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Precipitation Biases in CMIP5 
Models over the South Asian 
Region
Raju Pathak1, Sandeep Sahany1,2, Saroj Kanta Mishra1,2 & S. K. Dash2

Using data from 33 models from the CMIP5 historical and AMIP5 simulations, we have carried out 
a systematic analysis of biases in total precipitation and its convective and large-scale components 
over the south Asian region. We have used 23 years (1983–2005) of data, and have computed model 
biases with respect to the PERSIANN-CDR precipitation (with convective/large-scale ratio derived 
from TRMM 3A12). A clustering algorithm was applied on the total, convective, and large-scale 
precipitation biases seen in CMIP5 models to group them based on the degree of similarity in the global 
bias patterns. Subsequently, AMIP5 models were analyzed to conclude if the biases were primarily 
due to the atmospheric component or due to the oceanic component of individual models. Our 
analysis shows that the set of individual models falling in a given group is somewhat sensitive to the 
variable (total/convective/large-scale precipitation) used for clustering. Over the south Asian region, 
some of the convective and large-scale precipitation biases are common across groups, emphasizing 
that although on a global scale the bias patterns may be sufficiently different to cluster the models 
into different groups, regionally, it may not be true. In general, models tend to overestimate the 
convective component and underestimate the large-scale component over the south Asian region, 
although with spatially varying magnitudes depending on the model group. We find that the convective 
precipitation biases are largely governed by the closure and trigger assumptions used in the convection 
parameterization schemes used in these models, and to a lesser extent on details of the individual cloud 
models. Using two different methods: (i) clustering, (ii) comparing the bias patterns of models from 
CMIP5 with their AMIP5 counterparts, we find that, in general, the atmospheric component (and not 
the oceanic component through biases in SSTs and atmosphere-ocean feedbacks) plays a major role in 
deciding the convective and large-scale precipitation biases. However, the oceanic component has been 
found important for one of the convective groups in deciding the convective precipitation biases (over 
the maritime continent).

The multi-model mean (widely used in climate change projections by the Intergovernmental Panel on Climate 
Change) assumes inter-model statistical independence (SI)1,2. However, the SI assumption is not quite accurate 
(Pennell and Reichler3; Pincus et al.4). For example, Pennell and Reichler3 reported an effective ensemble size 
much smaller than the actual number of CMIP3 models. SI violations are very large in CMIP5 than CMIP3 mod-
els due to multiple reasons, especially similarities in numerical schemes, physical parameterizations, etc. (Pincus 
et al.4; Masson and Knutti5). For example, IPSL-CM5A-LR, IPSL-CM5A-MR, and IPSL-CM5B-LR were devel-
oped by slight modification in resolution and the atmospheric component. Similar is the case with GISS-E2H and 
GISS-E2R. GFDL-ESM2M and GFDL-ESM2G primarily differ only in their ocean components. MIROC-ESM 
and MIROC-ESM-CHEM differ in ocean biogeochemistry and atmospheric chemistry. MPI-ESM-LR and 
MPI-ESM-P were developed from their predecessor by changing resolution and neglecting the feedback between 
dynamic vegetation and land use.

Although sharing of components between various model versions from the same center may sound obvious, 
even different modeling centers share large fraction of the model code. For example, CNRM and EC-EARTH 
use similar atmospheric components (AEPEGE/IFS/ECMWF); ACCESS uses the HadGEM2 atmospheric com-
ponent; FGOALS uses several physical parameterizations from CCSM; NorESM uses some key components of 
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CESM1. All such similarities in codes, schemes and concepts among the various CMIP5 models have been found 
to be a reason for common biases in the simulated fields5–8. Past studies on model similarity and genealogy have 
reported the use of similar ocean component to be less relevant than the use of similar atmospheric component 
in producing large model similarity in surface climatology5,8. In simpler words, it means that the surface climatol-
ogy from two models with similar atmospheric components but different ocean components would have greater 
commonality than that of two models with similar ocean components but different atmospheric components.

Common biases in the simulated fields are found to be usually large in precipitation simulation, with largest 
over the south Asian region during the southwest summer monsoon9–13. Deficiencies in precipitation simula-
tion by models have primarily been due to the persistent errors in the simulation of location and timing, and 
improving the spatial and seasonal features would provide a better model agreement in historical and future14. 
Regionally, the Arabian Sea cold SST bias during the pre-monsoon season in some of the CMIP5 models has also 
been found to be important for the simulation of south Asian summer monsoon precipitation15. In the context of 
climate change, precipitation is expected to increase in the future due to increased human influence and anthro-
pogenic emissions16,17, and thus changing the water cycle18. Reliable precipitation simulation over the south Asian 
region is crucial for society, and for mitigation and adaptation strategies due to the changes in its pattern and 
variability under climate change19–21.

There have been studies on model genealogy as discussed above, using total precipitation as the varia-
ble of interest, but common biases across models in the individual precipitation components (convective and 
large-scale) have never been analyzed. Evaluating model similarity in biases in precipitation components is criti-
cally important because most of the model development efforts have focused on reducing the common biases in 
total precipitation, leading to an invisible bias in the individual components (e.g., He et al.22).

