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Deep-learning-based imaging-
classification identified cingulate 
island sign in dementia with Lewy 
bodies
Tomomichi Iizuka  1, Makoto Fukasawa2 & Masashi Kameyama  3,4

The differentiation of dementia with Lewy bodies (DLB) from Alzheimer’s disease (AD) using brain 
perfusion single photon emission tomography is important but is challenging because these conditions 
exhibit typical features. The cingulate island sign (CIS) is the most recently identified specific feature of 
DLB for a differential diagnosis. The current study aimed to examine the usefulness of deep-learning-
based imaging classification for the diagnoses of DLB and AD. Furthermore, we investigated whether 
CIS was emphasized by a deep convolutional neural network (CNN) during differentiation. Brain 
perfusion single photon emission tomography images from 80 patients, each with DLB and AD, and 
80 individuals with normal cognition (NL) were used for training and 20 each for final testing. The CNN 
was trained on brain surface perfusion images. Gradient-weighted class activation mapping (Grad-
CAM) was applied to the CNN to visualize the features that was emphasized by the trained CNN. The 
binary classifications between DLB and NL, DLB and AD, and AD and NL were 93.1%, 89.3%, and 
92.4% accurate, respectively. The CIS ratios closely correlated with the output scores before softmax 
for DLB–AD discrimination (DLB/AD scores). The Grad-CAM highlighted CIS in the DLB discrimination. 
Visualization of learning process by guided Grad-CAM revealed that CIS became more focused by the 
CNN as the training progressed. The DLB/AD score was significantly associated with the three core 
features of DLB. Deep-learning-based imaging classification was useful for an objective and accurate 
differentiation of DLB from AD and for predicting clinical features of DLB. The CIS was identified as a 
specific feature during DLB classification. The visualization of specific features and learning processes 
could be critical in deep learning to discover new imaging features.

Neuroimaging has contributed to the classification of neurodegenerative dementias such as dementia with Lewy 
bodies (DLB) and Alzheimer’s disease (AD). Early diagnoses of DLB and AD are important from prognostic and 
therapeutic perspectives, and distinguishing them is clinically vital. Disease-specific features have been extracted 
from brain perfusion single photon emission tomography (SPECT) images to assist with differential diagnoses 
of DLB and AD. Brain surface perfusion images produced by three-dimensional stereotactic surface projection 
(3D-SSP)1 have been widely applied to statistical analyses that supported the diagnoses of DLB and AD. A per-
fusion decrease in the parietal association cortex (PAC) and a perfusion preservation in the primary motor and 
primary somatosensory cortex are typical in patients with DLB and AD2,3 and have interfered with distinguishing 
DLB from AD on perfusion SPECT images. An imaging feature for DLB discrimination is occipital hypoperfu-
sion4–7. Another finding that can produce a difference between DLB and AD is perfusion in the posterior cingu-
late cortex (PCC). Hypoperfusion in the PCC is observed in the early stage of AD, whereas the PCC is relatively 
preserved in DLB. The phenomenon of sparing the PCC relative to the precuneus plus cuneus that is termed 
the cingulate island sign (CIS)8, has recently garnered attention because it reflects a concomitant AD pathology 
that affects the clinical symptoms of DLB9,10. We discovered CIS peaks at the stage of mild dementia and they 
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disappear gradually as DLB progress11. Thus, the CIS can help differentiate DLB from AD especially at the early 
stage8,12 with some exceptions, including posterior cortical atrophy13.

Deep learning is a primary branch of artificial intelligence comprising a deep convolutional neural network 
(CNN) capable of automatic feature extraction from data, and recent advances in deep learning have remarkably 
improved the performance of image classification and detection14,15. Some algorithms based on deep learning 
have been proposed to recognize or differentiate AD and mild cognitive impairment (MCI)16,17. In contrast, the 
ability of a CNN to discriminate DLB has not been investigated in detail. Furthermore, a deep-learning-based 
SPECT interpretation system that can differentiate between DLB and AD has not been described. The most signif-
icant disadvantage of deep learning is that the imaging features used by the CNN for classification have remained 
unknown. However, gradient-weighted class activation mapping (Grad-CAM) can produce “visual explanations” 
from a CNN, thus allowing the visualization of areas focused by a CNN18,19.

