonstrated circRNA-disease associations and includes 
detailed information on the associations, such as the disease names, circRNA names, expression patterns, detec-
tion methods and simple descriptions. However, the circRNA-disease associations supported by experimental 
evidence remain relatively rare.

In this study, based on the “gilt-by-association” (GBA) principle, which states that biological entities having 
the same or related behaviour tend to be associated30, we assumed that circRNAs associated with the same protein 
tend to be associated with protein-related diseases. Based on existing resources and previous studies on endog-
enous non-coding RNAs with disease associations and the GBA principle, we proposed a computational model 
named KATZCPDA to predict circRNA-disease associations. We first obtained an inferred circRNA-disease asso-
ciation network from a known circRNA-protein association network and a protein-disease association network. 
Then we gained a known circRNA-disease association network from the circR2Disease database and finally inte-
grated the inferred network with the known network to achieve an incorporated circRNA-disease association 
network. The KATZCPDA model thus predicts potential circRNA-disease associations using the KATZ method 
integrated with the combined circRNA-disease association network, disease similarity network, and circRNA 
similarity network (Fig. 1). Based on the circRNA-disease associations supported by experiments included in the 
CircR2Disease database29, we analysed KATZCPDA using leave-one-out cross validation (LOOCV) and 10-fold 
cross-validation. The results showed that KATZCPDA achieved a significantly higher performance than the exist-
ing methods.

Figure 1. Flowchart for constructing an incorporated circRNA-disease association network.
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Results
Datasets. circRNA similarity matrix. We obtained the circRNA expression profiling data from the work 
of Peng et al.31, which include expression profiles of 2,895 human circRNAs. The circRNA similarity matrix CS 
was built by computing Pearson’s correlation coefficient (PCC) between the expression profiles of each pair of 
circRNAs. If the PCC score between circRNA i and circRNA j is lower than the threshold, we set CS(i, j) to be 0. 
Otherwise, we updated CS(i, j) to be 1.

Matrix of circRNA-protein associations. The circRNA-protein association dataset was downloaded and compiled 
from the CSCD database28 (http://gb.whu.edu.cn/CSCD/), which deposit more than 270,000 cancer-specific cir-
cRNAs. CSCD also include circRNA binding proteins (RBPs). Based on the circRNA-protein association dataset, 
we used the adjacency matrix CP to describe the association network between circRNAs and proteins: if circRNA 
i is associated with protein j, CP(i,j) is set to be 1.

Matrix of protein-disease associations. The OMIM database32 (http://www.omim.org/downloads/) contains 
information on known Mendelian disorders and over 15,000 genes. Here, we choose to use the associations 
between proteins and phenotypes updated in October 2018. The adjacency matrix PD was used to indicate the 
functional similarity between proteins and diseases. If protein i is associated with disease j, PD(i,j) = 1; otherwise, 
PD (i, j) = 0.

Disease similarity matrix. The disease similarity matrix consists of integrated phenotypic information. Because 
the disease names in CircR2Disease29 are not standardized (the index is not corresponding to the standard data-
base, such as ENSEMBL and RefSeq), we obtained disease-related indexes via manual matching. First, we col-
lected all diseases from the confirmed circRNA-diease association to obtain the list of disease names and then 
manually searched for each disease in the OMIM database to obtain the closest correlation phenotype ID (In 
the OMIM database, a prefix of none, % or # usually means that the ID provides a phenotype description). To 
ensure the accuracy of the data, the diseases that failed to match the phenotype ID in the OMIM database and the 
corresponding circRNA-disease associations were removed. The disease similarity matrix was obtained using the 
text mining method developed by Driel et al.33, in which the entity DS(i,j) in the ith row and the jth column rep-
resents the disease similarity score between diseases d(i) and d(j). According to Oron Vanunu et al.34, similarity 
scores greater than 0 and less than 0.3 are not informative, while similarity scores greater than 0.6 and less than 1 
indicate informative similarity, illustrating a potential similarity between these two diseases. In this study, if the 
similarity score was less than the threshold 0.4, we replaced the similarity score with 0. If the similarity score was 
greater than the 0.4, we updated the similarity score to 1.