In this paper we investigate common biases in CMIP5 models by using total precipitation as well as its convec-
tive and large-scale components, and for each of the three variables we divide the models into broad groups based 
on the patterns of their biases on a global scale. Subsequently, the ability of models belonging to a particular group 
in simulating the south Asian summer monsoon and tropical waves is evaluated. In addition, AMIP5 model 
results have also been used to explore if the reported biases in the corresponding models from CMIP5 behave any 
different with prescribed sea surface temperatures.

Results and Discussion
We have carried out a systematic analysis of similarity and dissimilarity in bias structures of CMIP5 and AMIP5 
models in simulating the partitioning of precipitation between the convective and large-scale components. 
Figure 1 shows the hierarchical structure of CMIP5 models for total precipitation simulation. Models developed 
either at the same center (same color) or at different centers falling in the same branch (see Section 2 for details 
on methodology used for branching) show large similarity in total precipitation simulation, whereas models in 
the farthest branches show highest dissimilarity. From Table 1, and from Knutti et al.7,8 and Dai19, we found some 
of the obvious similarities between same center or between different center models shown in Fig. 1 are arising 
due to the similarities in atmospheric component in spite of having different ocean components or inclusion of 
ocean biogeochemistry, and atmospheric chemistry. In other words, if two climate models either from the same 
center or different centers have the same atmospheric component their total precipitation bias is very similar, 
irrespective of the other components. For example, ACCESS and HadGEM show high similarity, even though 
they have only the atmospheric component in common. The level of similarity is very similar to model pairs that 
have lot more common components than that shared between ACCESS and HadGEM. For example, the level of 
similarity between ACCESS and HadGEM is not very different than that between: (i) MIROC-ESM-CHEM and 
MIROC-ESM (the former having an additional component in the form of the atmospheric chemistry package), 
(ii) NorESM1-ME and NorESM1-M (the former having an additional component in the form of the ocean bio-
geochemistry package), (iii) GISS-E2R-CC and GISS-E2R (the former having an additional component in the 
form of carbon cycle package), (iv) HadGEM2-ES and HadGEM2-CC (the former having an additional com-
ponent in the form of atmospheric chemistry package), and (v) GFDL-ESM2G and GFDL-ESM2M (the former 
having different ocean component). Figure 1 also shows large dissimilarity between model pairs that started with 
a similar parent atmospheric component that underwent significant modification during model development. 
For example, dissimilarity seen between (i) MIROC-4h/5 and MIROC-ESM/ESM-CHEM, (ii) GFDL-CM3 and 
GFDL-ESM2G/2M, and (iii) CCSM4 and CESM-CAM5, are due to significant modifications in the atmospheric 
components during the model development process.

Above results on model similarity for total precipitation is consistent with findings related to CMIP3 models 
(e.g., Annamalai et al.9, Pincus et al.4, Bollasina et al.23), and CMIP5 models (e.g., Sperber et al.11), that state that 
monsoon precipitation biases in atmosphere-only models (AGCMs) are similar to the atmosphere-ocean coupled 
models (AOGCMs). Precipitation partitioning between convective and large-scale components are simulated 
separately by convective and large-scale parameterization schemes of the atmospheric component22,24,25. Figures 2 
and 3 show the hierarchical structure of CMIP5 models based on their similarity in simulating the precipitation 
partitioning. As can be seen from Figs 1–3, similarity between models in simulating total precipitation (see Fig. 1) 
may not necessarily imply similarity in simulating the convective (see Fig. 2) and large-scale components (see 
Fig. 3).

Convective and large-scale precipitation parameterizations used in CMIP5 models.  Convective 
parameterization schemes are generally based on one of the following cloud model types: (i) Spectral cloud 
ensemble, similar to Arakawa and Schubert26, or (ii) Bulk cloud ensemble, or (iii) Combination of spectral and 
bulk ensemble (Zhang and McFarlane [hereafter ZM]27; for more details see Table 2). For example, GFDL and 
MIROC models are based on approach (i), GISS-E2R/H and GISS-E2R-CC, HaDGEM2-ES/CC and HadCM3, 
ACCESS, MPI-ESM-LR/P, CNRM-CM5/5-2, CSIRO-Mk3-6-0, and EC-EARTH models are based on approach 

https://doi.org/10.1038/s41598-019-45907-4


3Scientific Reports |          (2019) 9:9589  | https://doi.org/10.1038/s41598-019-45907-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

(ii), and CCSM4, CESM-CAM5, FGOALS, and NorESM models are based on approach (iii). In addition to cloud 
model type, the closure and triggering mechanism of convective parameterization (for more details see Table 2) 
also controls the total precipitation and its partitioning. In CMIP5, most of the models use convective available 
potential energy (CAPE) or dilute CAPE (DCAPE) based closure and trigger function (as can be seen from 
Table 2), whereas, few models use moisture convergence-based closure and moisture convergence or relative 
humidity-based triggers. In CMIP5, most of the models use prognostic cloud condensate-based approach in their 
large-scale precipitation parameterization (for more details see Table 2), and hence exhibit large similarity in the 
simulated large-scale precipitation (discussed later).

