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Frequency of the CYP2C19*17 
polymorphism in a Chilean 
population and its effect on 
voriconazole plasma concentration 
in immunocompromised children
N. espinoza1, J. Galdames1, D. Navea1, M. J. Farfán1,2 & C. salas1

Invasive fungal infections (IFIs) are the most frequent cause of morbidity and mortality in 
immunocompromised children. Voriconazole is the first-line antifungal choice in the treatment of 
IFIs like aspergillosis. Voriconazole pharmacokinetics vary widely among patients and voriconazole is 
metabolized mainly in the liver by the CYP2C19 enzyme, which is highly polymorphic. The CYP2C19*17 
allele is characterized by the presence of four single nucleotide polymorphisms expressing an ultra-
rapid enzyme phenotype with an accelerated voriconazole metabolism, is associated with low 
(sub-therapeutic) plasma levels in patients treated with the standard dose. Considering that in our 
center a high percentage of children have sub-therapeutic levels of voriconazole when treated with 
standard doses, we sought to determine the frequency of the CYP2C19*17 polymorphism (rs12248560) 
in a Chilean population and determine the association between voriconazole concentrations and 
the rs12248560 variant in immunocompromised children. First, we evaluated the frequency of the 
rs12248560 variant in a group of 232 healthy Chilean children, and we found that 180 children (77.6%) 
were non-carriers of the rs12248560 variant, 49 children (21.1%) were heterozygous carriers for 
rs12248560 variant and only 3 children (1.3%) were homozygous carriers for rs12248560 variant, 
obtaining an allelic frequency of 12% for variant in a Chilean population. To determine the association 
between voriconazole concentrations and the rs12248560 variant, we analyzed voriconazole plasma 
concentrations in a second group of 33 children treated with voriconazole. In these patients, carriers 
of the rs12248560 variant presented significantly lower voriconazole plasma concentrations than 
non-carriers (p = 0,011). In this study, we show the presence of the rs12248560 variant in a Chilean 
population and its accelerating effect on the pharmacokinetics of voriconazole in pediatric patients. 
From these data, it would be advisable to consider the variant of the patient prior to calculating the 
dosage of voriconazole.

Pediatric patients diagnosed with hemato-oncological diseases or who have had a solid organ transplant must 
undergo prolonged periods of chemotherapy and immunosuppressive therapy, which makes these patients sus-
ceptible to invasive fungal infections (IFIs)1,2. These infections are caused by the colonization of pathogens of the 
genus Aspergillus and Candida and are an important cause of morbimortality in pediatric patients. Overcoming 
these infections is crucial to the survival of these patients3,4.

Voriconazole is a broad-spectrum anti-fungal drug that belongs to the family of second-generation triazoles. 
It is used as a first-line treatment for IFIs, characterized by a high inter- and intra-patient pharmacokinetic vari-
ability. This condition makes its dosage difficult, which is why permanent therapeutic drug monitoring (TDM) is 
needed, focused mainly on achieving the correct dosage to obtain therapeutic plasma concentrations5,6.
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Voriconazole is metabolized in the liver, mainly by two cytochrome P450 enzymes (CYP), CYP2C19 and 
CYP3A4, and flavin-containing monooxygenase 3 (FMO3)7,8 converting it to N-oxide voriconazole. This com-
pound has minimal anti-fungal activity. The CYP2C19 gene is highly polymorphic; to date more than 30 single 
nucleotide polymorphisms (SNPs) have been identified in this gene. However, few of these have been associated 
with any clinical response. The CYP2C19*17 allele is characterized by the presence of four SNPs (-3402 C > T, 
−806C > T, 99 C > T, 80161 A > G (I331V)). Also, CYP2C19*17 allele is also present in a low function allele 
CYP2C19*4B9. Several studies have shown that the presence of −806C > T SNP (rs12248560) is correlated 
with lower plasma concentrations of voriconazole6,9–13. The rs12248560 variant is associated with an ultra-rapid 
metabolizer phenotype of enzyme CYP2C19, which translates into a faster elimination of the drug in patients 
who receive treatment with standard doses of voriconazole with the consequent risk of therapeutic failure, mak-
ing dosage corrections necessary14–16. Little is known of the effect of rs12248560 variant on pediatric patients; it is 
possible that genetic variants present in patient carriers could have a significant clinical impact on treatment with 
voriconazole, resulting in the spread of the infection and deterioration of the patient.

In Chile, there is no information about the frequency of rs12248560 variant and its impact on voriconazole 
pharmacokinetics. The aim of this work was to describe the frequency of rs12248560 variant in a Chilean popula-
tion and to study its association with the pharmacokinetics of voriconazole in pediatric patients.