Matrix of circRNA-disease associations. Seven hundred forty circRNA-disease associations were downloaded 
from the CircR2Disease database29 (http://bioinfo.snnu.edu.cn/). We obtained a dataset of 263 high-quality 
circRNA-disease associations containing 222 circRNAs and 46 diseases. Since the experiment determined 
circRNA-disease associations in CircR2Disease is limited, we obtained an inferred circRNA-disease network by 
integrating the collected circRNA-protein associations and protein-disease associations. Based on the inferred 
circRNA-disease association network, we built an integrated circRNA-disease association network Gmix for the 
KATZCPDA computational model.

evaluation measures. In this section, we evaluated the performance of the proposed method through 
leave-one-out cross-validation (LOOCV) and 10-fold cross-validation. In the LOOCV, each circRNA-disease 
association was individually left out in turn to form the test set, and remaining disease-circRNA associations 
were used as to train the model. In the 10-fold cross-validation, we randomly divided the circRNA-disease asso-
ciations into ten subsets. And then we left out one subset as the test set, using the remaining nine subsets to train 
the model.

With both LOOCV and 10-fold cross-validation, for each query (circRNA) node, its predicted association 
score with all target (disease) nodes can be obtained. We generated a plot of the ROC curves according to the false 
positive rate (FPR) and true positive rate (TPR) using each iteration for different thresholds. The simultaneous 
calculation of the area of the ROC curve yielded the AUC value that can be used to assess overall performance.

effects of inferred circRNA-disease associations. To demonstrate the effects of the inferred 
circRNA-disease associations established with protein information, we tested two different networks via 
LOOCV and 10-fold cross validation: (1) only circRNA disease associations with experimentally confirmed 
circRNA-disease association networks and (2) circRNA-disease association networks that contain both exper-
imentally validated and inferred circRNA-disease associations (see the Results section for a description of the 
partial circRNA-disease association network).

As shown in Figs 2 and 3, the LOOCV and 10-fold cross-validation using both experimentally supported and 
inferred associations showed better performance than that established with only experimentally supported asso-
ciations. In LOOCV, the use of both experimentally validated and inferred associations yielded an AUC value of 
0.95914, and the use of only associations supported by experimental evidence yielded an AUC value of 0.87926. 
In 10-fold cross-validation, the AUC value obtained from both experimentally supported and inferred association 
was 0.95874, and that value obtained from the only associations supported by experimental evidence was 0.87246.

Comparison with other methods. To further evaluate the performance of our approach, we compared 
KATZCPDA with three other predictive approaches (LncRDNetFlow30, TPGLDA35, and BiRW36), which can 
predict associations between various biological entities based on integrated network information. We trained 
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and tested all the models on the same dataset. As it shown in Fig. 4, the AUC value for KATZCPDA obtained by 
LOOCV was 0.95914, and this value was significantly higher than the AUC values of the other three methods 
(LncRDNetFlow: 0.88437, TPGLDA: 0.6969 and BiRW: 0.725202). Similarly, as shown in Fig. 5, in the 10-fold 
cross-validation, the AUC value obtained for KATZCPD was 0.95874, which was also higher than the AUC values 
obtained for the other three methods (LncRDNetFlow: 0.88249, TPGLDA: 0.69686 and BiRW: 0.5784). Therefore, 
compared with BiRW, KATZCPDA is stable, as proved by both LOOCV and 10-fold cross-validation, because the 
deletion of the number of edges in the network substantially affects BiRW, i.e., the deletion of some edges in the 
10-fold cross validation led to a noticeable decrease in the BiRW performance.

Case studies. To further assess the validity of KATZCPDA, all circRNA-disease connections were utilized 
as training data for the models, and the diseases that were predicted to be associated with circRNAs were vali-
dated using the experimentally confirmed circRNA-disease associations in the CircR2Disease database. Here, we 
checked the circRNAs associated with three cancers and a diseases (colorectal cancer, glioma, breast cancer, and 
Tuberculosis), and Table 1 lists the corresponding rankings.