Model grouping based on precipitation partitioning.  CMIP5 models are clustered into the various con-
vective groups, namely, GC1, GC2, GC3 and GC4 (see Fig. 2) and large-scale groups, namely, GL1, GL2, and GL3 (see 
Fig. 3), by computing similar statistics for convective and stratiform precipitation as those computed for total precipi-
tation earlier. Models of a given convective group show similarities in cloud model type, closure assumption, or trigger 
mechanism. For example, (i) in GC1, MIROC-ESM/ESM-CHEM, HadGEM2-CC/ES, ACCESS1-0, FGOALS-g2, and 
BCC-CSM1-1 use CAPE based closure, (ii) in GC2, GFDL-ESM2M/2G, NorESM1-M/ME and INMCM4 use CAPE 
based closure (GISS-E2H-R/R-CC, however, uses moisture convergence based closure), and most of them use CAPE 
based trigger, (iii) in GC3, most of the models use either CAPE or moisture convergence based closure and CAPE or 
moisture convergence based trigger (for more details see Table 2), and (iv) in GC4, CNRM-CM5/5-2 use moisture con-
vergence based stability profile for closure, HadCM3, GFDL-CM3, EC-Earth use CAPE based closure, however, most 
of the models in this group use CAPE based trigger (for more details see Table 2).

Considering three major aspects of the convection parameterizaton schemes used in CMIP5 models, namely, 
(a) cloud model type, (b) closure, and (c) trigger, we find that: (1) based on cloud model type (spectral, bulk and 
mix), the distribution in GC1 is (2, 3, 2), in GC2 it is (2, 3, 3), in GC3 it is (2, 4, 6), and in GC4 it is (1, 4, 0), respec-
tively, (2) based on closure mechanism (CAPE, moisture convergence, and other methods), the distribution in 
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Figure 1.  Hierarchical clustering in CMIP5 models based on the correlation in model biases for mean annual 
total precipitation (40S–40N; 0–360E). The clustering method is based on weighted pairwise average distance 
algorithm33. The models developed at same center/institution are shown in same color.
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GC1 is (7, 0, 0), in GC2 it is (5, 3, 0), in GC3 it is (9, 3, 0), and in GC4 it is (3, 2, 0), respectively, and (3) based on 
trigger function (CAPE, moisture convergence, other methods), the distribution in GC1 is (5, 0, 2), in GC2 it is (4, 
3, 1), in GC3 it is (5, 4, 3), and in GC4 it is (3, 2, 0), respectively. Further, we notice that some models in GC2 use 
moisture convergence for both trigger as well as closure, whereas, some models in GC3 use moisture convergence 
for triggering deep convection (similar to GC2) but for closure they use CAPE (for more details see Table 2). We 
also find that the cloud model type used in the convection parameterization schemes has very limited effect on 
simulated convective precipitation. For example, FGOALS-g2 and CESM-CAM5, GFDL-CM3 and MIROC-5 
model pairs have a common cloud model type but do not show much similarity in their convective precipitation 
fields. This finding is in line with Yanai et al.28, wherein it was reported that for tropical convection both spectral 
and bulk methods were found to produce similar total vertical mass fluxes. Unlike the convective groups, which 
show large inter-group variations in convective precipitation, the large-scale groups do not show as much varia-
tions, likely due to lesser degree of differences in the large-scale precipitation parameterization schemes.

Convective Precipitation Biases in South Asian Summer Monsoon Simulations.  Figure 4 shows spatial variation 
of mean seasonal convective precipitation and convective precipitation biases from observation in various con-
vective groups. Observed convective precipitation is found to be highest over Indo-Burmese Mountain, Western 

Models Atmosphere, resolution, vertical level, reference Ocean, resolution, vertical level Country

GFDL-CM3 CM3, ~1.802 × 1.802, 48, Donner [2011] MOM4.1, 1–2.342 × 1.802, 50 USA

GFDL-ESM2G CM2.1, 2.5 × 2, 48, Delworth [2006] Gold, 1–2.342 × 1.802, 50 USA

GFDL-ESM2M CM2.1, 2.5 × 2, 48, Delworth [2006] MOM4.1, 1–2.342 × 1.802, 50 USA

GISS-E2R 2 × 2.5, 40 Russell Ocean, 1 × 1.25, 32 USA

GISS-E2H 2 × 2.5, 40 HYCOM Ocean, 0.2–1 × 1, 26 USA

GISS-E2R-CC ~1 × 1, 40 Russell Ocean, 1 × 1.25, 32 USA

CESM-CAM5 CAM5, 0.9 × 1.25, 27, Neale [2010; 2013] Modified POP2, 1.125 × 0.27–0.64, 60, 
Danabasoglu [2012] USA

CCSM4 CAM4, 0.9 × 1.25, 27, Neale [2010 & 2013] Modified POP2, 1.125 × 0.27–0.64, 60, 
Danabasoglu [2012] USA

IPSL-CM5A-LR LMDZ5A, 1.9 × 3.75, 39 2 × 2–0.5, 31, Madec [2008] France

IPSl-CM5A-MR LMDZ5A, 1.25 × 2.5, 39 2 × 2–0.5, 31, Madec [2008] France

IPSL-CM5B-LR LMDZ5B, 1.9 × 3.75, 39 2 × 2–0.5, 31, Madec [2008] France

CNRM-CM5 ARPEGE-Climat v5.2, (IFS), ~TL127, 31, Déqué 
[1994] and Voldoire [2013] NEMOv3.2, ~ 0.7, 42, Madec [2008] France

