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Deep transcriptome analysis using 
RNA-seq suggests novel insights 
into molecular aspects of fat-tail 
metabolism in sheep
Mohammad Reza Bakhtiarizadeh1, Abdolreza salehi  1, Ali A. Alamouti1, Rostam Abdollahi-
Arpanahi  1 & seyed Alireza salami2

Fat-tail content of sheep breeds is varied and the molecular mechanisms regulating fat-tail 
development have not been well characterized. Aiming at better identifying the important candidate 
genes and their functional pathways contributing to fat deposition in the tail, a comparative 
transcriptome analysis was performed between fat- (Lori-Bakhtiari) and thin-tailed (Zel) Iranian sheep 
breeds using RNA-seq. the experiment was conducted on six male lambs (three lambs per each breed) 
at seven months of age. Four different combinations of aligners and statistical methods including 
Hisat2 + edgeR, Hisat2 + DESeq2, STAR + edgeR and stAR + DESeq2 were used to identify the 
differentially expressed genes (DEGs). The DEGs were selected for functional enrichment analysis and 
protein-protein interaction (ppI) network construction. Module analysis was also conducted to mine 
the functional sub-networks from the PPI network. In total, 264 genes including 80 up- and 184 down-
regulated genes were identified as DEGs. The RNA-Seq results were validated by Q-RT-PCR. Functional 
analysis of DEGs and the module analysis of PPI network demonstrated that in addition to pathways 
affecting lipid metabolism, a series of enriched functional terms related to “response to interleukin”, 
“MAPK signaling pathways”, “Wnt signaling pathway”, “ECM-receptor interaction”, “regulation of 
actin cytoskeleton”, and “response to cAMP” might contribute to the deposition of fat in tails of sheep. 
overall results using RNA-seq analysis characterized important candidate genes involved in the fatty 
acid metabolism and regulation of fat deposition, suggesting novel insights into molecular aspects 
of fat-tail metabolism in sheep. Selected DEGs should be further investigated as potential markers 
associated with the fat-tail development in sheep breeds.

Sheep are one of the most important livestock animals and are also known as the first domesticated grazing 
animal. Over 11,000 years of domestication and artificial selection have extremely diversified sheep breeds phe-
notypic characteristics1. It is believed that fat-tailed sheep were derived from thin-tailed sheep during the process 
of domestication, approximately 5,000 years ago2. In fat-tailed sheep, which account for one-fourth of the world’s 
sheep population3, the intensity of fat deposition (up to 20% of carcass weight) is higher in the tail than in other 
parts of the body4. In evolutionary terms, fat-tail was developed as a survival mechanism in hazardous envi-
ronments and formed a reliable energy reservoir for the animal during drought and food deprivation periods5. 
Hence, fat-tail became a common characteristic in all sheep breeds distributed in semi-arid and arid regions of 
the world6. However, in todays’ modernized production systems, sheep are preferably kept under intensive or 
semi-intensive feeding systems where large fat-tails are no longer of historical importance as an energy source7,8. 
Conversely, fat deposition in the tail requires a greater energetic cost than accretion of an equivalent amount of 
lean tissue. Furthermore, the price of each kilogram of fat-tail hardly reaches 15% the price of each kilogram red 
meat thereby favoring production of breeds with a down-sized fat-tail9. Thus, the identification of the candidate 
genes and molecular pathways regulating fat deposition in the tail of sheep are economically important.
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Long-term artificial selection along with geographical distribution has resulted in generation of over 28 
indigenous sheep breeds with large fat-tails in Iran, except Zel breed which has a thin tail10. Lori–Bakhtiari is 
one of the relatively large frame breeds in the south-western parts of Iran possessing the largest fat-tail among 
all domestic sheep breeds11. In contrast, Zel is the only thin-tailed Iranian sheep breed (with 10–12 cm tail 
length) with a small body frame mainly distributed in the coastal area around the Caspian Sea12. Significant 
differences in fat deposition between these two breeds may allow for the identification of pathways poten-
tially responsible for formation of tail fat, thereby assisting in the development of new breeding strategies to 
manipulate fat deposition. Previous studies have shown that tail fat metabolism in different sheep breeds is  
associated with mRNAs13–17, micro RNAs (miRNAs)18,19 and long non-coding RNAs20,21. For example, Wang et al.13,  
reported 646 differentially expressed genes (DEGs) by comparing transcriptome profiles of fat between a 
fat-tailed (Kazak sheep) and a short-tailed sheep (TS). They also suggested two important genes (NELL1 and 
FMO3) as important candidates in fat metabolism of sheep. In another study14, the transcriptome informa-
tion of subcutaneous adipose tissue between Small Tailed Han and Dorset sheep was analyzed and 602 DEGs 
were reported, some of which were suggested to be involved in the fat metabolism process through functional 
analysis. Furthermore, recent studies on sheep have suggested important roles of developmental genes (such 
as HOXC11, HOXC12 and HOXC13), fat-tailed expressed genes (such as HOTAIR_2, HOTAIR_3 and SP9)16 
and fat-related genes (FABP4, FABP5, ADIPOQ, and CD36)17 in fat deposition. However, few studies have been 
conducted to identify important functional genes or selective genomic regions associated with tail fat formation 
by comparing differences between these two extremely different Iranian sheep breeds. Moradi et al.7 investi-
gated selection signatures in these sheep breeds and identified three regions located on chromosomes 5, 7 and 
X linked to the formation of tail fat. Also, in a previous study, we applied a comparative genomic approach and 
introduced fatty acid binding protein 4 (FABP4) as a candidate gene relevant to fat deposition in the tail of Lori–
Bakhtiari8. Mohammadi et al.22 showed that a silent mutation in exon 17 of the diacylglycerol acyltransferase 1 
(DGAT1) gene had a positive effect on tail fat weight and backfat thickness in Lori-Bakhtiari compared to Zel 
breed. Nevertheless, the genetic factors underlying the formation of tail fat on a genome-wide level remain to be 
elucidated in Iranian sheep breeds.

Gene expression profiling by RNA sequencing (RNA-Seq) provides an opportunity to better understand the 
underlying mechanisms of fat deposition. To date, several studies have applied this approach to compare tran-
scriptomes in various fat depots in humans23, pigs24 and cattle25. Moreover, there have also been a few comparative 
transcriptome studies between different thin and fat-tailed sheep breeds14,24. However, to the best of our knowl-
edge, there has been no genome-wide gene expression profiling study specifically comparing the transcriptome 
between fat- and thin-tailed sheep breeds. Hence, in this study we compared Lori-Bakhtiari and Zel breeds at the 
transcriptome level using RNA-Seq technology to identify the determinant genes as well as the potential under-
lying molecular mechanisms governing the fat deposition in sheep tails.

Materials and Methods
ethics statement and experimental design. All animal care and experiments were approved by the 
research council of the University of Tehran, Iran. Also, all experiments were performed in accordance with 
a routine guideline which is acceptable by the research council of the University of Tehran. Three male lambs 
(weaned at the age of 90 days on average) from each purebred Lori-Bakhtiari and Zel were used in this study. All 
animals were reared under the same environmental conditions at the research station of the college of Aburaihan, 
University of Tehran. Also, lambs were individually fed on the same nutritional conditions with ad libitum access 
to food and water. Adipose tissue samples from the tail fat of the sheep were collected immediately after the ani-
mals were slaughtered at seven months of age. All tissue samples were snap frozen in liquid nitrogen and then 
transferred to a −80 °C freezer until required for RNA isolation.

RNA extraction and transcriptome sequencing. Total RNA was isolated from approximately 100 mg 
of adipose tissue samples using the Tripure isolation reagent kits (Roche Applied Science), following the man-
ufacturer’s instructions. RNA was quantified using the NanoDrop (Thermo Scientific™ NanoDrop 2000) 
and purity of samples was checked on 1% agarose gels for evaluating the 28S and 18S ribosomal RNA bands 
(28S/18S ratio). All samples with a ratio (28S/18S) of above 1.8 and an OD 260/280 ratio greater than 1.9 were 
sent to BGI Company in China for sequencing. RNA integrity number (RIN) was also measured on an Agilent 
Bio Analyzer 2100 system. Only RNA samples with a RIN > 7 were used for cDNA library construction. All 
cDNA libraries were sequenced using paired-end strategy (read length 150 bp) on an Illumina HiSeq 2000 
platform. The raw RNA-Seq data were deposited and released in SRA database, with the BioProject accession 
number of PRJNA508203.