Figure 2. ROC curves from LOOCV using only experimentally validated associations and both experimentally 
validated and inferred associations.

Figure 3. ROC curves from 10-fold cross validation using only experimentally validated associations and both 
experimentally validated and inferred associations.
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Colon cancer is one of the most common diseases in the world, and even in developed countries, the mor-
tality rate of colon cancer still remains high37. In China, the recent prevalence of colon cancer has risen due 
to unhealthy lifestyles38. Some studies have shown that colon cancer and circRNAs are closely related. Based 
on this conclusion, we predicted the associations of different circRNAs with colon cancer using KATZCPDA. 
As a result, colon cancer ranked high in the lists of diseases that were predicted to be associated with selected 
circRNAs. Among the diseases that were predicted to be associated to hsa_circ_0014717, hsa_circ_0000567, 
hsa_circ_0020397, hsa_circ_0007031, and hsa_circ_0007534, colon cancer ranked 4th, 4th, 4th, 4th, and 6th, 
respectively. The CircR2Disease database verified the associations between these circRNAs and colon cancer. For 
example, the database indicates that hsa_circ_0014717acts as a potential tumour suppressor that inhibits CRC 
growth, at least partly by upregulating p16 expression39.

Glioma is the most common primary mesenchymal tumour in the central nervous system and is the most 
common malignant tumour associated with morbidity and mortality. Patients with this cancer have poor prog-
nosis because glioma is strongly invasive and aggressive. Previous studies have proved that circRNA dysregu-
lation might be related to the occurrence and development of glioma and indicated that circRNAs can serve as 

Figure 4. Comparison of the performances of KATZCPDA and other methods in terms of the ROC curve and 
AUC based on LOOCV.

Figure 5. Comparisons of the performances of KATZCPDA and other methods in terms of ROC curve and 
AUC based on 10-fold cross-validation.
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prognostic biomarkers for glioma40. We analysed the relevant circRNAs using our KATZCPDA model to predict 
their associated diseases and found that gliomas ranked very high; specifically, glioma was ranked 5th, 5th, 7th, 
5th, 7th, and 7th in the list of diseases associated with hsa_circ_0006460, hsa_circ_0005603, hsa_circ_0008345, 
hsa_circ_0004872, hsa_circ_0006411, and hsa_circ_0003586, respectively. Zhu et al.41 confirmed that hsa_
circ_0006460 is related to gliomas. In addition, circBRAF (hsa_circ_0006460) is an independent biomarker for 
prognosticating good progression-free survival and overall survival in glioma patients40.

Breast cancer is the most common cancer among women worldwide. Epidemiological studies have shown 
that advanced age, oestrogen and progestin use, elderly primiparity, alcohol consumption and lack of physical 
exercise can increase the risk of breast cancer in women. In addition to genetic mutations, epigenetic mecha-
nisms, including DNA histone modification, methylation and ncRNA, also play crucial roles in breast cancer42. 
circRNAs belonging to ncRNA are also believed to be potentially associated with breast cancer. We analysed the 
relevant circRNAs using the KATZCPDA calculation model and calculated their related diseases. Among these 
diseases, breast cancer was ranked at the top of the list of associated diseases. Among the illnesses associated with 
hsa_circ_0011946, hsa_circ_0001982, hsa_circ_0001785, hsa_circ_0001785, and hsa_circ_0002113, mammary 
gland cancer was ranked 6th, 6th, 6th, 6th, and 8th, respectively. As detailed in the database, hsa_circ_0001982 
has been experimentally proved to be associated with breast cancer, and miR-143 has been demonstrated to be 
a target of hsa_circ_0001982 through a dual-luciferase reporter assay. In addition, loss-of-function and rescue 
experiments have indicated that hsa_circ_0001982 could knockdown and suppress breast cancer cells prolifera-
tion and invasion, also could induce apoptosis by targeting miR-14343.