CNRM-CM5–2 ARPEGE-Climat v5.2, (IFS), ~TL127, 31, Déqué 
[1994] and Voldoire [2013] NEMOv3.2, ~ 0.7, 42, Madec [2008] France

MIROC4h AGCM5. 7,0.563 × 0.563, 56 COCO3.4, 0.28 × 0.19, 48, Hasumi [2000] Japan

MIROC5 AGCM6, 1.406 × 1.406, 40, Nozawa [2007] and 
Watanabe [2008a] COCO4.5, 1.4 × 0.5–1.4, 50, Hasumi [2006] Japan

MIROC-ESM MIROC-AGCM, 2.813 × 2.813, 80 COCO3.4, 1.4 × 0.5–1.4, 44 Japan

MIROC-ESM-CHEM MIROC-AGCM, 2.813 × 2.813, 80 COCO3.4, 1.4 × 0.5–1.4, 44 Japan

CSIRO-Mk3-6-0 ~1.875 × 1.875, 18, Gordon [2002; 2010] and 
Rotstayn [2012]

Modified MOM2.2, ~0.9 × 1.875, Gordon [2002 
and 2010] Australia

ACCESS1-0 HadGEM2, 1.729 × 1.306 N96, 38, Martin [2011], 
Bi [2013b] and Rashid [2013)

ACCESS-OM (MOM4p1), ~1 × 1, 50, Bi 
[2013a] and Marsland [2013] Australia

ACCESS1-3 GAM1.0, 1.729 × 1.306 N96, 38, Hewitt [2011], Bi 
[2013b] and Rashid [2013]

ACCESS-OM (MOM4p1), ~1 × 1, 50, Bi 
[2013a] and Marsland [2013] Australia

HadCM3 HadAM3, 3.75 × 2.5, 19, Pope [2000] HadOM, 1.25 × 1.25, 20 UK

HadGEM2-CC HadGEM2, 1.875 × 1.25, 60 1.875 × 1.25, 40 UK

HadGEM2-ES HadGEM2, 1.875 × 1.25, 38, Davies [2005] 1 × 1 30NS & 1/3° at equator, 40 UK

MPI-ESM-P ECHAM6, ~1.8 T63, 47, Stevens [2012] MPIOM, ~1.5° GR15, 40, Jungclaus [2013] Germany

MPI-ESM-LR ECHAM6, ~1.8 T63, 47, Stevens [2012] MPIOM, ~1.5° GR15, 40, Jungclaus [2013] Germany

NorESM1-M CAM4-Oslo, 1.9 × 2.5, 26, Neale [2010] and 
Kirkevåg [2013] NorESM-Ocean, 1.125 along the equator, 53 Norway

NorESM1-ME CAM4-Oslo, 1.9 × 2.5, 26, Neale [2010] and 
Kirkevåg [2013] NorESM-Ocean 1.125, long the equator, 53 Norway

BCC-CSM1-1 BCC-AGCM2.1, T42 × T42, L26, Wu [2008b; 
2010a, and 2012]

MOM4-L40, ~1° with 1/3 at the equator, 40, 
Griffies [2005] China

FGOALS-g2 GAMIL2, 2.813 × 2.813, 26, Wang [2004] and Li 
[2013b]

LICOM2, 1 × 1with 0.5 at merid. in tropical, 30, 
Liu [2012a] China

INM-CM4 2 × 1.5, 21 1 × 0.5, 40, Volodin et al. [2010]; Zalesny et al. 
[2010] Russia

CanESM2 Spectral T63, 35, von Salzen [2013] 1.171 × 1.067, 40, Merryfield [2013] Canada

EC-EARTH IFS-c31r1, ~1.125 × T159, L62, Hazeleger [2012] NEMO_ecmwf, ~1 × 1, Hazeleger [2012] Europe

Table 1.  Model component Description, Resolution (latitude × longitude), Vertical level.
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Ghats (WG), moderate over central India and eastern equatorial Indian Ocean, and lowest over northwest India 
(Fig. 4a). In GC1, the convective precipitation is found to be highest over Indo-Burmese mountain, eastern Bay 
of Bengal (BoB), south Arabian Sea (AS) adjoining to WG, and south China Sea (SCS) (Fig. 4b), in GC2, the 
convective precipitation is found to be high only over northeast India (Fig. 4c), in GC3, convective precipitation 
is found to be high only over the Indo-Burmese mountain (Fig. 4d), and in GC4, convective precipitation is found 
to be high over eastern BoB, WG, and central SCS (Fig. 4e). Thus, in GC1, we find large significant overestimation 
over northern AS, Indo-Burmese mountain, and SCS (Fig. 4f), in GC2, we find large significant overestimation 
over northeast India (Fig. 4g), in GC3, we find small overestimation over entire south Asian region (Fig. 4h), and 
in GC4, we find the large significant overestimation over SCS, Indo-Burmese Mountain and eastern BoB (Fig. 4i). 
Small underestimation in convective precipitation is found over the Indo-Gangetic region in all convective groups 
except in GC4, with increase in spatial extent of the negative bias from GC1 to GC3. We also notice that model 
grouping and spatial pattern of convective precipitation biases do not change much irrespective of the changes 
in observational dataset type (for example, when we change PERSIANN-CDR data with GPCP data, convective 
model grouping and spatial pattern biases do not change much; figure not shown).