Quality control and read trimming. A quality check of the raw sequencing data was performed using 
FastQC (v0.11.5) program to detect common issues in RNA-Seq data. The reads were then trimmed with 
Trimmomatic to remove low quality bases using the options: TRAILING:20, MAXINFO:120:0.9, MINLEN:120. 
The quality of the reads was re-assessed with FastQC after this step to confirm quality improvements.

Mapping to genome and identification of DEGs. Alignment of cleaned reads to the genome is the 
first step in the majority of RNA-Seq studies in model organisms with a reference genome. The next very impor-
tant step is normalization and statistical modeling to identify DEGs. In recent years, many alignment tools and 
normalization/statistical methods have been developed. Also, several benchmark studies have been conducted 
to assess the performance of these methods. Results of these studies showed that there is no single method/
tool in each step that outperforms all other methods on all possible conditions26. It has been demonstrated 
that choice of alignment tool is critical for accurate interpretation of RNA-Seq data26,27 as well as the method 
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of normalization or statistical analysis has the strongest impact on performance28. Hence, benchmark studies 
showed that a combination of different methods in each step can be an efficient way to achieve more reliable 
results28. In the present study, to improve the accuracy of the identified DEGs, we combined the results of 
two alignment tools (Hisat2 and STAR) as well as two statistical methods (edgeR and DESeq2). Therefore, we 
investigated four different combinations (1) Hisat2 + edgeR, (2) Hisat2 + DESeq2, (3) STAR + edgeR and (4) 
STAR + DESeq2. These tools were chosen based on the literature confirmation of their robustness and high 
efficiency26,29. Finally, only those genes that were identified as differentially expressed by the four approaches, 
were considered as DEGs and were subjected to further analysis. This combined approach was used to ensure 
the exclusion of false positives.

Clean reads were aligned to reference sheep genome (Oar_v3.1) using STAR (version 2.5.3a)30 with the fol-
lowing parameters:–outFilterType BySJout, –outFilterMismatchNmax 10, –sjdbOverhang 100, –outFilterMul-
timapNmax 10 and–outFilterScoreMin 0. Additionally, Hisat2 software (version 2.1.0)31 was run with default 
parameters. The sequence alignment files generated by STAR and Hisat2 were used as the input to HTSeq-count 
(Python package HTSeq, python v 2.7.3) software32 to generate counts of uniquely mapped reads to annotated 
genes using the reference annotation (version 88) file. The reference genome and the reference annotation for the 
sheep were obtained from the Ensembl database (http://asia.ensembl.org/info/data/ftp/index.html).

The genes that differed significantly between two breeds were identified with two count based methods in 
R packages including edgeR (version 3.18.1)33 and DESeq2 (version 1.16.1)34. In other words, the obtained raw 
gene-count table for each of the alignment tools was used as input in these packages, separately. Both packages 
are currently considered robust methods for differential expression analysis using a generalized-linear model 
and are based on the negative binomial distribution. However, they mainly differ in their approaches to estimate 
the dispersion parameter and to normalize raw counts. DESeq2 obtains dispersion estimates based on calculated 
mean–variance relationships in the given data set, while edgeR assumes a common dispersion for all the genes. 
Here, in the edgeR analysis, normalization was performed using the trimmed mean of M values (TMM) method 
and the dispersion parameter for each gene was calculated as the Cox-Reid common dispersion method. In 
DESeq2 analysis, a normalization factor was estimated using the median-of-ratios method. Dispersions were 
then estimated using a Cox-Reid adjusted profile likelihood. In both methods Benjamini-Hochberg correction 
was used to correct for multiple comparisons (with a false discovery cut-off <0.05). As mentioned above, the 
cross-validated results of all the four pipelines were considered as a final set of the DEGs. Furthermore, a principal 
component (PCA) analysis was performed using SARTools35 (using DESeq2 package) for clustering the samples 
based on gene expression patterns in order to examine the level of similarity/dissimilarity in the gene expression 
profiles of the two breeds.

Functional analysis. Enrichr web-based tool36 was used to perform gene set enrichment analysis. This 
analysis was performed to provide more information about the biological functions and pathways significantly 
enriched in up- or down-regulated genes (DEGs confirmed by the four pipelines) by focusing on gene ontology 
(GO) terms (BP, biological process) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (using a 
standard false discovery rate (FDR) < 0.05).

Construction of PPI network and screening of sub-networks. Considering the protein-protein 
interactions (PPI) in the complex biological systems, STRING (the Search Tool for the Retrieval of Interacting 
Genes/Proteins) database (version 10.5) was explored to reveal functional interactions among the DEGs. The 
STRING database collects and integrates all of functional interactions between the genes/proteins by consolidat-
ing known and predicted protein–protein association data for a large number of organisms37. PPIs with confi-
dence score <0.4 (a commonly used threshold) was discarded and disconnected nodes were hidden. ClusterONE 
plugin (Clustering with Overlapping Neighborhood Expansion, version 1.0) in Cytoscape was applied to detect 
the sub-network/modules in the PPI network, provided by STRING database. A cut-off value of P ≤ 0.01 and a 
minimum number of genes in a cluster >5 were utilized to measure the significance of the predicted modules. 
ClusterONE uses a greedy growth process to detect densely connected sub-networks/modules of a PPI network38. 
The functional enrichment analysis for the identified significant modules was further performed using Enrichr 
database. These modules were considered as candidate functional modules if their respective genes were signif-
icantly enriched in GO or KEGG pathways. Cytoscape software (version 3.6) was applied to visualize the PPI 
networks39.

Q-RT-PCR validation of data. In order to validate the RNA-Seq data, 10 genes were randomly picked 
from DEGs pool and were tested with Q-RT-PCR using a new set of RNAs extracted from the same fat-tail tis-
sues as that for RNA-Seq analysis along with four new lambs (including two Lori-Bakhtiari and two Zel breeds). 
Four new sheep breeds were reared under the same environmental conditions along with the six sheep which 
were applied in RNA-Seq assay. First-strand cDNA,s were synthesized using the first strand cDNA synthe-
sis kit (Thermo Fisher, Co., USA) according to the manufacturer’s instructions. Primers were designed using 
Primer3Plus software40,41. The primer sequences are listed in Supplementary File 1. All Q-RT-PCR reactions were 
run on Light-Cycler 96 instrument (Roche Co. Germany) using the SYBR Green Master Mix (Thermo Fisher 
Scientific, USA), according to the manufacturer’s protocol. Q-RT-PCR was performed with five biological repli-
cates and three technical replicates for each sample. CT-method was used to quantify changes in gene expression, 
while glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as housekeeping gene reference standard. 
The selection of the endogenous control was mainly based on our previous study8. The relative expression of each 
gene was determined based on comparative delta-delta CT method (2−ΔΔCT). To compare Q-RT-PCR data with 
RNA-Seq data, the mean of 2−ΔΔCT value of each gene was converted into a fold change.
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Results
Descriptive statistics of RNA-seq data. In total, 129,776,763 paired-end raw reads (150-bp in length) 
were generated for six samples, ranging from 20.1 to 26.3 million per sample. Among these, 66.8 and 62.9 million 
reads were belonged to Lori-Bakhtiari and Zel breeds, respectively. On average, individual samples yielded 21.6 
million (±2.4) reads. Only 1,104 reads were removed after quality trimming and filtration, indicating that data 
had high quality. To align the clean reads to reference genome, we employed two state-of-the-art and widely used 
aligners, Hisat2 and STAR. On average, 86 and 85% of all the clean reads were aligned to reference genome by 
Hisat2 and STAR tools, respectively. Moreover, 76% of all the clean reads were uniquely mapped to the reference 
genome by each of the aligners. The summary of the RNA sequencing and mapping of the six samples are pre-
sented in Table 1. PCA analysis was performed with the normalized counts (based on the DESeq2 method) to 
investigate if samples from the same breed cluster together. As a result, the first two principal components (PCs) 
explained more than 70% of the variability among the samples and both of the breeds were grouped in distinct 
clusters (Fig. 1). This finding indicated a clear difference between the transcriptome profiles of two breeds. The 
Lori-Bakhtiari samples fell in the negative, whereas the Zel samples fell in the positive direction of the PC1 axis. 
In PC2, one biological replicate of each breed did not cluster with the others likely due to individual variability 
between the animals. Therefore, the differences in gene expression profiles would enable us to identify candidate 
genes explaining the known differences in the fat-tail shape that exist between these two breeds.