The current study aims to investigate whether a trained CNN can identify the CIS, which is the most recently 
recognized imaging feature of DLB, while a deep two dimensional CNN (2D-CNN) objectively and automatically 
classifies brain surface perfusion images through the 3D-SSP of DLB, AD, and individuals with normal cognition 
(NL). Furthermore, the learning process was visualized during CNN training.

Results
Deep CNN could accurately classify brain surface perfusion images.  Tables 1 and 2 summarizes the 
demographic and cognitive findings of 80/20 persons, each with AD, DLB, and NL of the training/validation and 
final testing cohorts. The deep CNN was applied to images (n = 160) including the right-left flipped images from 
each group of 80 patients for binary classification (Fig. 1). The accuracy of the classification was calculated by the 
final testing cohorts. The binary differentiations between DLB and NL (DLB-NL), DLB and AD (DLB-AD), and 
AD and NL (AD-NL) were 93.07 ± 3.77%, 89.32 ± 4.59%, and 92.39 ± 4.42% accurate (mean ± standard devia-
tion), respectively. The AUCs of the ROC for differentiating DLB–NL, DLB–AD, and AD–NL were 0.954, 0.935, 
and 0.943 accurate, respectively.

Validation of epoch number and effect of sample number.  One hundered epochs were confirmed to 
be suitable by the learning curve (Fig. 2).

DLB NL AD

Participants (n) 80 80 80

Age (y) 77.7 ± 6.3 77.1 ± 6.8 78.0 ± 4.9

Sex (M/F) 44/36 40/40 36/44

MMSE score 22.8 ± 1.3* 29.5 ± 0.6 22.4 ± 1.9*

SPECT images (n) 160 160 160

Table 1. Demographic features of study participants for training/validation. Data are shown as numbers or 
means ± standard deviation. *p < 0.05: Tukey-Kramer test compared with NL (two-sided). DLB, dementia with 
Lewy bodies; NL, normal cognition; AD, Alzheimer’s disease; MMSE, mini-mental state examination; SPECT, 
single photon emission computed tomography.

DLB NL AD

Participants (n) 20 20 20

Age (y) 77.9 ± 5.3 77.7 ± 5.0 77.8 ± 5.42

Sex (M/F) 11/9 9/11 9/11

MMSE score 22.5 ± 1.1 29.3 ± 0.7 22.3 ± 1.2

SPECT images (n) 40 40 40

Table 2. Demographic features of study participants for final testing. Data are shown as numbers or 
means ± standard deviation. DLB, dementia with Lewy bodies; NL, normal cognition; AD, Alzheimer’s disease; 
MMSE, mini-mental state examination; SPECT, single photon emission computed tomography.
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Figure 1. Architecture of deep convolutional neural network.
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When the sample number was small, the accuracy did not differ greatly from the full set. However, smaller 
samples exhibited overfitting easily (Fig. 3).

