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In this paper, a broadband and tunable radar cross section (RCS) reduction structure is proposed 
by using the hybrid physical mechanism that is based on high-order reflections and Salisbury-type 
absorption. Our design combines the high-index grating structure with a traditional Salisbury screen 
in which the lossy sheet is made of a graphene structure. When it is illuminated by a plane wave with 
normal incidence, the Salisbury screen can absorb the incoming wave, and the introducing high-index 
grating structure could further reduce the backward scattering wave by generating high-order reflection 
beams, which broadens the RCS reduction bandwidth. In addition, the RCS reduction level can be 
dynamically controlled by tuning the surface resistance of the graphene layer. Simulated results show 
that the proposed structure can realize tunable RCS reduction between 4.1 and 18 GHz under normal 
incidence with different graphene resistances. Experimental results are in accordance with those of 
the simulation results. In addition, the scattering field distributions and the plots of surface power loss 
density have been illustrated to analyze the RCS-reduction mechanism of our structure.

Radar cross section (RCS) reduction techniques have been extensively investigated in the past decades due to its 
particularly important applications in civil and military areas. So far, there have been mainly two techniques to 
control the radar scattering signal. One technique is to adopt the radar absorbing materials to convert the incident 
radar wave into heat or other kind of energy. Many radar absorbers, such as Salisbury screen1, Jaumann absorber2, 
resistive frequency selective surface (FSS)3,4 and magnetic absorbing materials5,6, have been reported to realize 
the RCS reduction by absorbing the incident wave. The Salisbury screen is very simple in structure, which is only 
made of a continuous resistive sheet placed at a quarter-wavelength above the conducting plate7. However, its 
absorption bandwidth is usually very narrow. The Jaumann absorber can improve the absorption bandwidth by 
employing additional resistive sheets and spacers, but at cost of increasing the total thickness8. In order to simul-
taneously realize broadband absorption and retain a small thickness, the resistive FSS was proposed to reach this 
goal by appropriately introducing conductive and resistive pattern on one substrate backed by the ground plane3. 
In addition, there have been also many metamaterial absorbers for wideband RCS reduction9,10. The other RCS 
reduction technique is to guide the reflected wave to other directions that do not point to the radar receivers by 
using the shaped geometries, thus the backward scattering signal can be sharply reduced11. In reality, the loss of 
the scattering signal at this case could be considered as one kind of radiative loss12. The recent metasurface has 
caused much attention due to its strong phase modulation capability, which can control the electromagnetic scat-
tering shape of the objects with nearly no influence on the geometric properties13–20. Through modulating reflec-
tion phase distribution with proper arrangement of all the meta-atoms in a space/size/shape-variant manner, the 
backscatter waves could be steered to pre-designed directions. Using this method, we can obtain the predesigned 
virtual EM shape of the real objects without optimizing its physical shape21. So far, most of the current RCS reduc-
tion materials or structures only adopted one of the above two techniques to suppress the backward scattering 
wave. In addition, they remain passive structures with fixed RCS reduction performance.
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Recently, some tunable RCS reduction methods have been proposed to dynamically manipulate the reflected 
wave. For example, by introducing tunable material22,23 or active lumped components24,25 into the traditional 
radar absorbers, the absorbing efficiency or frequency can be dynamically controlled. Graphene, as a kind of 
two-dimensional material, has been also used to construct the tunable radar absorber. In ref.26, voltage-controlled 
graphene was proposed to switch the absorbing efficiency at microwave region by changing its effective sheet 
resistance. More recently, several approaches have been proposed to extend the tuning frequency band of the 
microwave reflectivity. However, most of graphene-based tunable absorbers were just numerically investigated 
without experimental verification27–29.

In this paper, we propose a novel broadband and tunable RCS reduction method by simultaneously intro-
ducing absorptive loss and radiative loss in the design. The traditional Salisbury screen and high-index dielec-
tric grating structure are integrated into one structure. The graphene layer is used as a lossy sheet of Salisbury 
screen, which can absorb the incoming wave and then produce the absorption loss. The employed high-index 
grating structure could generate high-order reflection beams, resulting in the radiative loss. Experimental results 
show that the 10 dB RCS reduction is realized between 4.4 and 18 GHz, and by applying DC bias voltage on the 
graphene layer, the RCS reduction level can be further dynamically tuned. The hybrid physical mechanisms are 
explained by examining the scattering field distributions and surface power loss density.

