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A Generalized Model for Linear-
Periodically-Time-Variant 
Circulators
Changting Xu1 & Gianluca Piazza2

Magnetic-free non-reciprocity based on linear-periodically-time-variant (LPTV) circuits has received 
significant research and commercial attention since it could revolutionize wireless communications. 
LPTV circuits are formed by two main components: linear-time-invariant (LTI) networks and 
periodically-modulated switches. The modulated switches are the core elements to break the 
reciprocity of LTI networks. To understand and design LPTV circulators, a universal and intuitive 
analytical model is required. However, such model does not exist as it is extremely challenging to 
accurately model and fully understand the LPTV behaviour of energy storage networks. To address 
this limitation, this work introduces a novel analysis method, which is broadly applicable to any LPTV 
networks, and validates it experimentally. The novelty of this methodology comes from two main 
contributions: (1) modelling of the switch as a resistor in parallel with a current-controlled current 
source; (2) the decomposition of the LPTV network into the linear superposition of two LTI networks. 
We apply this technique to model the exact behaviour of an LPTV circulator in the frequency domain.

The ever-increasing number of wireless devices drives the need to expand the capacity of wireless communica-
tion networks. The network capacity is strongly related to the available radio spectrum, which is very congested. 
Existing bi-directional communication technologies rely on either time division duplexing (TDD) or frequency 
division duplexing (FDD). Both are called half-duplexing and do not use the available spectrum to its fullest. The 
ability to transmit and receive electromagnetic signals simultaneously over the same frequency channel would 
double the efficiency in the utilization of the radio spectrum, hence increasing the network capacity. This is com-
monly referred to as in-band full duplexing (IBFD). A key technical challenge for the demonstration of IBFD 
is the suppression of strong interferers between the transmitter (Tx) and the receiver (Rx) blocks. Significant 
advancements have been made in suppressing these interferers through analogue and digital circuit cancellation 
techniques1–3. Nonetheless, for the shared-antenna architectures, a key challenge exists in attaining an additional 
15–20 dB of isolation right at the RF front-end to relax the design of full-duplexing transceivers. Additionally, this 
isolation needs to be attained through devices that fit in form factors that are compatible with modern wireless 
devices. Magnetic-free circulators based on linear-periodic-time-variant (LPTV) circuits4–31 are the most prom-
ising candidates to implement a solution for this challenge. A circulator is a three-port non-reciprocal device 
that supports unidirectional power transmission, i.e., from the Tx to the antenna (Ant) and from the Ant to the 
Rx, while isolating the Rx from the Tx’s large signal and preventing saturation. Conventionally, non-reciprocity 
has been achieved via ferrite-based material using the Faraday effect. The resulting devices are bulky, expensive, 
and incompatible with CMOS technologies32. The use of active devices to implement circulators has also been 
explored33–35. However, these implementations suffer from poor linearity and noise performance36. On the other 
hand, LPTV circuits are composed of linear-time-invariant (LTI) networks periodically modulated by a switch 
(or varactor) matrix. According to the Lorentz theorem, LTI networks are reciprocal by nature, which is math-
ematically expressed by the use of a symmetric electrical matrix (e.g., admittance matrix, scatter matrix, etc.) to 
describe the relationship between their ports. The periodic modulation of switches or varactors breaks the time 
invariance of LTI networks and thus it is possible to generate non-reciprocity. The magnet-free implementation 
of circulators based on LPTV circuits has shown promise in terms of achieving high linearity and low noise, 
while overcoming weight, size, and cost limitations of its magnetic counterparts. As shown in Table 1, there are 
four primary topologies for time-varying non-reciprocal networks: angular momentum biasing (AMB)4–16,31,37, 
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phase-shifted N-path filters20–23, sequentially-switched delayed lines (SSDL)17,25,26,28–30, and distributedly modu-
lated capacitors (DMC)19,27. Generally, AMB enables symmetric circulators and requires a modulation frequency 
that is a small fraction of the filter centre frequency when high quality factor resonators are employed, hence 
reducing the power consumption of the active modulation process38. Moreover, the LTI network modulation 
could be implemented through switches or varactors. Switches are more attractive because they offer simpler 
implementation, larger modulation ratio, and easier integration15. Therefore, the AMB topology is the focus of 
this work.

Figure 1a shows the proposed general AMB circulator topology15. The proposed circulator consists of two 
identical LTI networks with 3-fold rotational symmetry parametrically modulated by a switch matrix. Figure 1b 
shows three digital pulse trains with the same period, but a phase difference of 120° with respect to each other. 
These pulses are the modulation signals used to drive the switches of the black branch of the LTI network. The 
modulation signals of the red branch complement that of the black one such that the radio frequency (RF) input 
from the antenna is commutated between the two branches and no power is lost when the switches are in the off 
state in one branch.