Material and Methods
patients. In this work we analyzed two groups of children (Fig. 1). In order to determine the frequency of the 
rs12248560 variant in a Chilean population, a group of healthy children was enrolled (group 1). To evaluate the 
effect of the rs12248560 variant on voriconazole plasma concentrations, we included a group of immunocompro-
mised children treated with voriconazole (group 2).

For group 1, 232 samples were collected from healthy Chilean children who attend the Dr. Luis Calvo 
Mackenna hospital (HLCM) for routine clinical testing. Children being treated with voriconazole were excluded. 
The ABO blood phenotype was obtained in 145 (63%) children in this group.

For group 2, 33 patients were included who received treatment with voriconazole, administered intrave-
nously (IV) or orally (PO) between 2015 and 2017 years at the HLCM, Roberto del Río (HRR) and Base de 
Valdivia (HBV) hospitals. We excluded patients who presented pre-existing hepatic toxicity to treatment with 
voriconazole.

All patients and/or parents from groups 1 and 2 provided written informed consent to participate in the 
study approved by the Pediatric Scientific Ethics Committee of the Metropolitan East Health Service, the Ethics 
Committee of the Metropolitan North Health Service and the Valdivia Health Service. In addition, all methods 
were performed in accordance with Declaration of Helsinki.

Nucleic acid extraction. Nucleic acids were extracted from blood samples using QIAamp® DNA blood 
Mini Kit (Qiagen) following the manufacturer’s instructions. For bone marrow transplant patients, the nucleic 
acids were extracted from nasopharyngeal swabs using the MagNa Pure Kit (Roche) according to the manufac-
turer’s instructions. Purified nucleic acids were stored at −20 °C for later use.

polymorphisms detection. PCR-RFLP was used to detect rs12248560 variant as described3. For the PCR 
amplification, the GoTaq® Flexi DNA polymerase enzyme from Promega was used. The restriction enzyme LweI 
was purchased from Thermo Fisher Scientific and used following the supplier’s specifications. The digestion frag-
ments were visualized in 10% polyacrylamide gels. PCR-RFLP methods were validated by sequencing.

Determination of the voriconazole plasma concentrations. For TDM, blood samples were taken 
in steady-state one hour before voriconazole administration according to the clinical protocols for antifungal 
treatment in each hospital. Voriconazole plasma concentration was determined by high performance liquid chro-
matography (HPLC) according to a previously validated method17 using an Agilent 1260 Infinity HPLC system 
with a VL diode array detector. Ketoconazole was used as the internal standard. Each run was done at 35 °C in 
the column with isocratic elution, a flow of 1 mL/min, 20 uL of sample injection and measured at a wavelength of 
254 nanometers. Elution time for voriconazole and ketoconazole were 3.3 and 4.4 minutes, respectively. Recovery 
percentage of voriconazole was 101.6% ± 2% and both the repeatability (0.97%) and the reproducibility (1.73% 
and 1.77%) of the method were less than 2%.

Figure 1. Methodological scheme of the study design.
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statistical analysis. To determine the allelic frequency of the rs12248560 variant in a Chilean population 
(group 1), a sample size of 232 samples was calculated, assuming a frequency of this variant of 20% described for 
Caucasian population18, with 80% power, 5% error and a 95% confidence level. To compare the gender distribu-
tion between carriers and non-carriers of group 2, we used Fisher´s test. For the gender and ABO blood group 
comparison, as well as determination of the Hardy-Weinberg equilibrium, we used the chi-squared statistical test 
(X2). To determine the influence of the rs12248560 variant on voriconazole plasma concentrations, since one sub-
ject can have multiple plasma levels, a multilevel generalized linear model was created for correlated samples with 
gamma distribution and log link identity (distribution of the plasma concentration adjusted for dose and weight). 
A significant p value < 5% was considered. To determine the influence of the rs12248560 variant on the first 
voriconazole plasma level and to compare plasma concentrations measurements per patients, the Mann-Whitney 
statistical test was used. Statistical analysis was performed with Stata v.12.1 (StataCorp, 2011. Stata Statistical 
Software: Release 12. College Station, TX: StataCorp LP.).