Differential expression analysis. We applied two well-established statistical analysis methods (edgeR and 
DESeq2) based on read counts to compare the expression levels in two under investigated breeds. Therefore, four 
approaches were used; Hisat2 + edgeR, Hisat2 + DESeq2, STAR + edgeR and STAR + DESeq2 identifying 327, 
570, 304 and 486 DEGs, respectively. In total, 615 DEGs were found, out of which 209 were up-regulated while 
406 were down-regulated in the Lori-Bakhtiari compared to the Zel. Amongst these DEGs, 607 were identified by 
DESeq2-based methods (~99%), indicating that DESeq2 is over-sensitive. The lowest number of singleton genes 
(defined as genes identified by only one method) was observed by the edgeR method in terms of both up- and 
down-regulated genes. Hisat2 + DESeq2 and STAR + DESeq2 methods returned 33 and 11 up-regulated as well as 

Breeds Raw reads
Trimmed 
reads

Hisat2 total 
mapping (%)

STAR total 
mapping (%)

Hisat2 uniquely 
mapped reads (%)

STAR uniquely 
mapped reads (%)

Lori-Bakhtiari_1 26,282,890 26,282,599 24,072,724 (92) 24,450,510 (93) 22,408,851 (85) 22,939,577 (87)

Lori-Bakhtiari_2 20,075,866 20,075,798 16,649,703 (83) 16,440,090 (82) 15,633,869 (78) 15,446,519 (77)

Lori-Bakhtiari_3 20,428,424 20,428,247 16,879,641 (83) 16,505,913 (81) 15,676,435 (77) 15,393,098 (75)

Zel_1 22,292,871 22,292,640 19,681,007 (83) 19,906,545 (89) 17,456,499 (78) 17,789,855 (80)

Zel_2 20,164,542 20,164,351 16,822,308 (83) 16,448,756 (82) 15,650,133 (78) 15,378,114 (76)

Zel_3 20,532,170 20,532,024 17,843,736 (87) 17,431,817 (85) 16,127,823 (79) 15,786,537 (77)

Table 1. Descriptive statistics of sequence quality and mapping rate from Lori-Bakhtiari and Zel sheep breeds.

Figure 1. PCA scatter plot of gene expression in the sheep breeds. Left and right plots were obtained based 
on Hisat2 and STAR tools results, respectively. Treat_1 and Treat_2 indicate Lori-Bakhtiari and Zel breeds, 
respectively. PCA plot showing variance of the three biological replicates of each of the two sheep breeds. The 
percentages on each axis represent the percentages of variation explained by the principal components.
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70 and 13 down-regulated DEGs respectively, that the other methods did not find significant (adjusted-p < 0.05). 
Moreover, Hisat2 + DESeq2 and STAR + DESeq2 methods both predicted 54 and 76 up- and down-regulated 
genes not identified as DEGs by the two other methods, respectively (Fig. 2). Here, the overlap of DEGs among all 
four methods was considered for both up-regulated and down-regulated genes summing to 264 DEGs. Amongst 
these, 80 DEGs were up-regulated and 184 DEGs were down-regulated in in Lori-Bakhtiari breed (Fig. 2). A 
number of 50 and 173 up- and down-regulated DEGs (related to Lori-Bakhtiari breed) had log2 fold-change 
greater than 2 in expression levels, respectively, which accounted for 84% of the DEGs. The log2 fold-change for 
the commonly identified DEGs ranged from 1.5 to 8.5 (based on Hisat2 + edgeR method). Table 2 lists the top 
10 known up- and down-regulated DEGs, based on their levels of significance. The details of differential gene 

Figure 2. Venn diagram of the overlap in up-regulated and down-regulated DEGs among four methods. S and 
H represent the Hisat2 and STAR aligners, respectively.

Up-regulated DEGs Down-regulated DEGs

Gene name FDR Log2 fold 
change Gene name FDR Log2 fold 

change

Troponin C type 1 
(TNNC1) 3.33E-08 4.95 Stearoyl CoA 

Desaturase (SCD) 6.5E-08 3.81

NME/NM23 family 
member 9 (NME9) 9.7E-07 6.59

C1q and tumor 
necrosis factor 
related protein 6 
(C1QTNF6)

4.09E-07 4.88

synuclein-γ (SNCG) 0.0001 4.02
Family with 
sequence similarity 
198 member B 
(FAM198B)

3.54E-06 3.80

C10orf10 0.0002 3.57 Collagen type 1 α1 
(COL1A1) 3.54E-06 3.83

Signal peptide-CUB-EGF 
domain-containing protein 
2 (SCUBE2)

0.0003 3.33 SEL1L family 
member 3 (SEL1L3) 3.54E-06 7.09

Ras-like protein family 
member 11A (RASL11A) 0.0003 4.08 Peptidyl arginine 

deiminase 1 (PADI1) 3.54E-06 5.08

7SK 0.0006 4.58
Solute carrier family 
25 member 36 
(SLC25A36)

6.99E-06 4.53

Proteoglycan 4 (PRG4) 0.0011 5.18 Netrin G1 (NTNG1) 7.16E-06 5.34

Dual oxidase maturation 
factor 2 (DUOXA2) 0.0012 5.77 Crystallin mu 

(CRYM) 1.48E-05 4.075

Aurora kinase A (AURKA) 0.0012 3.24 EPH receptor A3 
(EPHA3) 2.89E-05 7.016

Table 2. Top 10 known up-regulated and down-regulated DEGs in Lori-Bakhtiari compared to Zel breed based 
on Hisat2 + edgeR method.
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expression analysis can be found in Supplementary File S2. The volcano plot of DEGs between two breeds for all 
four methods is provided in Supplementary File S3. Moreover, a Circos plot was generated to visualize the expres-
sion pattern and distribution of the DEGs on the sheep genome (Fig. 3).

Functional enrichment analysis. To gain further insight into the metabolic processes differing between 
two breeds, functional enrichment analysis was performed (based on biological process GO terms and KEGG 
pathways) using up- and down-regulated DEGs. In total, 184 down-regulated DEGs were annotated in 83 sig-
nificant GO terms, most of which were involved in biological processes related to lipid metabolism such as 
“long-chain fatty-acyl-CoA biosynthetic process”, “fatty acid biosynthetic process”, “lipid biosynthetic process”, 
“long-chain fatty acid biosynthetic process” and “glycerolipid biosynthetic process”. The KEGG pathway analysis 
of these genes identified 10 significant pathways (adjusted p < 0.05), which had similar patterns to GO terms, such  
as “fatty acid metabolism”, “biosynthesis of unsaturated fatty acids” and “fatty acid elongation”. On the other hand, 
GO analysis suggested that 80 up-regulated DEGs in Lori-Bakhtiari were significantly enriched in 93 processes, 
of which 15 terms were associated with “response to interleukin”. Most importantly, some of the significantly 
enriched GO terms were closely associated with lipid metabolism such as “positive regulation of fat cell differen-
tiation” and “positive regulation of brown fat cell differentiation”, which might be of great interest in this dataset. 
Also, four KEGG pathways were significantly enriched for these genes including “ribosome”, “arachidonic acid 

Figure 3. Circos plot of genomic distribution of DEGs in the sheep. The outer layer shows chromosome 
numbers. The positions of the DEGs are shown in the inner light gray layer. Also, the vertical orange lines in 
the inner light gray rings represent the position of the QTLs associated with lipid. The heatmap display the 
expression levels of each DEGs, as red and blue colors indicate down- and up-regulated genes in Lori-Bakhtiari 
breed, respectively.

https://doi.org/10.1038/s41598-019-45665-3


7Scientific RepoRts |          (2019) 9:9203  | https://doi.org/10.1038/s41598-019-45665-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

metabolism”, “thyroid hormone synthesis” and “HIF-1 signaling pathway”. Figure 4 shows the complete list of 
enriched KEGG pathways and the top 20 significant GO terms in different datasets. The complete list of GO terms 
and KEGG pathways are listed in Supplementary File S4.