Tuberculosis (TB) is a potentially severe infectious disease and is one of the significant threats to human 
health. Early correct diagnosis and fast curative treatment help prevent tuberculosis. Studies show that circRNA 
might serve as a potential new biomarker for tuberculosis infection44. We analyzed the relevant circRNAs using 
the KATZCPDA model and calculated the corresponding diseases. Among these predictions, tuberculosis ranks 
very high, even in some cases ranks the first. Some research conducted by Qian et al.45 showed that circRNAs such 
as hsa_circ_0000681 and hsa_circ_0008797 are closely related to tuberculosis.

Discussion and Conclusion
Increasing lines of evidence show that circRNAs are closely related to many different diseases, such as Alzheimer’s 
disease, liver cancer and lung cancer. Some studies have explored the specific dysregulation of circRNA in infec-
tions and indicated that circRNA is a promising biomarker for diagnosis, treatment, and prognosis. Because 
novel experimental approaches have several limitations, models that integrate multiple biological datasets to 
infer circRNA-disease association can be used as supplementary tools for the detection of disease biomarkers. 
In this study, we integrated the known associations between circRNAs and proteins, proteins and diseases to 
infer circRNA-disease associations. Using the inferred circRNA-disease associations and the experimentally sup-
ported circRNA-disease associations as predictors, the KATZCPDA algorithm was then developed to predict 
circRNA-disease associations by integrating known biological information (circRNA similarity, disease similari-
ties, protein-protein interactions, and the associations between these entities). Even in the absence of some asso-
ciations, our method predicts new circRNA-disease associations successfully. In other words, when constructing 
a network of circRNA-disease associations, the bioinformatic analysis of the integrated protein information can 

circRNAs Diseases KATZCPDA rank

hsa_circ_0000567 Colorectal cancer 4

hsa_circ_0008509 Colorectal cancer 4

hsa_circ_0007534 Colorectal cancer 6

hsa_circ_0007031 Colorectal cancer 6

hsa_circ_0000504 Colorectal cancer 6

hsa_circ_0000199 Glioma 3

hsa_circ_0005603 Glioma 4

hsa_circ_0006460 Glioma 5

hsa_circ_0004872 Glioma 5

hsa_circ_0008345 Glioma 7

hsa_circ_0006411 Glioma 7

hsa_circ_0011946 Breast cancer 6

hsa_circ_0001982 Breast cancer 5

hsa_circ_0002874 Breast cancer 6

hsa_circ_0085495 Breast cancer 6

hsa_circ_0001875 Breast cancer 5

hsa_circ_0000681 Tuberculosis 1

hsa_circ_0030045 Tuberculosis 2

hsa_circ_0030569 Tuberculosis 3

hsa_circ_0008797 Tuberculosis 3

Table 1. Ranking of diseases among all diseases predicted to be associated with select circRNAs.
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infer potential information that cannot be obtained with only circRNA and disease information. In addition, the 
method is bidirectional because it can predict both circRNA-disease and disease-circRNA associations.

To verify the reliability of the predictive performance of KATZCPDA, we assessed different methods through 
LOOCV and 10-fold cross-validation using same datasets. The results showed that KATZCPDA has better perfor-
mance than LncRDNetFlow, TPGLDA, and BiRW. The analysis of KATZCPDA for the prediction of the associa-
tions of circRNAs with colon cancer, glioma, breast cancer, and Tuberculosis revealed that the proposed method 
has excellent performance. Thus, KATZCPDA is likely to play an essential role in the identification of potential 
circRNA-disease associations in the future.

KATZCPDA can be improved in several aspects in the future. First, the diseases in the CircR2Disease database 
are not accurate. Although we obtained the most closely related OMIM ID from the OMIM database, a specific 
deviation in the disease similarity score might still exist. This requires discovering and integrating more reliable 
data. Second, the identification of circRNA similarity associations and the use of more effective methods to infer 
circRNA-disease associations can significantly improve the performance of the method. Third, the introduction 
of a higher number of intermediary entities to identify circRNA-disease associations is beneficial to increase the 
accuracy of the model prediction.