Results
Allelic frequency of the rs12248560 variant in a Chilean population. Of the 232 children analyzed 
in group 1, 49.5% (115 patients) were girls, with an average of 5.5 ± 5.2 years of age. We found that 180 chil-
dren (77.6%) were non-carriers of the rs12248560 variant, 49 children (21.1%) were heterozygous carriers for 
rs12248560 variant and only 3 children (1.3%) were homozygous carriers for rs12248560 variant (Table 1). With 
these genotypic frequencies, an allelic frequency of 12% for the rs12248560 variant was obtained. In addition, it 
was established that this population is in the Hardy-Weinberg equilibrium.

No statistical differences were found in the ABO blood group between the children included in this study and 
a Chilean population, indicating that the study population was representative (Supplementary Fig. 1).

Allelic frequency of the rs12248560 variant in patients treated with voriconazole. The presence 
of the rs12248560 variant was studied in 33 patients treated with voriconazole (group 2). The demographic and 
pharmacokinetic data are shown in Table 1. The rs12248560 variant was found that 66.7% (22 patients) of the 
patients were non-carriers of rs12248560 variant, 27.3% (9 patients) were heterozygous carriers of rs12248560 
variant and 6% (2 patients) were homozygous carriers of rs12248560 variant.

Carrier of rs12248560 variant presented lower voriconazole plasma concentrations than 
non-carriers. We compared 81 dose-corrected voriconazole plasma concentrations of 22 non-carriers of 
rs12248560 variant and 49 plasma concentrations from 11 carriers of the rs12248560 variant. It is important to 
note, that patients included in our study were grouped by presence or absence of the rs12248560 variant (carri-
ers and non-carriers) and not based on CYP2C19 phenotype, since only two patients were homozygous for the 
rs12248560 variant with one level each. We found that carriers of the rs12248560 variant presented significantly 
lower voriconazole plasma concentrations than non-carriers (p = 0,011; Fig. 2A).

The voriconazole plasma concentrations without dose correction were studied (first plasma level). It was 
observed that almost all the carriers of the rs12248560 variant presented the first sub-therapeutic trough plasma 
concentration with a median of 0.37 µg/mL, whereas in the non-carriers there was a wide spread in the concen-
trations with a median of 1.12 µg/mL (Fig. 2B).

Non-Carriers Carriers p Value

Total patients 22 11

Female 10 7
0.465

Male 12 4

Age median (years) [IQR] 7.5 [2.8–10.5] 9 [7,8–10,5] 0.135

Weight median (kg) [IQR] 23.5 [14,1–28,8] 27.7 [25,0–32,0] 0.0217

Plasma concentrations measurement/patients median [IQR] 1.5 [1–2,75] (n = 22) 1.0 [1–2] (n = 11) 0.615

Dose median (mg/kg/day) [IQR] 14.9 [10,0–16,0] (n = 81) 14.6 [9,3–18,0] (n = 49) 0.9

All the dose-corrected plasma concentrations (µg/mL/mg/kg/day) mean [SD] 0.046 [0,174] (n = 81) 0.034 [0,07] (n = 49) 0.011

First voriconazole plasma concentration median (µg/mL) [IQR] 1.12 [0,39–3,92] (n = 22) 0.37 [0,16–1,19] (n = 11) 0.054

First dose-corrected voriconazole concentration median (µg/mL/mg/kg/day) [IQR] 0.10 [0,02–0,34] (n = 22) 0.029 [0,02–0,08] (n = 11) 0.059

Diagnosis

  ALL 13 6

  AML 5 5

  Osteosarcoma 1 —

  Liver transplant 1 —

  Testicle tumor 1 —

  SCID 1 —

Table 1. Demographic and pharmacokinetic data of patients with voriconazole treatment. IQR, interquartile 
range; SD, Standard deviation; ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; SCID, Severe 
Combined Immunodeficiency.
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Finally, the first trough voriconazole dose-corrected plasma concentrations for each genotype were com-
pared. The carriers of the rs12248560 variant had a median 0.029 µg/mL/mg/kg/day, whereas the non-carriers 
had 0.10 µg/mL/mg/kg/day (p = 0.059; Fig. 2C).