ppI network and module analysis. To establish DEGs form interactive PPI networks as well as to find 
out the functional relationship among up- and down-regulated DEGs, these genes were imported to STRING 
tool, separately. STRING can identify a network of close interactions among this set of genes based on databases 
of experimental and predicted protein interactions37. Of 264 DEGs, 218 genes were annotated, including 57 and 
161 up- and down-regulated DEGs. Of these, 57 and 159 proteins associated with these genes, were matched with 
the database and used to construct the PPI network (Figs 5 and 6). A total of 208 known or predicted interac-
tions (edges, PPI enrichment p-value = 2.69e-05) were formed among 26 up-regulated DEGs in Lori-Bakhtiari 
(Fig. 5). Also, a total of 92 genes formed a tightly connected network with 208 edges (PPI enrichment p-value = 0) 

Figure 4. Results of functional enrichment analysis. Owing to the large number of significant GO terms, only 
the top 20 significant terms are displayed. Dot black points indicate -Log10 of FDR for each term. Up_GO: GO 
analysis results for up-regulated DEGs, Down_GO: GO analysis results for down-regulated DEGs, Up_KEGG: 
KEGG pathway analysis results for up-regulated DEGs and Down_KEGG: KEGG pathway analysis results for 
down-regulated DEGs.
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TIMP2
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Figure 5. STRING-derived PPI network and the functional modules of up-regulated DEGs in Lori-Bakhtiari 
sheep breed. Pink nodes represent pink module (P-value = 0.0006) and light-green nodes denote the light-green 
module (P-value = 0.004).
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in down-regulated DEGs (Fig. 6). The statistical enrichment analysis incorporated in STRING showed that the 
PPI networks were significantly enriched (adjusted-p < 0.05). It has been accepted that clustering algorithms is 
useful for grouping of proteins into functional modules42. Therefore, functional modules were extracted from PPI 
networks using ClusterONE algorithm. Two functional modules were identified with six nodes in up-regulated 
DEGs in Lori-Bakhtiari breed, designated as pink module (P-value = 0.0006, Fig. 5) and light-green module 
(P-value = 0.004, Fig. 5). Functional enrichment analysis indicated that genes in pink module were significantly 
enriched in 54 GO terms and one KEGG pathway, which were related to translation, tRNA and rRNA processing. 
Also, 289 GO terms and one KEGG pathway were enriched in genes of light-green module, which were mainly 
related to lipid metabolism pathways such as “positive regulation of fat cell differentiation” and “regulation of lipid 
transport”. Furthermore, two significant modules including 12 (orange module in Fig. 6, P-value = 0.00002) and 
14 (dark-green module in Fig. 6, P-value = 0.01) nodes were found in the down-regulated DEGs in Lori-Bakhtiari 
breed. These modules were also involved significant GO terms and KEGG pathways including 118 GO terms 
and 9 KEGG pathways in orange module, and 169 GO terms and 18 KEGG pathways in dark-green module. 
Approximately 59% of the genes in orange module were members of the collagen family. An orange module 
involved significant functional terms such as “extracellular matrix disassembly”, “protein digestion”, “absorption” 
and “focal adhesion”. On the other hand, nodes in dark-green module were mainly enriched in functional terms 
related to lipid metabolism such as “fatty acid biosynthetic process”, “lipid biosynthetic process”, “fatty acid bio-
synthesis” and “PPAR signaling pathway”. The detailed results of PPI network analysis, module identification and 
functional enrichment analysis for the modules are provided in Supplementary File S5.

Validation of differentially expressed genes. To confirm the gene expression profile obtained by 
RNA-Seq analysis, 10 DEGs were examined by Q-RT-PCR. The ratio of the Log2 fold change from the RNA-seq 
analysis was compared to the Log2 fold change obtained with Q-RT-PCR. The mean expression values of 
Q-RT-PCR for each breed were calculated from the results of five independent biological replications. Figure 7 
shows a comparison between the results from Q-RT-PCR and RNA-Seq analysis. For all 10 selected genes, the 
expression pattern determined by Q-RT-PCR analysis was similar to those detected using RNA-Seq, confirming 
the reliability of the RNA-Seq data. The complete results of Q-RT-PCR analysis are provided in Supplementary 
File S6.

Discussion
Here, our primary goal was to determine the possible molecular mechanisms underlying fat accumulation in 
the tail of Iranian sheep breeds to further develop a theoretical basis for new breeding strategies. To have more 
reliable results and to minimize false positives, four pipelines were compared. Results showed that 43% of DEGs 
were common to all four pipelines. Identification of 264 DEGs supported that the genetic profile of fat-tail tissue 
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differed between two breeds. Out of 80 up-regulated DEGs in Lori-Bakhtiari breed, 13 genes (Supplementary File 
S7) have also been reported in similar studies as important DEGs in fat deposition in sheep13,15,18,43 and cattle44. 
Likewise, of 184 down-regulated DEGs, 34 genes (Supplementary File S7) showed the same expression profile in 
similar studies conducted in sheep13–15,18,20,43 and cattle44.

Functional enrichment analysis suggested that most of the DEGs were directly or indirectly involved in lipid 
metabolism related pathways. This implies that molecular mechanisms underlying fat deposition in the tail of 
sheep are controlled by the interactions occurring in a complex network of genes. Among the enriched GO terms 
and KEGG pathways in the up-regulated DEGs, “positive regulation of fat cell differentiation” and “positive regu-
lation of brown fat cell differentiation” were directly related to lipid metabolism. Some of the up-regulated DEGs 
grouped under terms related to lipid metabolism were Zinger finger protein (ZFP36), JUNB proto-oncogene 
(JUNB), retinoic acid receptor responder 2 (RARRES2) and adipogenesis regulatory factor (ADIRF). ZFP36 is 
actively involved in suppressing the expression of cytokines which is a lipolytic factor (e.g. IL-6), thus prevents 
adipose cell lipid degradation and favors its accumulation45. It also prevents obesity and improves lipid metab-
olism46. JUNB is a transcription factor (TF), the role of which has been documented in lipid metabolism and 
adipocyte differentiation47. RARRES2 (chemerin) is an adipokine discoverd to target adipose tissue and regu-
late adipogenesis48, insulin secretion and release of triglycerides and cholesterol in sheep49. ADIRF has many 
roles in fat cell development and fatty acid metabolism50, as it promotes adipocyte differentiation by inducing 
peroxisome proliferator activated receptor gamma (PPARG) expression51. In the present study, samples of adi-
pose tissue were taken at the end of the experimental period when adipocyte differentiation was expected to 
complete, therefore the high expression level in the fat-tailed breed adipocytes pointed to contribution of these 
DEGs in adipocyte metabolism. Among them, ZFP36 and JUNB were also members of the light-green module 
in PPI network (light-green nodes in Fig. 5), suggesting that up-regulation of these genes might have resulted in 
excessive fat deposition in tail fat of Lori-Bakhtiari breed. This finding is further supported with the presence of 
ZFP36, JUNB, as well as activating transcription factor 3 (ATF3) in functional enrichment of light-green module 
for “regulation of lipid transport”. Earlier studies also proved that ATF3 represses the expression of adiponectin 
receptors in adipocyte cells52 and inhibits differentiation of preadipocyte 3T3-L1 cells53. In addition to the enrich-
ment of directly related lipid metabolism processes, the orange module was also enriched for “sterol regulatory 
element-binding protein (SREBP) signaling pathway”, reinforcing the functional importance of the genes in that 
module. The SREBPs regulate pathways of cholesterol and fatty acid biosynthesis (Supplementary File S5)54. These 
findings suggest significant possible roles of these candidate genes in regulating fat deposition, which might have 
ultimately been a key point that contributed in morphological diversity between the sheep breeds.

As explained, GO analysis showed that DEGs related to “response to interleukin” were up-regulated in the 
Lori-Bakhtiari breed. In addition to the role of some inflammatory interleukins as signals of immunity chal-
lenges, recent studies suggested an important role of interleukins in other biological functions, especially in lipid 
metabolism55. Interestingly, response to interleukin-6, 17, 18 and 32 was significantly enriched in GO analysis in 
our study, which agreed with previous findings that IL-644,56, IL-1757 and IL-323, may regulate lipid metabolism 
through direct actions on adipose tissues. In this study, three DEGs were grouped under these terms including 
JUNB, inter-alpha-trypsin inhibitor heavy chain family member 4 (ITIH4) and tissue inhibitor of metalloprotein-
ases 2 (TIMP2). ITIH4 and TIMP2 have been characterized as obesity-associated genes in human58,59. Besides, 
TIMP2 has a dynamic role in differentiation of adipocytes by inhibition of metalloproteinases60. In ruminant 
studies, a significantly higher expression of TIMP2 has been found in adipose tissue of a fat-tailed (Kazakhstan) 
in comparison to thin-tailed (Tibeta) sheep breed15. Hence, these genes may interact with interleukins to regulate 
adipocyte differentiation and fat deposition in fat-tailed sheep breeds.