Figure 6. Flowchart of the KATZCPDA method.
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Methods
Network inference techniques and machine learning approaches have been widely used in many classification 
fields46–56. In this study, we proposed a KATZ measure57 based approach (KATZCPDA) to predict unknown 
circRNA-disease associations by measuring the similarities between circRNAs of interest and diseases in the het-
erogeneous network. KATZ measurements can make successful predictions from social networks, disease-gene 
association networks, disease-lncRNA association networks, microbe-disease association networks, and 
disease-miRNA association networks57–62. KATZ is a graph-based calculation method that transforms the asso-
ciation prediction problem into the problem of calculating the similarity between nodes in a heterogeneous net-
work. In the constructed global network, the prediction of the association between circRNA and disease nodes, 
is translated into the calculation of the number of walks and the range of walks connecting the corresponding 
circRNAs and diseases. The integration of the number of walks and length can yield the potential association 
probability of each circRNA-disease pair.

Fig. 6 shows a flowchart of KATZCPDA. Heterogeneous data sources were used to construct three interaction/
similarity networks (circRNA, disease, and protein) and three different association networks (circRNA-protein, 
protein-disease, and circRNA-disease). We then generated an incorporated circRNA-disease association network 
by integrating these three interlinked networks. The network can be represented as an undirected graph Gi = (Vi, 
Ei), where Vi is the set of nodes and Ei is the set of undirected edges. Each node in the network represents a bio-
logical entity (circRNA, protein, or disease), and each undirected edge represents a relationship, similarity, or 
interaction between the connected objects.

We assumed that W was the adjacency matrix of network G. We normalized W to obtain W′ according to the 
topological information of the network using the normalization formula ′ = − −W D WDG

1/2
G

1/2, where the diagonal 
matrix DG is defined that DG(i, i) is the sum of the ith values of W, namely, = ∑D (i, i) WG j i,j, and W′ is the sym-
metric matrix calculated by the formula ′ =W (i, j) W(i, j)/ D(i, i)D(j, j) .

The primary focus of this study is the identification of circRNA-disease association pairs. Thus, we calcu-
lated the number of walks and lengths of the path from the circRNA node c(i) to the disease node d(j). Ap(i, j) 
represents the number of walks in the path p from the c(i) node to the d(j) node, and the length of the walks in 
p is 1. The integration of the information about all the paths between two nodes can provide information on the 
potential association between nodes c(i) and d(j). In this approach, the contribution of the length of the walks to 
the prediction association probability is inversely proportional on every walk, that is, a shorter walking length l 
of path p between the nodes means a higher similarity between them. The introduction of the nonnegative coef-
ficient sequence β1 (if the walks of length l1 are shorter than l2, β11 is larger than β12) dampens the contributions 
from long walks. Therefore, the potential association between circRNA and disease can be predicted using the 
following formula:

∑= β
=

S(c(i), d(j)) A (i, j)
l 1

n

l
p

Because the constructed network is suitable for inclusion in the adjacency matrix, the formula was introduced 
into an equivalent matrix form. We further set → ∞n  and thus β → 0l . Therefore, β1 was replaced by β1, AP(i,j) 
was replaced by Al, and the following formula was obtained:

∑= β = − β −
≥

−AS (A) A (I ) In
l 1

l l 1

where matrix Sn(A) contains the similarity scores for all circRNAs and all diseases. A higher score indicates a 
stronger association between the circRNA and disease.

The integration of the adjacency matrix Amix corresponding to the incorporated circRNA-disease association 
network Gmix with the circRNA similarity matrix CS and the disease similarity matrix DS yielded the matrix A*, 
which provides all the information for the entity. The method then ultimately obtains Sn(A*) as the prediction. 
The integrated matrix denotes as followed:

=












⁎A
CS A

A SD
mix

mix
T
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