Discussion
In this study we examined the association of the rs12248560 variant on voriconazole plasma concentrations in 
immunocompromised Chilean pediatric patients. In addition, the allelic frequency of this variant in a Chilean 
population was obtained. The rs12248560 variant has been studied in other populations19. In a population of 285 
subjects in the north of Spain, 14.9% of them were carriers of the rs12248560 variant, a value similar to the 12% 
obtained in our study20. Similarly, data obtained from the 1000 Genomes Project showed a frequency 12% of the 
rs12248560 variant in the American population. In another study in the north (Denmark, Sweden, Norway), 
east (Poland) and south (France) of Europe, the allelic frequencies of this variant was between 15 and 27%. This 
frequency was similar to what has been described in Africa (Ethiopian, Nigerian, Afro-American), a frequency 

Figure 2. Voriconazole plasma concentration in carriers or non-carriers of the rs12248560 variant. (A) Dose-
corrected voriconazole plasma concentrations of the 33 patients are shown. The carriers had a mean of 0.034 µg/
mL/mg/kg/day and showed significantly lower concentrations than non-carriers (p = 0,011), whose mean was 
0.046 µg/mL/mg/kg/day. The mean and the standard deviation for each genotype are plotted. (B) First trough 
plasma concentrations of voriconazole, without dose correction, reached by the patients studied (p = 0.054). 
Almost all the concentrations belonging to the carriers of the rs12248560 variant were sub-therapeutic (median 
0.37 µg/mL), whereas for the non-carriers the concentrations were spread out (median 1.12 µg/ml). The medians 
and interquartile ranges are plotted and the therapeutic range (between 1 and 6 µg/mL) is highlighted. (C) First 
dose-corrected voriconazole concentration of the 33 patients is shown. The median for each genotype were 0.10 
and 0.029 µg/mL/mg/kg/day for non-carriers and carriers of the rs12248560 variant, respectively (p = 0.059).
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reported as being between 18 and 20%, whereas for Asian groups (Korean, Chinese and Japanese), frequencies 
between 2 and 4% were described21.

We found differences in voriconazole plasma concentrations in carriers of the rs12248560 variant compared 
to non-carriers. Also, analyzing the first trough voriconazole plasma concentrations revealed that plasma con-
centrations found in rs12248560 variant carriers were lower than the non-carriers. The same association has 
been reported in immunosuppressed hemato-oncology pediatric patients6,12, demonstrating that the heterozygote 
patients have lower plasma concentrations than non-carriers. In another study performed on 72 adult patients 
with aspergillosis22, it was determined that rs12248560 variant carriers presented statistically lower voriconazole 
plasma concentrations than non-carriers. The pharmacokinetics of voriconazole in 20 healthy adults after a single 
oral dose of 200 mg showed that rs12248560 variant carriers had a maximum concentration, AUC and clearance 
of voriconazole significantly lower than non-carriers10.

Early determination of the allelic rs12248560 variant and its consideration in guiding the voriconazole dosage 
in patients made it possible to reduce the time needed to reach therapeutic concentrations from 29 to 6.5 days 
in carriers of the rs12248560 variant and from 25 to 9 days in homozygous patients for the wild-type variant 
CYP2C19*1. In addition, there was a reduction in patients with an elevation of liver enzymes and suspension 
of the treatment due to toxicity12. A recent report established that the CYP2C19 enzyme genotype is the most 
important interpersonal variability factor that affects the plasma concentrations of voriconazole23. In this regard, 
clinical guidelines for voriconazole therapy based on the CYP2C19 genotype have recently been published pro-
viding evidence for the use and dosage of this drug19. Implementation of genotype-targeted therapy together with 
adequate therapeutic monitoring in accordance with clinical recommendations could produce even shorter dwell 
times or reduce the hospital stay, avoid transfer to high complexity units and prolonged drug treatment with 
voriconazole, lower the request for imaging or laboratory examinations, and so forth.

Our study has limitations. An interindividual variability in voriconazole plasma levels has been described. 
Age, gender, drug route and some co-morbidities have been shown to affect the voriconazole plasma concen-
tration19,24,25. In our study no differences were found in age and gender between carriers and non-carriers of 
the rs12248560 variant in patients treated with voriconazole (Table 1). Drug route and co-morbidities were not 
analyzed. Another limitation is that drug interactions, efficacy and toxicity of voriconazole and its association 
with clinical outcome were not analyzed in our study. Is important to note, in this study we did not analyze the 
involvement of others CYP2C19 variants or others enzymes (CYP3A4 and FMO3) that affects the plasma con-
centrations of voriconazole that might explain similar plasma concentrations between carriers and non-carriers 
of rs12248560 variant. The main goal of our study was to find evidence of the impact of the rs12248560 variant 
on the voriconazole plasma concentration. Future prospective age-matched studies including the variables men-
tioned above are needed to validate our findings in order to consider CYP2C19*17 genotyping for voriconazole 
therapeutic monitoring.

In conclusion, we report the frequency of the rs12248560 variant in a Chilean pediatric population and the 
involvement of this variant in the voriconazole metabolism of immunocompromised patients. Our data might 
help in the implementation of CYP2C19 genotyping to individualize starting doses of voriconazole.
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