The other significant GO terms were “response to cAMP” and “regulation of cAMP-mediated signaling”. The 
role of cAMP signaling pathway is well known in regulation of both adipogenesis and lipid partitioning in white 
adipose tissue as well as lipid metabolism in liver61. Several DEGs related to these processes such as JUNB, MAF 
BZIP Transcription Factor F (MAFF), AT-rich interaction domain 5A (ARID5A) and MYB proto-oncogene like 
2 (MYBL2) were up-regulated in Lori-Bakhtiari breed. ARID5 subfamily includes ARID5A and ARID5B. In 

Figure 7. Q-RT-PCR validation of 10 randomly sampled genes identified by RNA-Seq analysis. Log2 fold 
expression change is relative to the mean expression level of the Lori-Bakhtiari breed.
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human62 and mice63, ARID5B knockdown was connected to lipid metabolism defects. ARID5B was not detected 
in our study; however, ARID5A was up-regulated in Lori-Bakhtiari suggesting that this gene might have a similar 
function in fatty acid metabolism, possibly through the cAMP signaling pathway. A previous study reported 
higher expression of MYBL2 in fat-tail of Kazakhstan (fat-tailed) compared with Tibetan (thin-tailed) sheep 
breed13. It appears that all the aforementioned genes contribute to a network controlling fat accumulation in tail 
of Lori-Bakhtiari breed.

In Lori-Bakhtiari, an increased expression was observed in genes related to MAPK signaling pathways includ-
ing growth arrest and DNA damage inducible beta (GADD45B), retinoic acid receptor responder 2 (RARRES2) 
and ZFP36. The participation of MAPK pathway in adipogenesis either directly64 or indirectly, through inducing 
the expression of these genes, has been highlighted in previous studies45,46,48,49. In our study, GADD45B and 
ZFP36 were members of light-green module in PPI network (Fig. 5). Similarly, Huang et al.44, reported that the 
MAPK signaling pathway was functionally enriched for the up-regulated DEGs in Wagyu (a cattle breed with 
high intramuscular fat) compared to Holstein breed. Enrichment of this pathways has also been reported in 
miRNA-associated mRNA targets in fat-tailed Kazakhstan versus thin-tailed Tibetan sheep breed15. Thus, results 
of the current study provide further evidence that MAPK signaling pathway is an important component contrib-
uting to modulation of gene network of fat deposition in tail tissue.

Most of the significantly enriched GO terms and KEGG pathways of up-regulated DEGs in the Zel breed 
were directly related to lipid metabolism as other previous studied15,18,20,43 (Fig. 4, Supplementary File S4). For 
example, “biosynthesis of unsaturated fatty acids” and “fatty acid elongation” were enriched through GO enrich-
ment of Lanzhou (fat-tailed) vs. Tibetan (thin-tailed) sheep breeds20. DEGs belonging to these processes were 
included SCD, fatty acid synthase (FASN), acetyl-CoA carboxylase alpha (ACACA), carnitine palmitoyl trans-
ferase 2 (CPT2), ELOVL fatty acid elongase 5 and 6 (ELOVL5 and ELOVL6), acyl-CoA synthetase long-chain 
family member 1 (ACSL1), enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), hydrox-
ysteroid 17-beta dehydrogenase 12 (HSD17B12) and ATP citrate lyase (ACLY). Here, the gene expression pattern 
of FABP4, FASN, SCD and lipoprotein lipase (LPL) was consistent with our previous study8. Similarly, SCD, 
FASN, ACACA, ELOVL6, HSD17B12 and ACLY were reported as down-regulated DEGs in adipose tissue of 
Han (fat-tailed) in comparison with Dorset (thin-tailed) sheep breed. A negative regulatory relationship between 
a lincRNA and ACACA was proposed to regulate fat deposition in sheep breeds in our previous work21.

A possible explanation for down-regulation of a few lipid metabolism related genes in Lori-Bakhtiari breed is 
the potential functions of these genes in fatty acid oxidation. For instance, “PPAR signaling pathway” was signif-
icant in down-regulated genes in Lori-Bakhtiari as well as in the dark-green module (Fig. 6) and it is well known 
that TFs of the PPARG are crucially responsible for the clearance of cellular lipids via the regulation of many genes 
involved in fatty acid oxidation65. This corresponded with a previous study that showed “PPAR signaling pathway” 
was enriched in DEGs between fat-tail tissue of Guangling Large Tailed and Small Tailed Han sheep breeds43. In 
the present study, CPT2, EHHADH and ACSL1 were enriched in this pathway. CPT2 is essential for fatty acid oxi-
dation66 and is ubiquitously expressed in tissues requiring fatty acids as energy-producing substrates67. Moreover, 
higher fat content in the tail than in visceral in Tan sheep breed is attributed to down-regulation of this gene16. 
EHHADH encodes a bifunctional β-oxidation enzyme involved in the peroxisomal fatty acid oxidation68. ACSL1 
prepares long-chain fatty acids for oxidation through addition of co-enzyme A69. As the latter enzyme also directs 
fatty acids toward deposition in the form of triglycerides, the co-expression of ACSL1 with other aforementioned 
genes in the tail of Zel might be indicative of preferential partitioning of ACSL1 to oxidative, rather than deposi-
tion pathways. In addition, inhibition of ACLY is associated with fatty acid oxidation70. Thus, it is likely that the 
higher expression of these genes were responsible for stimulation of fatty acid oxidation leading to reduced fat 
deposition in the tail of Zel breed, as previously suggested, to explain smaller tail fat of the Tibetan vs. Kazakhstan 
sheep13.

On the other hand, down-regulated genes in Lori-Bakhtiari might have been related to other pathways than 
fat deposition such as fat composition. As result, the fatty acid composition of tail fat between two sheep breeds 
might have been different. In support of this, a significant breed effect has been reported on fatty acid composition 
of tail fat71. Also, lower SCD expression was reported in Guangling Large Tailed than Small Tailed Han43 as well as 
in Han than in Dorset (thin-tailed) sheep18. Based on this, lower content of saturated fatty acids can be anticipated 
in fat-tailed breeds, as SCD catalyzes an essential step in desaturation of saturated fatty acids43. Also, it is reported 
that HSD17B1218 and ELOVL672 (both act as elongases) are important genes for controlling the overall balance of 
fatty acid composition. Likewise, lack of an obvious relationship between FASN expression and fat contents have 
been reported in sheep73, pig74 and chicken75. A previous study reported that the acetyl CoA metabolic network 
related genes (including ACACA) was down-regulated in obese individuals with type 2 diabetes compared to 
those with normal glucose tolerance76. These evidences support our speculation that down-regulated genes in 
Lori-Bakhtiari breed might indicate a shift in fat metabolism toward altered fatty acid composition. However, 
analyzing fatty acid profile of tail fat depots in these breeds is warranted to validate this hypothesis.

One of the important significantly enriched pathways was “extracellular matrix (ECM)-receptor interaction”, 
in which up-regulation of ITGA11, TNC and some members of collagens family (including COL1A1, COL1A2, 
COL6A3 and COL6A6) were observed in Zel breed. All the genes were members of orange module (Fig. 6), 
suggesting that they are co-regulated to form molecular networks. ECM-receptor interaction has been reported 
as enriched pathway in DEGs between fat-tail tissue of Guangling Large Tailed and Small Tailed Han sheep43. 
A transcriptome study in adipose tissue of cattle highlighted the importance of ECM pathway in adipogene-
sis77. Down-regulation of genes encoding ECM has been shown during differentiation of human mesenchymal 
stromal-cells into adipocytes78. Thus, it is tempting to speculate that accumulation of less fat in tail of Zel breed is 
associated with up-regulation of collagen genes as well as other ECM-related genes.

Several DEGs (including COL1A1, COL5A1 and discoidin domain receptor tyrosine kinase 2 (DDR2)) 
involved in “Wnt signaling pathway” were down-regulated in Lori-Bakhtiari breed. The activation of “Wnt 
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signaling pathway” can result in restriction of adipogenesis79. Besides, the orange module (Fig. 6) was also signif-
icantly enriched for “positive regulation of canonical Wnt signaling pathway”, suggesting that the expression of 
these genes might play an active role in regulating fat deposition in sheep tails.