Results
Structure design and its simulation results. Figure 1(a) shows the proposed RCS reduction structure. It 
is composed of one-dimensional (1D) high-index dielectric grating structure and the traditional Salisbury screen. 
The corresponding side view of our structure is given in Fig. 1(b). The 1D high-index grating structure is made 
of aluminum oxide material (ε = 9.8) and its period is p = 100 mm. The width and height of the grating strip are 
set as w = 65 mm and h = 3 mm, respectively. The graphene structure is used as a lossy sheet of Salisbury screen, 
which is attached to a 5 mm-thick foam slab (ε = 1.1) backed with a metal plate. In this design, the grating period 
is set to be larger than the incident wavelength, so our structure illuminated by an x-polarized plane wave with 
normal incidence will generate a series of high-order reflection beams, and their reflection angles can be derived 
from the grating equation Psinθm = mλ. Here, P, θm and λ are the grating period, the mth order reflection angle 
and incident wavelength, respectively. It is found that all the high-order reflection beams will be deflected from 
the normal at this case, and then the backward scattering wave is reduced as desired. In addition, the use of the 
Salisbury screen can further absorb the incoming wave for suppressing the backward scattering wave and real-
ize RCS reduction over a relatively wide frequency band. Numerical simulation is carried out to investigate the 

Figure 1. Schematic of the proposed RCS reduction structure and its simulated reflection coefficients. 
(a) Three-dimensional illustration of the 1D grating integrated Salisbury screen. (b) Side-view. (c) The 
corresponding reflection coefficients of different reflection orders. The geometrical parameters are optimized as 
follows: w = 65 mm, h = 3 mm, p = 100 mm, and t = 5 mm.
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reflection characteristics of our structure by using the commercial software CST Microwave Studio. Figure 1(c) 
shows the simulated reflection coefficients of the high-order reflection beams in our structure under normal 
incidence. Here, we use r0, r1, r2, r3, r4, r5, and r6 to represent the reflection coefficients of the different reflection 
orders, respectively. The surface resistance of the graphene layer on Salisbury screen is first set as Rs = 500 Ω/sq. 
With the modulation of the 1D high-index grating structure, the strong 1st and 2nd order reflection are gener-
ated over a wide frequency band, while other higher-order reflections are relatively very weak. The 1st and 2nd 
order reflection intensity is quickly enhanced at first and then gradually decreases with the increase of frequency, 
reaching the minimum around 16 GHz. For the 0th order reflection beam, there are two obvious reflection dips 
around 4.5 and 16 GHz. The enhancement of the high order diffraction beams results in the backward scattering 
reduction of the 0th order diffraction beam. Besides, the resistive loss of the Salisbury screen also contributes to 
the formation of the reflection dip.

Figure 2 shows the simulated RCS reduction performance. Here, the 1D grating structure with the four peri-
odic cells is adopted in the full-wave simulation. It is seen that the bare Salisbury screen only produces one RCS 
reduction dip around 15 GHz, while there is no obvious RCS reduction dip for the 1D grating structure in the 
whole frequency band of interest. However, after integrating 1D grating structure with Salisbury screen, the two 
RCS reduction dips are respectively generated at 4.5 GHz and 16 GHz where the RCS reduction intensities are 
also sharply improved.

To further understand the physical mechanism of the designed RCS reduction structure, its scattering patterns 
at 4.5 GHz and 16 GHz are numerically investigated, as displayed in Fig. 3(a,b), respectively. It is seen in Fig. 3(a) 
that there are three reflection orders (0, 0), (−1, 0) and (1, 0) produced at 4.5 GHz. The main lobes corresponding 
to the (−1, 0) and (1, 0) reflection orders, are respectively redirected to (−40°, 0) and (40°, 0), which complies 
with the theoretically calculated results from the grating equation. At the frequency of 16 GHz, a series of high 
orders reflection beams are generated and redirected to various directions due to the grating period far larger than 
the operating wavelength. However, the whole high-order reflection efficiency is relatively weak compared with 
that at 4.5 GHz. The power loss density distributions of our structure are also examined, as seen in Fig. 3(c,d). 
It is obvious that very strong power loss is focused on the lossy sheet layer at 16 GHz, while the power loss is 
relatively weak at 4.5 GHz. Therefore, we can deduce that the Salisbury screen plays the leading role in the back-
ward scattering reduction at 16 GHz by absorbing the most of the incident wave energy. The main reason for the 

Figure 2. Simulated RCS reduction performance of the designed 1D grating integrated Salisbury screen.