CIS ratios significantly correlated with DLB/AD and DLB/NL scores.  Close significant correlations 
(Pearson’s product moment correlation) were found between the CIS ratios and scores for DLB/AD (r = 0.511, 
p = 1.27 × 10−6; Fig. 4a), whereas DLB/NL did not correlate with CIS significantly (r = 0.195, p = 0.0835; Fig. 4b) 
in patients with DLB. Thus, the CIS ratio contributed more to the differentiation of DLB–AD than of DLB–NL.
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Figure 2. Learning curve. (a) DLB-NL, (b) DLB-AD, (c) AD-NL discriminations. Accuracy reaches plateau 
before 100 epochs. Test loss elevates gradually after 100 epochs, indicating overfitting.
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Figure 3. Effect of the sample number. (a) DLB-NL, (b) DLB-AD, (c) AD-NL discriminations. The accuracy 
did not differ greatly from the full set. However, smaller samples exhibited overfitting easily.
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Figure 4. Association of CIS ratios with (a) DLB/AD and (b) DLB/NL scores. CIS ratio, DLB/AD score, 
and DLB/NL score in patients with DLB were 1.11 ± 0.14, 0.94 ± 0.67, and 1.08 ± 0.64, respectively 
(mean ± standard deviation). (a) CIS ratios correlated closely with DLB/AD scores (r = 0.511, p = 1.27 × 10−6). 
(b) CIS did not correlate with DLB/NL scores significantly (r = 0.195, p = 0.0835). CIS, cingulate island sign; 
DLB, dementia with Lewy bodies; AD, Alzheimer’s disease; NL, normal cognition.
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Trained CNN identified CIS for DLB detection.  Grad-CAM was applied to the trained CNN to produce 
heatmaps and guided Grad-CAM images for DLB–AD and DLB–NL discrimination. The heatmap clearly high-
lighted CIS in DLB to discriminate DLB and AD (Fig. 5a). The guided Grad-CAM exhibited a limited range on 
the image that focused on CIS.

All the 80 DLB images are shown in the Supplementary Information. These images are arranged in the 
descending order of the DLB/AD score. CIS was highlighted in the first 61 DLB images. Among them, obvi-
ously highlighted CIS was found in the 48 images. Brain perfusion images with obvious occipital hypoperfusion 
without CIS were labeled correctly as DLB. Grad-CAM highlighted the cerebellum randomly. The last nine DLB 
images highlighted the occipital cortex without CIS and were mislabeled as AD.

CIS was highlighted less intensely in DLB–NL than in DLB–AD discrimination (Fig. 5b). The heatmap and 
guided Grad-CAM for AD highlighted the occipital lobe and cerebellum, but not the PCC (Fig. 5c). The heatmap 
and guided Grad-CAM for NL diffusely highlighted the occipital lobe, middle cingulate cortex, PCC, and cere-
bellum (Fig. 5d).

Visualization of feature extraction in the learning process of CNN.  Grad-CAM visualized the 
learning process to extract features that were useful for differentiation by displaying altered images (Fig. 6). 
In the CNN trained for DLB–AD discrimination with 20 epochs, guided Grad-CAM and original images 
remained similar, indicating that the CNN could not detect specific features. After training 60 epochs, the guided 
Grad-CAM images became narrower and the contrast became more obvious. After training with 100 epochs, the 
CNN focused more on CIS in DLB (Fig. 6a,b) and the occipital lobe, cerebellum, and sensorimotor areas in AD 
(Fig. 6c,d).

DLB/AD score was associated with core features of DLB.  The association between neuroimaging 
indices (i.e., CIS ratio, DLB/AD and DLB/NL score) and clinical symptoms (i.e., four core features and verbal 
memory) were analyzed. The DLB/AD score was significantly correlated with hallucination, Parkinsonism, and 
RBD, but not with fluctuation (Table 3). In contrast, the DLB/NL score was not correlated with any of them. The 
CIS ratio was correlated with hallucination and RBD. The DLB/AD score and CIS ratio were significantly corre-
lated with verbal memory.