In addition, down-regulated DEGs were predominantly over-represented in term of “branched-chain amino 
acid catabolic process”. The catabolism of branched chain amino acids profoundly impacts adipose fat cell accu-
mulation so that it supplies over 40% of carbon skeleton needed for biosynthesis of fatty acids and other fatty 
acid-driven molecules. Nevertheless, the expression profile of genes controlling this process is recently shown 
to be dependent on the differentiation phase of adipocytes, repressing as the cell advances to full differentia-
tion80. On the other hand, there are limited reports indicating that elevated circulating concentrations of these 
amino acids may serve as biomarkers of insulin resistance81. Therefore, down-regulation of DEGs related to the 
branched-chain amino acid catabolic process in Lori-Bakhtiari might have been resulted from taking samples at 
the end of the experiment, i.e. the full differentiation stage of adipose tissue or an adaptive mechanism to main-
tain insulin sensitivity in the fat-tail tissue. Alternatively, this process might have been differentially up-regulated 
in tail of the Zel breed as a result of increased storage of fatty acids in adipocytes as this process is stimulated with 
increased glucose availability.

Several DEGs related to “regulation of actin cytoskeleton” were down-regulated in Lori-Bakhtiari compared 
to Zel breed. Interestingly, decreased expression of the genes related to these processes occurred during adipocyte 
differentiation in sheep82. Also, the importance of this pathway in fat deposition and adipocyte regulation have 
been documented in longissimus dorsi muscle of bovine83 as well as in Ankole cattle breed84. These results suggest 
a link between down-regulation of these genes and deposition of greater amount of fat in Lori-Bakhtiari breed.

In addition, several TFs were found (based on AnimalTFDB database85) among the DEGs, of which 
seven were up-regulated (JUNB, distal-less homeobox 5 (DLX5), ATF3, ARID5, MYBL2, MAFF and 
ENSOARG00000011169), while four were down-regulated (estrogen receptors α (ESR1), SMAD family mem-
ber 5 (SMAD5), neuronal PAS domain protein 2 (NPAS2) and myocyte enhancer factor 2A (MEF2A)) in 
Lori-Bakhtiari breed. Functional crucial roles of four of the seven up-regulated TFs that were presented in PPI 
network (Fig. 5), were discussed above. Of the four down-regulated TFs, two TFs (ESR1 and MEF2A) were 
observed in PPI network (Fig. 6). ESR1 is involved in energy balance86 and previous studies have reported a clear 
relationship between ESR1 expression level87,88 as well as it’s polymorphisms89 with obesity. MEF2A regulates 
Glucose transporter type 4 (GLUT4)90, which is the predominant glucose transporter mainly expressed in adi-
pose tissue. Down-regulation of GLUT4 gene has been reported in adipose tissue, under obese conditions in both 
humans and rodents91. These were in accordance with down-regulation of DEGs related to branched chain amino 
acid catabolism in terms of the common effect that they have on insulin resistance. The present findings indicate 
that the transcriptome changes of these TFs may activate the corresponding down-stream genes ultimately reg-
ulating in fat deposition in tail of sheep. Moreover, four up-regulated and two down-regulated TFs presented in 
PPI network seem particularly promising for further studies on fat deposition.

Conclusions
In this study, two Iranian sheep breeds with the fat- and thin-tail were compared through RNA-Seq data. Some 
specific candidate pathways containing genes involved in lipid deposition were identified. Results suggested that 
in addition to pathways affecting lipid metabolism, a series of enriched functional terms related to “response to 
interleukin”, “MAPK signaling pathways”, “Wnt signaling pathway”, “ECM-receptor interaction”, “regulation of 
actin cytoskeleton” and “response to cAMP” may contribute to the deposition of fat in the tail of Lori-Bakhtiari 
sheep, through interacting with pathways related to lipid metabolism. Moreover, PPI network analysis showed 
that there was a close interaction among the DEGs. Results suggested that four modules, which were significantly 
enriched with GO terms as well as KEGG pathways related to lipid metabolism, were also found in PPI networks. 
This means that members of these modules can be considered as important candidate genes in tail fat metabolism 
in sheep. Several genes were found to be differentially expressed in the sheep breeds, including ZFP36, JUNB, 
RARRES2, ADIRF, AFT3, ARID5A, MYBL2, GADD45B, SCD, FASN, ACACA, CPT2, ELOVL5, ELOVL6, 
ACSL1, EHHADH, HSD17B12, ACLY, COL1A1, COL1A2, ITGA11, TNC, COL6A3, ESR1 and MEF2A, which 
were directly or indirectly important in fatty acid metabolism. Differential expression of related genes may pro-
mote fat deposition in the tail of Lori-Bakhtiari, compared with the Zel breed. Overall, our findings suggested that 
the regulation of adipocyte differentiation might be different in these breeds. It is obvious that understanding the 
specific regulation pathways of fat deposition is difficult to verify solely by gene expression profiling. Therefore, 
further work based on the results from this study are required to uncover the exact genetic mechanisms of fat 
deposition in the tail of sheep.

References
 1. Chessa, B. et al. Revealing the history of sheep domestication using retrovirus integrations. Science (80-.). 324, 532–536 (2009).
 2. Ryder, M. L. Sheep and man. Antiquity, https://doi.org/10.1017/S0003598X0005167X (1983).
 3. Xu, S.-S. et al. Genome-wide association analysis identifies the genetic basis of fat deposition in the tails of sheep (Ovis aries). Anim. 

Genet. 48, 560–569 (2017).
 4. Yousefi, A. R., Kohram, H., Shahneh, A. Z., Nik-Khah, A. & Campbell, A. W. Comparison of the meat quality and fatty acid 

composition of traditional fat-tailed (Chall) and tailed (Zel) Iranian sheep breeds. Meat Sci. 92, 417–422 (2012).
 5. Ermias, E., Yami, A. & Rege, J. E. O. Fat deposition in tropical sheep as adaptive attribute to periodic feed fluctuation. J. Anim. Breed. 

Genet. 119, 235–246 (2002).
 6. Almeida, A. M. The Damara in the context of Southern Africa fat-tailed sheep breeds. Tropical Animal Health and Production 43, 

1427–1441 (2011).
 7. Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G. & McEwan, J. C. Genomic scan of selective sweeps in thin 

and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet. 13, 1–15 (2012).
 8. Bakhtiarizadeh, M. R., Moradi-Shahrbabak, M. & Ebrahimie, E. Underlying functional genomics of fat deposition in adipose tissue. 

Gene 521, 122–128 (2013).

https://doi.org/10.1038/s41598-019-45665-3
https://doi.org/10.1017/S0003598X0005167X


1 2Scientific RepoRts |          (2019) 9:9203  | https://doi.org/10.1038/s41598-019-45665-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

 9. Farahani, A. H. K., Shahrbabak, H. M., Shahrbabak, M. M. & Yeganeh, M. Relationship of fat-tail and body measurements with 
some economic important traits in fat-tail Makoei breed of Iranian sheep. African. J. Biotechnol. 9, 5989–5992 (2010).

 10. Valizadeh, R. & Box, P. O. Iranian sheep and goat industry at a glance. In Stress Management in Small Ruminant Production and 
Product Processing 1–9 (2010).

 11. Vatankhah, M. & Zamani, F. Phenotypic and genetic characteristics of longevity in Lori-Bakhtiari sheep. Biotechnol. Anim. Husb. 23, 
323–329 (2007).

 12. Yousefi, S., Azari, M. A., Zerehdaran, S., Samiee, R. & Khataminejhad, R. Effect of β-lactoglobulin and κ-casein genes polymorphism 
on milk composition in indigenous Zel sheep. Arch. Anim. Breed. 56, 216–224 (2013).

 13. Wang, X. et al. Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene 549, 252–257 (2014).
 14. Miao, X., Luo, Q., Qin, X., Guo, Y. & Zhao, H. Genome-wide mRNA-seq profiling reveals predominant down-regulation of lipid 

metabolic processes in adipose tissues of Small Tail Han than Dorset sheep. Biochem. Biophys. Res. Commun. 467, 413–420 (2015).
 15. Zhou, G. et al. Integrating miRNA and mRNA Expression Profiling Uncovers miRNAs Underlying Fat Deposition in Sheep. Biomed 

Res. Int. 2017 (2017).
 16. Kang, D. et al. Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-

tailed sheep. Sci. Rep., https://doi.org/10.1038/s41598-017-14967-9 (2017).
 17. Li, B. et al. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition. 