Figure 3. Full-wave simulation results of the proposed 1D grating integrated Salisbury screen under normal 
incidence of EM waves. The 3D scattering pattern at (a) 4.5 GHz and (b) 16 GHz. The power loss density 
distributions at (c) 4.5 GHz and (d) 16 GHz.
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generation of the RCS reduction dip at 4.5 GHz is due to the employed high-index grating structure which can 
generate the strong 1st order reflection around 4.5 GHz, as seen in Fig. 1(c). In addition, the lossy graphene layer 
can also absorb part of the incident wave energy, as seen in Fig. 3(c). So we consider that the RCS reduction dip 
at 4.5 GHz originates from the combination of the generation of high-order reflection and the absorption from 
the lossy graphene layer.

It is worthwhile to point out that between the two RCS reduction dips, there is still a broad band in which 
the RCS reduction level is less than 10 dB for the 1D grating integrated Salisbury screen. In order to solve this 
issue, we use the two-dimensional (2D) grating structure instead of the 1D grating structure in our design, as 
seen in Fig. 4(a). The period along x direction Px is equal to the period along y direction Py. Therefore, the elec-
tromagnetic response would be polarization independent due to its symmetry structure. Figure 4(b) shows the 
corresponding RCS reduction performance of the designed 2D grating integrated Salisbury screen with 4 × 4 
periodic cells under normal incidence. It is seen that its 10 dB RCS reduction bandwidth is obviously increased, 
which is expanded from 4.1 to 18 GHz. It may be due to that the 2D grating structure has higher diffraction effi-
ciency and can generate high order reflection in both yoz and xoz planes, compared with the 1D grating structure. 
In addition, we still investigate the RCS reduction performance of the proposed structure with only 2 × 2 unit 
cells. It has been verified to perform almost the same RCS reduction performance with that of 4 × 4 unit cells, as 
seen in Fig. 4(b). That is to say, the minimum requirement for the grating cells is only two periods in our design. 
Figure 4(c) shows the 3D scattering pattern of the 1D grating structure. It is seen that the high-order reflection 
beams are only generated in xoz plane, and then the backward reflected wave is still strong. After employing the 
2D grating structure, the high-order reflection beams can be simultaneously produced in both xoz and yoz plane, 
so the normal reflection of the incoming wave can be further suppressed, as seen in Fig. 4(d).

Figure 5 displays the simulated RCS reduction performance under oblique incidence. It is seen that the RCS 
reduction bandwidth decreases a little under TM mode with the increase of the incident angle. Similarly, the RCS 
reduction level is also slightly degraded under TE mode. However, low RCS properties are still kept for the pro-
posed 2D grating integrated Salisbury screen. As the effective sheet resistance of graphene can be tuned through 
an applied electrostatic field bias26, the tunable RCS reduction performance could be expected for our structure. 
As Fig. 6 shows, the proposed structure under normal incidence can dynamically control the RCS reduction level 
by tuning the graphene resistance from 500 Ω/sq to 200 Ω/sq. The original two RCS reduction dips occurring at 
4.5 and 16 GHz disappear at the case of Rs = 200 Ω/sq. That means the graphene resistance of the Salisbury screen 
has great influence on the RCS reduction level.

Figure 4. Schematic of the proposed 2D grating integrated Salisbury screen and its RCS reduction 
performance. (a) 3D-view of the 2D grating integrated Salisbury screen. (b) Simulated RCS reduction 
performance of the grating integrated Salisbury screen under normal incidence. (c,d) Simulated 3D scattering 
patterns of the proposed 1D and 2D grating integrated Salisbury screen at 10 GHz.
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Experimental results. In order to verify the broadband and tunable RCS reduction property, we fabricated 
a design sample composed of 2 × 2 unit cells, as seen in Fig. 7(a). The graphene film is grown on copper foil using 
the chemical vapor deposition method and then transferred onto the PET film. The thin silver fabricated with 
screen printing technique at the edges of the graphene samples stripes serve as contact metals. The conductive ink 
with surface resistance of 5000 Ω/sq was printed on a 50 μm-thick PI film, and the thin copper foils were attached 
at the edges of the printed high-resistance sheet. In the fabrication process, the large-area graphene-coated PET 
film and the high-resistance sheet serve as the two electrodes of the graphene structure, respectively. Two pieces 
of 25 μm-thick polyethylene membrane soaked with an ionic liquid electrolyte are partially overlapped and sand-
wiched between the two electrodes. When applying the DC bias voltage on the graphene structure, the doping 
level of the graphene film would be controlled, resulting in the change of the surface resistance. Here, the fab-
ricated graphene structure is used as the lossy sheet of Salisbury screen, while the high-index grating structure 
is made of aluminum oxide. The graphene structure is bonded with the grating structure through the glue film, 
and then attached to a 5 mm-thick PMI foam slab backed by a metal plate. The dimension of the whole sample is 
200 mm × 200 mm.