Some of the past studies have reported that large monsoon precipitation biases over the AS, Indian land, and 
Indo-Burmese mountains could be due to the cold Arabian Sea SST biases15,29. In another relevant study Levine 
and Turner30 have also shown this using numerical experiments that cool AS SST can delay south Asian summer 
monsoon and subsequently reduce monsoon precipitation. Next, we investigate how important are SST biases 
and atmosphere-ocean feedbacks in the convective precipitation biases discussed above, by analyzing the differ-
ences in biases in CMIP5 models with their corresponding AMIP5 counterparts. Hatching (in Fig. 4) indicates 
that the biases are primarily due to the atmospheric component, whereas, stippling indicates that the errors in 
SSTs and the atmosphere-ocean feedbacks are also important. Over a given grid point if the root mean square 
error (RMSE) in a given model group from AMIP5 simulations is greater than or equal to 80% of RMSE in the 
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Figure 2.  Same as Fig. 1 but with clustering done based on convectiveprecipitation.
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same model group from CMIP5 simulations the grid point is hatched, whereas, if the RMSE in the AMIP5 sim-
ulations is smaller than 20% of the RMSE in the corresponding CMIP5 simulations the grid point is stippled. In 
addition, we also impose a second condition of two-tailed student-t test for significant bias at 99% on hatching 
and stippling along with the first condition mentioned above. If a grid point is neither hatched nor stippled it 
means that the bias is either not significant or is due to both atmospheric and oceanic components. Thus, in all 
the convective groups, overestimation in convective precipitation over majority of the South Asian region seems 
primarily to be coming from the atmospheric component. Notably, the significant biases in GC1 models over the 
maritime continent seem to be coming from the SST biases (since the CMIP5 biases are found to be much higher 
than the AMIP5 biases). In order to further confirm that the model groups are distinctively different from each 
other, we analysed the inter-group differences (shown in Fig. 5), and find that there are indeed significant differ-
ences between the groups, thus also confirming the robustness of the method used for clustering.

Figure 6 shows the spatial variation of mean wind pattern at 850 hPa from ERA-I and from the various convec-
tive groups (i.e. GC1, GC2, GC3 and GC4). Also shown are the corresponding biases for each of the groups. ERA-I 
shows a well-established cross-equatorial flow and well-established Somali current over northern AS, southern 
peninsular India and over the northern BoB (Fig. 6a) as reported in the literature21,31. The cross-equatorial cur-
rent and Somali current are also found in all convective groups, however with varying magnitudes (Fig. 6b–e). 
From the mean wind biases: (a) in GC1 we find a very large cyclonic anomaly over the central equatorial Indian 
Ocean consistent with the overestimation in precipitation over eastern AS and BoB, easterly wind anomaly over 
western coast of AS, and consistent with the underestimation in precipitation over northern Indian region31–33; 
easterly wind anomaly over SCS consistent with the overestimation in precipitation over SCS34,35 (Fig. 6f), (b) in 
GC2 we find easterly wind anomaly to be low over peninsular India, high over AS and small over SCS, which is 
thus consistent with the underestimation in precipitation over northern Indian region, and overestimation over 
SCS. Weak cyclonic anomaly over central equatorial Indian Ocean (IO) is consistent with small overestimation 
in precipitation over equatorial IO, BoB, and eastern AS (Fig. 6g)33, (c) in GC3 we find the easterly wind anomaly 
over the western AS, northern BoB and westerly wind anomaly over peninsular India consistent with the large 
underestimation in convective precipitation over Indian region and small overestimation over rest of the domain, 
in line with previous studies35,36 (Fig. 6h), and (d) in GC4 we find the large easterly equatorial wind anomaly and 
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Figure 3.  Same as Fig. 1 but with clustering done based on large-scale precipitation.
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Models Convective precipitation Large-scale precipitation Convective Trigger Convective Closure

Cloud Model Type: Spectral Cloud Ensemble

GFDL-CM3
Relaxed Arakawa–Schubert scheme of Moorthiand 
Suarez [1992] with few modifications in physics 
from Donner et al. [2011]

Cloud microphysics of Rotstayn [2000] 
and macrophysics from Tiedtke [1993], 
stratiform clouds from Golaz et al. [2011]

Cloud work function 
(CWF) similar to dilute 
cape (DCAPE)

CAPE closure towards 
a threshold over a 
relaxation time scale

GFDL-ESM2G Relaxed Arakawa–Schubert scheme of Moorthiand 
Suarez [1992] and Dunne et al. [2012 and 2013] Same as GFDL-CM3 Cloud work function 

(CWF) similar to DCAPE
CAPE closure towards 
a threshold over a 
relaxation time scale

GFDL-ESM2M Same as GFDL-ESM2G Same as GFDL-CM3 Cloud work function 
(CWF) similar to DCAPE

CAPE closure towards 
a threshold over a 
relaxation time scale

MIROC5
Entraining plume model scheme of Chikira  
et al. [2010] similar to Gregory [2001] with some 
modification according Pan and Randall [1998]