BMC Genomics, https://doi.org/10.1186/s12864-018-4747-1 (2018).
 18. Miao, X., Luo, Q., Qin, X. & Guo, Y. Genome-wide analysis of microRNAs identifies the lipid metabolism pathway to be a defining 

factor in adipose tissue from different sheep. Sci. Rep. 5, 1–9 (2015).
 19. Pan, Y. et al. MicroRNA expression patterns in tail fat of different breeds of sheep. Livest. Sci. 207, 7–14 (2018).
 20. Ma, L. et al. Comparative transcriptome profiling of mRNA and lncRNA related to tail adipose tissues of sheep. Front. Genet., https://

doi.org/10.3389/fgene.2018.00365 (2018).
 21. Bakhtiarizadeh, M. R. & Salami, S. A. Identification and Expression Analysis of Long Noncoding RNAs in Fat-Tail of Sheep Breeds. 

G3&amp;#58; Genes|Genomes|Genetics, https://doi.org/10.1534/g3.118.201014 (2019).
 22. Mohammadi, H., Shahrebabak, M. M. & Sadeghi, M. Association Between Single Nucleotide Polymorphism in the Ovine DGAT1 

Gene and Carcass Traits in Two Iranian Sheep Breeds. Anim. Biotechnol. 24, 159–167 (2013).
 23. Gerhard, G. S. et al. Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme 

obesity. Int. J. Obes. (Lond). 38, 371–8 (2014).
 24. Wang, T. et al. Deep sequencing of the transcriptome reveals inflammatory features of porcine visceral adipose tissue. Int. J. Biol. Sci. 

9, 550–556 (2013).
 25. Sheng, X. et al. RNA-seq analysis of bovine intramuscular, subcutaneous and perirenal adipose tissues. Mol. Biol. Rep. 41, 1631–1637 

(2014).
 26. Baruzzo, G. et al. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat. Methods 14, 135–139 (2017).
 27. Engström, P. G. et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat. Methods 10, 1185–1191 (2013).
 28. Costa-Silva, J., Domingues, D. & Lopes, F. M. RNA-Seq differential expression analysis: An extended review and a software tool. Plos 

One 12, e0190152 (2017).
 29. Everaert, C. et al. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Sci. 

Rep. 7 (2017).
 30. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
 31. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 

(2015).
 32. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 

166–169 (2015).
 33. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene 

expression data. Bioinformatics 26, 139–40 (2010).
 34. Love, M. I., Anders, S. & Huber, W. Differential analysis of count data - the DESeq2 package. Genome Biology 15 (2014).
 35. Varet, H., Brillet-Guéguen, L., Coppée, J. Y. & Dillies, M. A. SARTools: A DESeq2- and edgeR-based R pipeline for comprehensive 

differential analysis of RNA-Seq data. PLoS One 11 (2016).
 36. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, 

W90–W97 (2016).
 37. Szklarczyk, D. et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly 

accessible. Nucleic Acids Res. 45, D362–D368 (2017).
 38. Nepusz, T., Yu, H. & Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 

9, 471–472 (2012).
 39. Shannon, P. et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 13, 

2498–2504 (2003).
 40. Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74 (2007).
 41. Bakhtiarizadeh, M. R., Najaf-Panah, M. J., Mousapour, H. & Salami, S. A. Versatility of different melting temperature (Tm) calculator 

software for robust PCR and real-time PCR oligonucleotide design: A practical guide. Gene Reports 2, 1–3 (2016).
 42. Mozduri, Z., Bakhtiarizadeh, M. R. & Salehi, A. Integrated regulatory network reveals novel candidate regulators in the development 

of negative energy balance in cattle. Animal 12, 1196–1207 (2018).
 43. Wang, J. et al. Transcriptome Analysis of Three Sheep Intestinal Regions reveals Key Pathways and Hub Regulatory Genes of Large 

Intestinal Lipid Metabolism. Sci. Rep., https://doi.org/10.1038/s41598-017-05551-2 (2017).
 44. Huang, W. et al. Global transcriptome analysis identifies differentially expressed genes related to lipid metabolism in Wagyu and 

Holstein cattle. Sci. Rep. 7 (2017).
 45. Bouchard, L. et al. ZFP36: A promising candidate gene for obesity-related metabolic complications identified by converging 

genomics. Obes. Surg. 17, 372–382 (2007).
 46. Shan, J., Guennoun, A., Thomas, R. & Chouchane, L. Autophagy Retards Inflammatory Mrna Decay And Elicits A White Phenotype 

During Adipocyte Maturation. In Qatar Foundation Annual Research Conference HBPP0971 doi:0.5339/qfarc.2014.HBPP0971 
(2014).

 47. Luther, J. et al. Fra-2/AP-1 controls adipocyte differentiation and survival by regulating PPARγ and hypoxia. Cell Death Differ. 21, 
655 (2014).

 48. Yamauchi, E. et al. Single nucleotide polymorphism in the coding region of bovine chemerin gene and their associations with carcass 
traits in Japanese Black cattle. Asian-Australasian. J. Anim. Sci. 28, 1084–1089 (2015).

 49. Suzuki, Y. et al. Chemerin analog regulates energy metabolism in sheep. Anim. Sci. J. 83, 263–267 (2012).
 50. Eriksson, P. et al. Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med. Genomics 

8 (2015).
 51. Ni, Y. et al. A Novel pro-adipogenesis factor abundant in adipose tissues and over-expressed in obesity acts upstream of PPARγ and 

C/EBPα. J. Bioenerg. Biomembr. 45, 219–228 (2013).
 52. Park, H. J., Kang, Y. M., Kim, C. H. & Jung, M. H. ATF3 negatively regulates adiponectin receptor 1 expression. Biochem. Biophys. 

Res. Commun. 400, 72–77 (2010).

https://doi.org/10.1038/s41598-019-45665-3
https://doi.org/10.1038/s41598-017-14967-9
https://doi.org/10.1186/s12864-018-4747-1
https://doi.org/10.3389/fgene.2018.00365
https://doi.org/10.3389/fgene.2018.00365
https://doi.org/10.1534/g3.118.201014
https://doi.org/10.1038/s41598-017-05551-2


13Scientific RepoRts |          (2019) 9:9203  | https://doi.org/10.1038/s41598-019-45665-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

 53. Jang, M. K., Kim, C. H., Seong, J. K. & Jung, M. H. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells. Biochem. Biophys. Res. 
Commun. 421, 38–43 (2012).

 54. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in 
the liver. Journal of Clinical Investigation 109, 1125–1131 (2002).

 55. Febbraio, M. A. Role of interleukins in obesity: Implications for metabolic disease. Trends in Endocrinology and Metabolism 25, 
312–319 (2014).

 56. Shirazi, R. et al. Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 
and IL-6. Proc. Natl. Acad. Sci. USA 110, 16199–16204 (2013).

 57. Yu, X. H. et al. Interleukin-17A in lipid metabolism and atherosclerosis. Clinica Chimica Acta 431, 33–39 (2014).
 58. Srivastava, A., Srivastava, N. & Mittal, B. Genetics of Obesity. Indian Journal of Clinical Biochemistry 31, 361–371 (2016).
 59. Minchenko, D., Ratushna, O., Bashta, Y., Herasymenko, R. & Minchenko, O. The expression of TIMP1, TIMP2, VCAN, SPARC, 

CLEC3B and E2F1 in subcutaneous adipose tissue of obese males and glucose intolerance. CellBio 2, 25–33 (2013).
 60. Mariman, E. C. M. & Wang, P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell. Mol. Life Sci. 67, 

1277–1292 (2010).
 61. Ravnskjaer, K., Madiraju, A. & Montminy, M. Role of the cAMP pathway in glucose and lipid metabolism. Handb. Exp. Pharmacol. 

233, 29–49 (2015).
 62. Liu, Y. et al. Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis. Nat. 