Figure 5. Visualization of features recognized by the trained CNN. Grad-CAM was applied to the CNN trained 
with 100 epochs, the produced heatmap, heatmap overlay, and guided Grad-CAM. Original and Grad-CAM 
images from one patient with DLB in the DLB–AD (a) and DLB–NL (b) discrimination, respectively. Original 
and Grad-CAM images from a patient with AD in the DLB–AD discrimination (c). Original and Grad-CAM 
images from an individual with NL in the DLB–NL discrimination (d). Original images of (a–d) were predicted 
correctly. CNN, convolutional neural network; DLB, dementia with Lewy bodies; AD, Alzheimer’s disease; NL, 
normal congition; Grad-CAM, gradient-weighted class activation mapping.
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Discussion
Our CNN identified the CIS as an imaging feature during DLB–AD discrimination. The CIS ratios correlated 
closely with the DLB/AD scores, indicating the possibility that the network assessed the CIS indirectly during 
the discrimination. Furthermore, heatmaps generated by the Grad-CAM highlighted the CIS in DLB. The guided 
Grad-CAM also focused on the CIS and became restricted to the CIS as the learning process progressed. The indi-
rect evidence of the correlation coefficients may imply that a typical DLB possesses a higher CIS ratio. However, 
the trained CNN automatically and objectively identified the CIS as an important feature of DLB prediction, 
considering that the Grad-CAM could visualize the target of the CNN for the classification. The present findings 
defined the potential of deep learning to discover new features in image diagnosis.

Figure 6. Alteration of guided Grad-CAM images in the learning process. Original and guided Grad-CAM 
images are from two patients, each with DLB and AD. Two patients, each with DLB (a) and (b), and AD (c) 
and (d). Training accuracies at 20, 60, and 100 epochs were 0.7682, 0.8922, and 0.9850, respectively. Validation 
accuracies at 20, 60, and 100 epochs were 0.6250, 0.7500, and 0.8750, respectively. Thus, 100 epochs were 
regarded as appropriate for training. The guided Grad-CAM images of both DLB and AD reduced with 
increasing number of epochs. Original images of (a–d) were predicted correctly. CIS, cingulate island sign; DLB, 
dementia with Lewy bodies; AD, Alzheimer’s disease; Grad-CAM, gradient-weighted class activation mapping.

Correlation coefficient

CIS ratio DLB/AD score DLB/NL score

Hallucination 0.307 (p = 0.0067*) 0.235 (p = 0.0231*) 0.203 (p = 0.0745)

Fluctuation 0.148 (p = 0.189) 0.117 (p = 0.303) 0.078 (p = 0.494)

Parkinsonism 0.104 (p = 0.367) 0.319 (p = 0.0033*) 0.212 (p = 0.0628)

RBD 0.450 (p = 2.8 × 10−5*) 0.268 (p = 0.0161*) 0.091 (p = 0.421)

Verbal memory 0.611 (p = 7.72 × 10−10*) 0.487(p = 4.69 × 10−6*) 0.201 (p = 0.0723)

Table 3. Association between neuroimaging indices and clinical symptoms of DLB. Spearman rank correlation 
coefficients (two-tailed). *significant by Benjamini-Hochberg method with 0.05 of False Discovery Rate. CIS, 
cingulate island sign; DLB, dementia with Lewy bodies; AD, Alzheimer’s disease; NL, normal cognition; RBD, 
REM sleep behavioral disorder.
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The deep CNN could accurately classify brain surface perfusion images. The classification accuracies of 
DLB–NL, DLB–AD, and AD–NL were 93.1%, 89.3%, and 92.4%, respectively. Most previous studies using 
deep-learning-based classification aimed to diagnose AD and MCI but not DLB using 3D-CNN, and the CNN 
diagnosis of DLB using FDG PET or perfusion SPECT has never been reported. Suk et al.17 reported that the 
mean accuracies of MRI, FDG PET, and MRI + PET with 3D-CNN were 92.38%, 92.20%, and 95.35%, respec-
tively. Liu et al.16 generated accuracies of 90.18% (MRI), 89.13% (PET), and 90.27% (MRI + PET). Our 2D-CNN 
with brain surface perfusion images extracted from whole brain perfusion SPECT data yielded comparable dis-
criminative accuracy. The distribution on brain perfusion and glucose metabolism images was similar20. The 
bird’s-eye view brain surface perfusion images represent extracted features that are useful for discriminating 
neurodegenerative dementia. Furthermore, 3D-CNN requires more calculations to converge more parameters 
than 2D-CNN. Thus, 2D-CNN with brain surface perfusion images classified more efficiently than 3D-CNN 
with whole brain images. Our method, which can be operated in a standard computer, can potentially prevail in 
clinical settings.