Prognostic large-scale cloud scheme 
of Watanabe et al. [2009] and bulk 
microphysical scheme from Wilson and 
Ballard [1999]

CAPE
Prognostic convective 
kinetic energy closure 
similar to CAPE closure

MIROC4h
Prognostic closure Arakawa Schubert scheme 
from Pan and Randall [1998] and addition of 
relativehumidity-based suppression condition by 
Emori et al. [2001]

Prognostic cloud water scheme of 
Treutand Li [1991] Relative humidity

Prognostic convective 
kinetic energy closure 
similar to CAPE closure

MIROC-ESM Same as MIROC4h
Large-scale condensation is diagnosed 
based on Treut& Li (1991) and simple 
cloud microphysics scheme

Relative humidity
Prognostic convective 
kinetic energy closure 
similar to CAPE closure

MIROC-ESM-CHEM Same as MIROC4h Same as MIROC-ESM Relative humidity
Prognostic convective 
kinetic energy closure 
similar to CAPE closure

Cloud Model Type: Bulk Cloud Ensemble

GISS-E2R Bulk mass flux scheme by Delgenio& Yao (1993)
Prognostic stratiform cloud based on 
moisture convergence by Delgenio et al. 
(1996)

— Moisture convergence

GISS-E2H Same as GISS-E2R Same as GISS-E2R — Moisture convergence

GISS-E2R-CC Same as GISS-E2R Same as GISS-E2R — Moisture convergence

HadCM3 Bulk mass flux scheme by Gregory & Rowntree 
(1990)

Large-scale precipitation is calculated 
based on cloud water and ice contents 
similar to Smith [1990]

Cloud base buoyancy CAPE

HadGEM2-CC
Same as HadCM3, withan additional adaptive 
detrainment parameterization by Derbyshire et 
al. [2011]

Same as HadCM3 Cloud base buoyancy CAPE

HadGEM2-ES Same as HadGEM2-CC Same as HadCM3 Cloud base buoyancy CAPE

ACCESS1-0 Same as HadGEM2-CC Same as HadCM3 Cloud base buoyancy CAPE

ACCESS1-3 Same as in ACCESS1.0, except physical 
parameterization, which is similar to GAM1.0 Same as HadCM3 — CAPE

MPI-ESM-LR
Bulk mass flux scheme by Tiedtke [1989] with 
modifications in deep convection by Nordeng et 
al. [1994]

Prognostic equations of the water phases, 
bulk cloud microphysics from Lohmann 
andRoeckner [1996]

Moisture convergence and 
buoyant surface air when 
lifted to the LCL

Moisture convergence/
adjustment type

MPI-ESM-P Same as MPI-ESM-LR Same as MPI-ESM-LR
Moisture convergence and 
buoyant surface air when 
lifted to the LCL

Moisture convergence/
adjustment type

MRI-CGCM3 Same as MPI-ESM-LR Moisture convergence CAPE

CNRM-CM5 Mass-flux scheme of Bougeault [985] Statistical cloud scheme of Ricard and 
Royer [1993]

Depends on moisture 
convergence and stability 
profile

Moisture convergence

CNRM-CM5-2 Same as CNRM-CM5 Same as CNRM-CM5
Depends on moisture 
convergence and stability 
profile

Moisture convergence

EC-EARTH Bulk mass-flux scheme and Entraining/detraining 
plume cloud model by Hazeleger et al. [2010]

saturated downdraughtsandsimple 
microphysics scheme — CAPE

CSIRO-Mk3-6-0
Bulk mass flux convection scheme of Gregory and 
Rowntree [1990] with slightly modified by Gregory 
[1995]

Stratiform cloud condensate scheme 
from Rotstayn([000] — Stability-Dependent 

Closure

Cloud Model Type: Mixed Nature of Spectral and Bulk Cloud Ensemble

CCSM4
Simplified Arakawa and Schubert cumulus 
ensemble scheme of Zhang and McFarlane27 with 
plume dilution of Neale et al. [2008]

Prognostic condensate and precipitation 
parameterization from Zhang et al. 
[2003]

CAPE DCAPE

CESM-CAM5 Same as CCSM4 with few more modifications by 
Neale et al. [2012] Same as CCSM4 CAPE DCAPE

NorESM1-M Same as CCSM4 Same as CCSM4 CAPE DCAPE

NorESM1-ME Same as CCSM4 Same as CCSM4 CAPE DCAPE

BCC-CSM1-1
Mass flux scheme developed by Zhang and 
McFarlane [1995], has been adapted as proposed 
by Wu et al. [2010]

Same as CCSM4 CAPE CAPE

FGOALS-g2 Mass flux type cumulus convection developed by 
Zhang and McFarlane27

Precipitation occurs whenever the local 
relative humidity is supersaturated CAPE CAPE

Continued
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westerly wind anomaly over central BoB causing more overestimation in precipitation over equatorial region, 
BoB and SCS, in line with previous studies31,35 (Fig. 6i).