Commun. 8 (2017).
 63. Whitson, R. H., Tsark, W., Huang, T. H. & Itakura, K. Neonatal mortality and leanness in mice lacking the ARID transcription factor 

Mrf-2. Biochem. Biophys. Res. Commun. 312, 997–1004 (2003).
 64. Zhang, Q. et al. Effects of maternal chromium restriction on the long-term programming in MAPK signaling pathway of lipid 

metabolism in mice. Nutrients 8 (2016).
 65. Ament, Z., Masoodi, M. & Griffin, J. L. Applications of metabolomics for understanding the action of peroxisome proliferator-

activated receptors (PPARs) in diabetes, obesity and cancer. Genome Medicine 4 (2012).
 66. Wanders, R. J. A., Ruiter, J. P. N., Ijlst, L., Waterham, H. R. & Houten, S. M. The enzymology of mitochondrial fatty acid beta-

oxidation and its application to follow-up analysis of positive neonatal screening results. Journal of Inherited Metabolic Disease, 
https://doi.org/10.1007/s10545-010-9104-8 (2010).

 67. Britton, C. H. et al. Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal 
localization and partial analysis of the gene. Proc. Natl. Acad. Sci. USA 92, 1984–8 (1995).

 68. Wu, X. & Xu, J. New Role of Hispidulin in Lipid Metabolism: PPARα Activator. Lipids 51, 1249–1257 (2016).
 69. Ellis, J. M. et al. Adipose Acyl-CoA synthetase-1 directs fatty acids toward β-oxidation and is required for cold thermogenesis. Cell 

Metab. 12, 53–64 (2010).
 70. Migita, T. et al. Inhibition of ATP citrate lyase induces triglyceride accumulation with altered fatty acid composition in cancer cells. 

Int. J. Cancer 135, 37–47 (2014).
 71. Moharrery, A. Effect of docking and energy of diet on carcass fat characteristics in fat-tailed Badghisian sheep. Small Rumin. Res., 

https://doi.org/10.1016/j.smallrumres.2005.12.021 (2007).
 72. Corominas, J. et al. Polymorphism in the ELOVL6 Gene Is Associated with a Major QTL Effect on Fatty Acid Composition in Pigs. 

PLoS One, https://doi.org/10.1371/journal.pone.0053687 (2013).
 73. Qiao, Y. et al. Developmental Changes of the FAS and HSL mRNA Expression and Their Effects on the Content of Intramuscular Fat 

in Kazak and Xinjiang Sheep. J. Genet. Genomics 34, 909–917 (2007).
 74. Teng, L. et al. Overexpression of ATP citrate lyase in renal cell carcinoma tissues and its effect on the human renal carcinoma cells in 

vitro. Oncol. Lett. 15, 6967–6974 (2018).
 75. Cui, H. X. et al. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major 

tissues of fast-and slow-growing chickens. BMC Genomics 13, 213 (2012).
 76. Dharuri, H. et al. Downregulation of the acetyl-CoA metabolic network in adipose tissue of obese diabetic individuals and recovery 

after weight loss. Diabetologia 57, 2384–2392 (2014).
 77. Lee, H. J. et al. Comparative Transcriptome Analysis of Adipose Tissues Reveals that ECM-Receptor Interaction Is Involved in the 

Depot-Specific Adipogenesis in Cattle. PLoS One 8 (2013).
 78. Casado-Díaz, A. et al. Transcriptomic Analyses of Adipocyte Differentiation From Human Mesenchymal Stromal-Cells (MSC). J. 

Cell. Physiol. 232, 771–784 (2017).
 79. Christodoulides, C., Lagathu, C., Sethi, J. K. & Vidal-Puig, A. Adipogenesis and WNT signalling. Trends in Endocrinology and 

Metabolism 20, 16–24 (2009).
 80. Halama, A. et al. Metabolic switch during adipogenesis: From branched chain amino acid catabolism to lipid synthesis. Arch. 

Biochem. Biophys. 589, 93–107 (2016).
 81. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).
 82. Rodríguez Fernández, J. L. & Ben-Ze’ev, A. Regulation of fibronectin, integrin and cytoskeleton expression in differentiating 

adipocytes: inhibition by extracellular matrix and polylysine. Differentiation 42, 65–74 (1989).
 83. Poleti, M. D. et al. Longissimus dorsi muscle label-free quantitative proteomic reveals biological mechanisms associated with 

intramuscular fat deposition. J. Proteomics 179, 30–41 (2018).
 84. Taye, M. et al. Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. 

BMC Genet. 18, 11 (2017).
 85. Zhang, H. M. et al. AnimalTFDB 2.0: A resource for expression, prediction and functional study of animal transcription factors. 

Nucleic Acids Res. 43, D76–D81 (2015).
 86. Ropero, A. B., Alonso-Magdalena, P., Quesada, I. & Nadal, A. The role of estrogen receptors in the control of energy and glucose 

homeostasis. Steroids 73, 874–879 (2008).
 87. Takeda, K. et al. Progressive development of insulin resistance phenotype in male mice with complete aromatase (CYP19) deficiency. 

Journal of Endocrinology 176, 237–246 (2003).
 88. Subbiah, M. T. R. Methods of measuring bile acids in bile and feces. Ann. Clin. Lab. Sci. 3, 362–368 (1973).
 89. Zhu, L., Martinez, M. N., Emfinger, C. H., Palmisano, B. T. & Stafford, J. M. Estrogen signaling prevents diet-induced hepatic insulin 

resistance in male mice with obesity. AJP Endocrinol. Metab. 306, E1188–E1197 (2014).
 90. Im, S. S., Kwon, S. K., Kim, T. H., Kim, H. I. & Ahn, Y. H. Regulation of glucose transporter type 4 isoform gene expression in muscle 

and adipocytes. IUBMB Life 59, 134–145 (2007).
 91. Shepherd, P. R. & Kahn, B. B. Glucose Transporters and Insulin Action — Implications for Insulin Resistance and Diabetes Mellitus. 

N. Engl. J. Med. 341, 248–257 (1999).

Acknowledgements
We would like to thank the University of Tehran and Iran National Science Foundation (INSF) for the financial 
support of this work. This research was supported under INSF projects funding scheme (Grant Number: 
93051308). We also thank Dr. Francisco Peñagaricano, Rocio Amorin and Mackenzie Dickson from University of 
Florida for critical reading and commenting on the manuscript.

https://doi.org/10.1038/s41598-019-45665-3
https://doi.org/10.1007/s10545-010-9104-8
https://doi.org/10.1016/j.smallrumres.2005.12.021
https://doi.org/10.1371/journal.pone.0053687


1 4Scientific RepoRts |          (2019) 9:9203  | https://doi.org/10.1038/s41598-019-45665-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author Contributions
M.R.B. conceived the ideas, designed study and analyzed the RNA-Seq data. S.A.S. performed Q-RT-PCR and 
gene expression data analysis. M.R.B., A.A.A., A.S., R.A.R. and S.A.S. interpreted the data and wrote the main 
manuscript text. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-45665-3.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-45665-3
https://doi.org/10.1038/s41598-019-45665-3
http://creativecommons.org/licenses/by/4.0/

	Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep
	Materials and Methods
	Ethics statement and experimental design. 
	RNA Extraction and transcriptome sequencing. 
	Quality control and read trimming. 
	Mapping to genome and identification of DEGs. 
	Functional analysis. 
	Construction of PPI network and screening of sub-networks. 
	Q-RT-PCR validation of data. 

	Results
	Descriptive statistics of RNA-Seq data. 
	Differential expression analysis. 
	Functional enrichment analysis. 
	PPI network and module analysis. 
	Validation of differentially expressed genes. 

	Discussion
	Conclusions
	Acknowledgements
	Figure 1 PCA scatter plot of gene expression in the sheep breeds.
	Figure 2 Venn diagram of the overlap in up-regulated and down-regulated DEGs among four methods.
	Figure 3 Circos plot of genomic distribution of DEGs in the sheep.
	Figure 4 Results of functional enrichment analysis.
	Figure 5 STRING-derived PPI network and the functional modules of up-regulated DEGs in Lori-Bakhtiari sheep breed.
	Figure 6 STRING-derived PPI network and the functional modules of down-regulated DEGs in Lori-Bakhtiari sheep breed.
	Figure 7 Q-RT-PCR validation of 10 randomly sampled genes identified by RNA-Seq analysis.
	Table 1 Descriptive statistics of sequence quality and mapping rate from Lori-Bakhtiari and Zel sheep breeds.
	Table 2 Top 10 known up-regulated and down-regulated DEGs in Lori-Bakhtiari compared to Zel breed based on Hisat2 + edgeR method.