The CIS was more involved in the discrimination of DLB–AD rather than of DLB–NL, considering the 
higher correlation coefficients of the CIS ratios and DLB/AD scores than the CIS ratios and DLB/NL scores. The 
Grad-CAM supported this notion by focusing on the CIS as an imaging feature of DLB in the DLB–AD and DLB–
NL discrimination. Heatmap and guided Grad-CAM highlighted the CIS in the DLB-AD discrimination, while 
CIS was less highlighted in the DLB–NL discrimination. As DLB and AD exhibit common features such as rCBF 
decreases in the PAC, classification is typically more difficult for DLB–AD than DLB–NL. Most patients with DLB 
exhibit concomitant AD pathology21, which reportedly affects the CIS of patients with DLB. Specifically, the CIS 
is not obvious in DLB with abundant AD pathology. Similar to the CIS ratios, the DLB/AD scores in DLB reflects 
the degree of imaging features of AD that are presumably produced by concomitant AD pathology. Therefore, 
low CIS ratios and DLB/AD scores represent a high degree of concomitant AD pathology. Conversely, high CIS 
ratios and DLB/AD scores represent “pure” DLB. This explains why the CIS ratios exhibited a good correlation 
with the DLB/AD scores.

The Grad-CAM revealed that the CNN classified SPECT images in a manner unlike that of humans. Nuclear 
medicine physicians simultaneously evaluated these hypoperfused areas and preserved the regions to differenti-
ate DLB from AD, and often considered the contrast of the preserved and decreased areas. In contrast, heatmaps 
generated by the Grad-CAM were placed only on regions with preserved rCBF in both AD and DLB in the appro-
priately trained CNN. Guided Grad-CAM images became narrower and restricted to more preserved regions as 
learning progressed. Consistent with these findings, the CNN focused only on the preserved regions to classify 
the brain surface perfusion images of both DLB and AD. Regardless of the classification method, the CNN still 
identified the CIS as an important imaging feature of DLB.

The DLB/AD score was correlated significantly with the scores of three core features, namely hallucination, 
Parkinsonism, and RBD. In contrast, DLB/NL score was not correlated with any of them. This finding suggested 
that the DLB/AD scores closely represented various symptoms of DLB. Similar to the DLB/AD score, the CIS 
ratio was also correlated with hallucination and RBD. As CIS has been reported to reflect AD pathology, a close 
correlation of the CIS ratio with DLB/AD score indicated that the DLB/AD score reflected comorbid AD pathol-
ogy. Hallucination was frequently observed in DLB without AD pathology22. The manifestation of RBD was 
reportedly associated with less severe concomitant AD pathology23. Our finding was consistent with the previous 
reports demonstrating the association between core features and AD pathology. Furthermore, the DLB/AD score 
was correlated with verbal memory score, thus implying that memory impairment is prominent in patients with 
AD rather than those with DLB. Thus, the DLB/AD score was useful for both discriminating and predicting the 
clinical features of DLB.

Our deep learning system would be beneficial to health care finance. Dopamine transporter (DaT) imaging24 
and [123I] MIBG cardiac sympathetic nerve scintigraphy25 are authentic in clinically discriminating DLB from AD, 
and the DLB guidelines treat DaT imaging and [123I] MIBG scintigraphy as indicative biomarkers26. However, to 
assess all amnestic patients using two more nuclear medicine examinations might be cost prohibitive. Brain per-
fusion SPECT is more commonly used to detect AD, especially when a diagnosis is uncertain. Consequently, our 
diagnostic system and perfusion SPECT could be initially applied to investigate DLB in patients with suspected 
AD before using DaT and cardiac sympathetic nerve imaging.