Large-Scale Precipitation Biases in South Asian Summer Monsoon Simulations.  Figure 7 shows spatial varia-
tions of mean seasonal large-scale precipitation and large-scale precipitation biases from observations in various 
large-scale groups. It can be seen from Fig. 7a that observed large-scale precipitation is high over Indo-Burmese 
mountain, WG, and northeast India. In GL1, highest values are found over Himalayan foothills (Fig. 7b); in 
GL2, highest values are found over Himalayan foothills, WG and eastern Arabian Sea (Fig. 7c); in GL3, high-
est values are found over Himalayan foothills and over northeast India (Fig. 7d). From the bias patterns, GL1 
shows large underestimation over Indo-Burmese mountain, eastern BoB, and WG (Fig. 7e), GL2 shows large 
underestimation over Indo-Burmese mountain and eastern BoB (Fig. 7f), and GL3 shows negative biases in 
line with GL1 and GL2 but with lower magnitudes (Fig. 7g). All large-scale precipitation groups also show the 
underestimation over central India and eastern equatorial Indian Ocean. In all the large-scale groups, underes-
timation in large-scale precipitation over majority of the south Asian region seems primarily to be coming from 
the atmospheric component (see hatching in Fig. 7). The underestimation in large-scale precipitation over WG 
in all large-scale groups seems to be due to both atmospheric and oceanic components. Similar to the convective 
precipitation grouping and spatial bias pattern, the large-scale model grouping and spatial bias pattern is also 
found to be minimally affected by the use of two different observational datasets (PERSIANN-CDR and GPCP; 
figure not shown). Similar to the analysis carried out to test the distinctiveness of the convective groups discussed 
above, we analysed the inter-group differences for the large-scale-precipitation-based groups (shown in Fig. 8), 
and find that the inter-group differences are significant.

Conclusions
We have carried out a systematic analysis of the structure of precipitation biases in 33 CMIP5 and AMIP5 models, 
and have grouped them based on the correlation of their biases in total, convective and large-scale precipitation 
on global scale. We found that the grouping of models is somewhat sensitive to the variable used, i.e., a given pair 
of models that fall in the same total precipitation bias group may not necessarily fall in the same convective or 
large-scale precipitation bias group.

By grouping the CMIP5 models based on their convective precipitation biases we find that the similarity in 
convective precipitation biases in a given group primarily comes from similarity in closure assumptions and trigger 
mechanisms, and to a lesser extent on the details of the cloud models used in the deep convection parameterization 
schemes of the models. By grouping the CMIP5 models based on their large-scale precipitation biases we find 
that the degree of similarity in large-scale precipitation biases among model groups was much higher than that 
seen in the corresponding convective precipitation biases (based on convective precipitation grouping). Over the 
south Asian domain, we find many biases that are common across the groups. In general, each of the convective 
groups show largely positive biases, whereas, each of the large-scale groups show largely negative biases over the 
south Asian region, with spatially varying magnitudes. We find that the spatial pattern of biases in the convective 
precipitation in various model groups have prominent signatures in the 850 hPa wind circulation biases as well.

In agreement with some prior studies5,8, we find that if 2 models have the same atmospheric component the 
degree of similarity in their global precipitation bias patterns is quite high, as compared to that if some other com-
ponent(s) are similar but the atmospheric components (especially the convection scheme) are quite different. This 
finding highlights the primary role played by the atmospheric component of the model in governing precipitation 
biases. To investigate this further, we compare the corresponding model biases from CMIP5 and AMIP5 simula-
tions, and conclude that, in general, the precipitation biases primarily depend on the atmospheric component of 
the models, and to a lesser extent on biases in SSTs or atmosphere-ocean feedbacks, at least on timescales of the 
current analysis. Notably, we find that there is only one model group wherein the ocean component is primarily 
responsible for the simulated convective precipitation biases (found over the maritime continent region).

As a first step towards eliminating a given bias in a model it is important to know how the bias structure in 
the model compares to other models in the same group and models in different groups. Thus, a more informed 
and efficient model development approach may be designed for achieving improved simulations of global and 

Models Convective precipitation Large-scale precipitation Convective Trigger Convective Closure

CanESM2 Mass flux type cumulus convection schemeby 
Scinocca and McFarlane [2004]

Prognostic cloud liquid water and ice, 
statistical cloud scheme, interactive with 
aerosols

CAPE Cloud base closure

IPSL-CM5A-LR
Episodic mixing and buoyancy sorting scheme by 
Emanuel [1991] and modified moist convection 
scheme by Grandpeix et al. [2004]

Cloud cover and in-cloud water deduced 
from large-scale total water and moisture 
at saturation from Bony and Emmanuel 
[2001]

— CAPE closure

IPSl-CM5A-MR Same as IPSL-CM5A-LR Same as IPSL-CM5A-LR — CAPE closure

IPSL-CM5B-LR
Same as IPSL-CM5A-LR, with the modification in 
closure and trigger mechanism byGrandpeix and 
Lafore [2010]

Same as IPSL-CM5A-LR, with the few 
modifications by Jam et al. [2011] Available Lifting Energy Available Lifting Power

INM-CM4
Lagged convective adjustment after Betts 
[1986], but modified referenced profile for deep 
convection

Stratiform cloud fraction is calculated as 
linear function of relative humidity — CAPE

Table 2.  Description of Convective and Large-scale parameterization, Convective triggers and Convective 
closures.
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regional climate. Not to mention, the spatial resolution used in CMIP5 models is too coarse to resolve weather 
features such as fronts, atmospheric rivers, cyclone properties, and thus, weather resolving climate models would 
be required for improving the accuracy of simulations even further37,38.