We measured the reflectivity of the fabricated sample by using arch measurement system30 in the microwave 
anechoic chamber, as shown in Fig. 7(b). The two linearly-polarized horn antennas are placed on an arch range 
and the sample is located in its center. The incidence and reflection angles are both fixed at 5° to approximate the 
normal incidence condition. Figure 7(c) presents the measured result of the sample with the different DC biasing 
voltages (V) on the graphene layer. It is seen that when the biasing voltage is set as −1.5 V, the reflectivity of our 
sample is less than −10 dB between 4.4 and 18 GHz, and its fractional bandwidth reaches about 121%. This meas-
ured result agrees well with the simulated result of our structure with the graphene resistance of 500 Ω/sq. As the 
biasing voltage varies from −1.5 V to 3 V, the reflectivity is gradually degraded to about −8 dB, corresponding to 
the simulated result at the graphene resistance of 200 Ω/sq. Therefore, we have demonstrated that our sample can 
achieve dynamical control of the reflection over a wide frequency band.

In addition, we also measured the reflection characteristics of the sample applied by the DC voltage of −1.5 V 
under oblique incidence for both TE and TM polarizations. As Fig. 8(a) shows, as the incident angle increases 
from 20° to 40°, the reflection dip at the lower frequency shifts to a higher frequency and the amplitude of the 
reflection dip at the higher frequency gradually decreases for the TM polarizations, which is similar to the 

Figure 5. Simulated bistatic RCS reduction performance of the designed 2D grating integrated Salisbury screen 
with 2 × 2 unit cells under different oblique incident angles. (a) TM polarization. (b) TE polarization.

Figure 6. Simulated RCS reduction performance of the designed 2D grating integrated Salisbury screen with 
the different graphene resistances.
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simulation result given in Fig. 5(a). For the TE polarizations, it is seen in Fig. 8(b) that the reflection amplitude 
degrades a little with the increase of the incident angle. However, it is noted that the reflection level of our sample 
still keeps about −10 dB over a relatively wide frequency band even at a large incident angle of 40°. The above 
measured results indicate our sample has a good angular stability.

Figure 7. Photograph of measurement setup for the fabricated sample and its corresponding measurement 
results. (a) Photograph of the fabricated sample. (b) Photograph of the arch measurement system. (c) Measured 
reflection characteristics of the fabricated sample under normal incidence with the different DC biasing voltages 
applied on the graphene layer.

Figure 8. Measured reflectivity of the fabricated sample with the DC biasing voltages of −1.5 V applied on the 
graphene layer under different oblique incident angles. (a) TM polarization. (b) TE polarization.
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Discussion
In summary, the hybrid physical mechanism has been utilized to achieve broadband RCS reduction. By integrat-
ing high-index dielectric grating structure with the traditional Salisbury screen, both the absorptive loss and radi-
ative loss are generated in our design. The high-index dielectric grating structure can produce lots of high-order 
reflections, and then deflect the incoming wave direction. The Salisbury screen can further absorb the incident 
wave energy. By tuning the surface resistance of the graphene layer that is the lossy sheet of the Salisbury screen, 
the RCS reduction level can be dynamically controlled. Our structure has been experimentally demonstrated to 
realize the 10 dB RCS reduction over a wide frequency band ranging from 4.4 to 18 GHz. In addition, the tunable 
RCS reduction performance can be achieved by changing the DC bias voltages applied on the graphene layer. 
Compared with the traditional Salisbury absorber, our approach provides a novel method for wideband and 
tunable RCS reduction, which may find potential application in stealth fields.
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