This study has several limitations. Each group comprised only 160 augmented images from 80 individuals 
because this study was performed at a single institution. However, our brain surface perfusion images were nor-
malized by 3D-SSP and applied only to binary classification. Therefore, we considered that the accuracy was 
sufficient regardless of the limited number of patients. The accuracy of FDG PET might be better, but perfusion 
SPECT is more accessible, and it has been proven as a valid alternative in the absence of FDG PET27. Furthermore, 
images with [123I] IMP shows good contrast owing to its high first-pass extraction11,28. Recent CNN studies have 
attempted to enhance accuracy using various combinations of imaging modalities16,17. Although the ability of a 
2D-CNN with brain surface perfusion images was comparable to previous findings with such combinations, com-
binations of perfusion SPECT with other imaging modalities should be considered in future studies to enhance 
accuracy.

Conclusions
Deep-learning-based imaging classification was useful for an objective and accurate differentiation of DLB from 
AD, and for predicting the clinical features of DLB. The CIS was identified as a specific feature during DLB clas-
sification. The visualization of specific features and learning process could facilitate the discovery of new imaging 
features using deep learning.
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Methods
Participants.  Brain perfusion SPECT images of 80 persons, each with DLB, AD, and NL were included for 
diagnostic classification and CNN learning. Cognitive function was evaluated using the Clinical Dementia Rating 
and the Mini-Metal Status Examination (MMSE). Probable DLB and probable AD were diagnosed according to 
the McKeith criteria26 and the criteria of the National Institute for Neurological and Communicative Diseases 
Alzheimer’s Disease and Related Disorders Association29, respectively. Hallucination, fluctuation of cognition, 
Parkinsonism, and REM sleep behavioral disorder (RBD) were assessed by the Neuropsychiatric Inventory (NPI), 
Clinician Assessment of Fluctuation30, United Parkinson’s Disease Rating Scale-Motor Score (UPDRS-MS), and 
the Japanese version of the REM sleep behavior disorder screening questionnaire (RBDSQ-J)31, respectively. 
Verbal memory was evaluated using the sum of the five recall trials (1–5) of the Ray Auditory Verbal Learning 
Test (RAVLT).

Brain perfusion SPECT images of 20 persons each with DLB, AD, and NL were used for the final testing.
All procedures were approved by the Ethical Review Board of Fukujuji Hospital. We followed the clinical study 

guidelines of Fukujuji Hospital, which conformed to the Declaration of Helsinki (2013). We provided the healthy 
volunteers, patients, and their families with detailed information about the study, and all had provided written 
informed consent to participate in the study.

Brain perfusion SPECT imaging.  Persons resting with their eyes closed and ears unplugged were assessed 
by SPECT using Symbia Evo Excel, a gamma camera (Siemens Medical Solutions, Malvern, PA, USA), and fan 
beam collimators. Fifteen minutes after an intravenous infusion of [123I] IMP (167 MBq), SPECT images were 
acquired in a 128 × 128 matrix with a slice thickness of 1.95 mm (1 pixel) over a period of 30–40 min. The images 
were reconstructed by filtered back projection using a Butterworth filter; attenuation was corrected using the 
Chang method (attenuation coefficient = 0.1 cm−1), and scatter was corrected using a triple energy window. Brain 
surface perfusion images produced using 3D-SSP1 were augmented by flipping from left to right. The regional 
cerebral blood flow (rCBF) in the regions of interest (ROI) on the PCC, precuneus, and cuneus was measured 
as described11. The mean value in the bilateral PCC ROI was divided by the mean value in the bilateral precu-
neus plus the cuneus ROI to derive the CIS ratios from the [123I] IMP SPECT images. The CIS ratio is posterior 
cingulate/(precuneus + cuneus)8.