Figure 4.  The spatial variation of mean JJAS (June–September) convective precipitation over the south Asian 
region from observation (a), GC1 (b), GC2 (c), GC3 (d), and GC4 (e). The biases in mean JJAS convective 
precipitation for different groups with respect to observation are shown in (f) for GC1, (g) for GC2, (h) for GC3, 
and (i) for GC4. Hatching show bias to be coming from atmospheric component and stippling show bias to 
be coming from oceanic components (i.e. biases in SSTs and atmosphere-ocean feedbacks) and the biases are 
significant the level of 99%.

Figure 5.  The differences in mean JJAS convective precipitation of each cluster with the other clusters: (a) GC1 
and GC2, (b) GC1 and GC3, (c) GC1 and GC4, (d) GC2 and GC3, (e) GC2 and GC4, and (f) GC3 and GC4. 
Regions with differences that are statistically significant at 99% are hatched.
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Data and Methodology
The historical simulation of monthly convective (PRECC) and total precipitation (PRECT) dataset from 33 
CMIP5 and AMIP5 models39 were downloaded from the Earth System Grid Federation (ESGF; https://esgf-node.
llnl.gov/). We use the r1i1p1 ensemble member for all CMIP5 and AMIP5 models, since some models of CMIP5 
and AMIP5 do not provide the individual convective and large-scale components for other ensemble members. 
Observed monthly total precipitation for 23 years (1983–2005) are from PERSIANN-CDR dataset, which is a 
high-resolution (0.25° × 0.25°) long-term satellite and observation merged precipitation dataset, developed by the 
Centre for Hydrometeorology and Remote Sensing (CHRS) at University of California Irvine (https://chrsdata.
eng.uci.edu/; Nguyen et al.40). The PERSIANN-CDR dataset is first bilinearly interpolated to the 0.5° × 0.5° grid 
of TRMM 3A12 (1998–2013; 0.5 × 0.5 degree)41, and then the corresponding convective and large-scale precipi-
tation components are computed from total precipitation, by using Eq. (1). The large-scale precipitation (PRECL) 
dataset for observation and for model simulations are computed by subtracting the convective components from 
the total precipitation as shown in Eq. (2). Monthly zonal (u) and meridional (v) wind dataset (1983–2005) at 
850 hPa are used from ECMWF (ERA-I) reanalysis (https://apps.ecmwf.int/datasets/). The domain used for our 
analysis is 0–360°E; 40°S–40°N.

= ∗










PRECC PERSIANN CDR PRECT PERSIANN CDR PRECC TRMM
PRECT TRMM

( _ ) ( _ ) ( )
( ) (1)

= −PRECL PRECT PRECC( ) (2)

To compute inter-model similarity between the CMIP5 models, we follow a similar method as that used by 
Pennell and Reichler3 and Knutti et al.8 which are widely accepted methods for model genealogy studies. Thus, 
we first compute the normalized bias (en,m) in the mean annual total, convective, and large-scale precipitation for 
the CMIP5 models by using Eq. (3)3:

σ= −

= ….. = ….

e f o
n N m M

( )/
1, 2, 3, , ; 1, 2, 3, , (3)

n m n m n n, ,

where ‘N’ and ‘M’ are the total number of grid points and total number of models used for this study, symbol ‘o’, ‘f ’, 
and ‘σ’ represent observation, model output, and observed standard deviation (σ) for any variable. For example, 
the normalized bias for a particular model (m) can be written from Eq. (3) as = … … −e e e e e( , , , , )m m m N m N m1, 2, 1, , . 

Figure 6.  The spatial variation of mean JJAS (June – September) 850 hPa wind pattern over the south Asian 
region from (a) ERA-I, (b) models in convective group GC1, (c) GC2, (d) GC3, and (e) GC4. The biases in mean 
JJAS 850 hPa wind pattern for different convective groups with respect to reanalysis are shown in (f) for GC1, 
(g) for GC2, (h) for GC3, and (i) for GC4.
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Subsequently, we compute the common biain total, convective, and large-scale precipitation from the multi-model 
mean bias e( )by using Eq. (4)3.

∑=








=

=
e

M
e1

(4)m

m M

m
1

The portion of multi-model mean bias e( ) corresponding to each individual model bias (i.e. = .r Cor e e( , )m ) 
is then subtracted from the corresponding model bias, to make the individual model biases more dissimilar from 
each other by using Eq. (5)3.

= −d e re (5)m m

Finally, the level of inter-model similarity is computed by applying the Pearson sample linear cross-correlation 
between the model pair biases [Cor. (dm1, dm2)]. The hierarchical structure of CMIP5 models is constructed by 
converting the correlation matrix into distance matrix by using weighted pair-wise average distance method3,42.

Figure 7.  Same as Fig. 4 but for large-scale precipitation from observation and from large-scale precipitation 
groups (GL1, GL2, and GL3).

Figure 8.  Same as Fig. 5, but for large-scale precipitation.
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Data Availability
All the data used in this study is in public domain and can be freely downloaded.
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