Preparation for deep CNN.  Figure 1 summarizes the architecture of our deep CNN. The network was built 
with Keras and TensorFlow (Google, Mountain View, CA, USA), a deep-learning framework. We selected simple 
structures as we found that deeper structures did not contribute to accuracy; we did not use transfer learning to 
visualize the learning process.

After the convolution operation, rectified linear unit (ReLU) and max-pooling operations proceeded on the 
output of convolution. The ReLU maintained positive input values whereas negative input values were changed 
to zeros. The max-pooling operation selected the maximum value and input this value into a smaller feature map. 
The input data were extracted from the brain perfusion SPECT images. The input image had a matrix of 200 × 200 
pixels, i.e., a composite of two lateral and two medial surface images. The input values of the voxels were rescaled 
within a range of 0 to 255; subsequently, the mean scalar value of each SPECT volume was subtracted. The images 
were passed through the first convolutional layer that produced 193 × 193 × 32 output images after the 8 × 8 × 32 
convolutional filter. Thereafter, ReLU activation and the max-pooling of a 2 × 2 pool proceeded. The second 
convolutional layer with a 5 × 5 × 32 filter and 92 × 92 × 32 output was followed by the ReLU activation and 
max-pooling layers. The third convolutional layer with a 3 × 3 × 64 filter and 44 × 44 × 64 output was followed by 
the ReLU activation and max-pooling layers. The last convolutional layer with a 5 × 5 × 32 filter and 18 × 18 × 32 
output was followed by the ReLU activation and max-pooling layers that produced a 9 × 9 × 32 output. Thereafter, 
a fully connected layer generated the output; subsequently, a softmax function was applied to discriminate the 
two labels.

The softmax produces two numerical values of which the sum becomes 1.0. The output values before softmax 
for the binary differentiation of DLB–NL, DLB–AD, and AD–NL are expressed as DLB/NL, DLB/AD, and AD/
NL scores, respectively. We obtained the scores by applying an inverse sigmoid function to the output value. 
We employed binary discrimination to determine if the CNN recognizes the CIS differently in discriminating 
DLB–AD and DLB–NL. The network was trained to minimize cross entropy losses between the predicted and 
true diagnoses based on the images. We used the Adam optimizer and the proposed default settings (learning 
rate = 0.001, β1 = 0.9, β2 = 0.999, decay = 0.0) of the parameters32.

The CNN was trained for 100 epochs. The validity of the epoch number was verified by plotting the perfor-
mance versus epochs. Furthermore, we plotted with reduced number of samples (0.5, 0.75 of original sample 
number (320)).

To visualize the decision made by the CNN, Grad-CAM was applied to the CNN. Grad-CAM uses the gra-
dients of any target flowing into the final convolutional network to produce heatmaps that highlight important 
regions upon which the CNN focuses. A guided Grad-CAM was created by fusing the existing pixel-space gra-
dient visualizations with Grad-CAM to achieve both high resolution and class discrimination. Furthermore, we 
used Grad-CAM to visualize the learning process of the CNN trained with perfusion images.

Statistics.  The diagnostic and predictive accuracy of the CNN was calculated from the independent final test-
ing cohorts. An original image and its right-left flip image were in the same set of training or validation. Binary 
classification scores were evaluated using the receiver operating characteristic (ROC) curve analysis and area 
under the curve (AUC). Correlations between CIS ratios and DLB/AD or DLB/NL scores were assessed using 
Pearson’s product moment correlation coefficients. Correlations between clinical scores and CIS ratios, DLB/
AD, or DLB/NL scores were assessed using Spearman rank correlation coefficients and the multiple comparison 
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was assessed by the Benjamini-Hochberg method with 0.05 of False Discovery Rate. All statistical analyses were 
performed with EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user 
interface for R (The R Foundation for Statistical Computing, Vienna, Austria). More precisely, it is a modified 
version of the R commander designed to add statistical functions frequently used in biostatistics.
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