Although the magnet-less non-reciprocal networks have been actively investigated, the analysis of the circuit 
in Fig. 1 remains challenging due to the complexity of LPTV networks based on modulated switches. Switches 
are extremely common electronic components; however, it comes as a surprise that, over the last eight decades 
since sampling mixers came into use in 1930s, the interaction between switches and LTI networks has not been 
fully modelled. Instead, only a few simple LTI networks modulated by switches have been analysed in either 
time- or frequency-domain. For example, SSDLs have been qualitatively described in the time-domain by treat-
ing transmission lines as non-dispersive elements17,25,26,30. Alternatively, sampling mixers have been analysed in 
the frequency-domain using switch-resistor or switch-capacitor models38 where the output and input signals 
are readily related. More complex models have been developed for N-path filters. E. Klumperink et al.39 offers 

Topologies/Principles
Modulated 
Components LTI Network Components

Angular Momentum Biasing (AMB)
Switches MEMS resonators4,13,14

MEMS filters15,31

Varactors L-C tanks5–12

MEMS Resonators16

Sequentially-Switched Delay Lines (SSDL) Switches Transmission Lines25,26,28,29

Acoustic Delay Lines17,30

Phase Shifted N-Path Filters Switches Transmission Lines20–23

Distributedly Modulated Capacitors (DMC) Varactors Transmission Lines19,27

Table 1.  Summary of non-reciprocal device topologies based on LPTV circuits.

Figure 1.  Schematic representation of the generalized non-reciprocal network described herein and the phase 
difference between modulation signals. (a) The proposed non-reciprocal network is formed by two identical 
LTI networks (1 and 2) with 3-fold rotational symmetry, modulated by two complementary sets of switches. 
(b) There are 120° rotational phase relationships between modulation signals (square wave pulses). T0 is the 
modulation period (1/frequency) and Tp is the pulse width. Duty cycle, α, is defined by the ratio of Tp to T0.
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a complete overview on the history of N-path filters. In the modelling of N-path filters, assumptions such as 
loss-less sampling40,41 and non-overlapping between switch clock signals42 are made to simplify the analysis. 
These assumptions may offer a good approximation of the circuit behaviour, yet they limit the scope of the meth-
ods and are not applicable to a generalized circulator model. The most common techniques to analyse N-path 
filters are based on polyphase “kernels”43–45 and conversion matrices46. A kernel is a single-path sub-circuit. This 
method decomposes the LPTV circuits into multiple polyphase kernels, then each kernel is analysed by invoking 
LPTV theory, and finally the kernel states are combined to obtain the circuit states. The LPTV theory reveals 
that45, the output spectrum, Vo, of an LPTV network, is a summation of an infinite number of frequency-shifted 
and filtered input spectrum, Vi, which is

V H n V n( ) ( ) ( )
(1)o

n
n i0 0∑ω ω ω ω ω= − −

=−∞

+∞

where Hn(ω − nω0) is known as “harmonic transfer functions (HTFs)”, n is the harmonic index, and ω0 is the 
modulation frequency. Finding HTFs is the goal of the analysis of LPTV circuits. The analysis of circulators 
based on phase-shifted N-path filters has used this kernel method20,43. However, such analysis is neither flexible 
as it cannot handle arbitrary LPTV circuits and arbitrary overlap between clock signals of different kernels, nor 
intuitive since the results contain an infinite number of translated signals in frequency. Hence, it is quite chal-
lenging to analyse a generalized circulator architecture by using polyphase kernels. By contrast, the use of con-
version matrices is a more systematic approach, which relies on matrix-form expressions of the HTFs for basic 
electronic components, such as resistors, capacitors, and inductors. With this method, the analysis of arbitrary 
LPTV circuits can be performed in a similar way to that of LTI circuits. Nonetheless, it requires to include all 
explicit component-by-component conversion matrices in the output expression and thus it is not applicable to a 
generalized LPTV network46. A variant of the conversion matrix method was developed to perform the analysis 
on generalized LPTV networks in ref.29. However, it requires to use a large number of square Floquent Scattering 
Matrices (FSM), which are non-trivial to obtain and make this method more complex. Furthermore, the above 
methods do not provide a standalone model of a switch by itself without which it remains difficult to fully under-
stand LPTV behaviour.

When varactors are used instead of switches to modulate the LTI networks, then the LPTV circulators can be 
more readily analysed by coupled-mode theory (CMT) such as in N. A. Estep et al.10 and R. Fleury et al.47. This is 
possible since only first-order intermodulation products have to be considered to obtain an accurate description 
of the LPTV circulator. However, the proposed models are not applicable to switch based LPTV networks since 
higher-order mixing must be taken into consideration for accurate description of the circulators.

To address some of the limitations of the aforementioned methods, this work proposes a novel approach 
to analyse an LPTV network by decomposing it into a finite number of LTI networks and accurately describ-
ing its behaviour with semi-analytical equations. This approach is enabled by modelling a periodically modu-
lated switch with a resistor in parallel with a current-controlled current source (CCCS). The resistor represents 
the on-impedance of the switch, whereas the CCCS current is controlled by the current flowing in the resistor. 
Such model is independent of the networks the switch connects to and does not impose any restrictions on duty 
cycles, operating frequencies, and clock overlaps. By using this model of the switch, we are able to separate the 
description of the switch modulation function from the LTI networks and derive an analytical expression of 
the proposed generalized circulator as shown in Fig. 1. It is interesting to note that, through this method, the 
analysis of the LPTV circuit is reduced to the analysis of the comprising LTI circuits in which the switches are 
effectively on. The circulator model is validated by applying it to the description of a circulator synthesized using 
off-the-shelf-components. It is worth noting that the same overarching method can be extended to the analysis of 
any other LPTV circuits with only minor modifications of the component description.

The rest of the paper is organized in the following manner: the switch model in frequency domain is first 
presented and the interaction between the switch and any arbitrary LTI network is discussed; then such model is 
used to simplify the description of LPTV networks and derive the semi-analytical S-parameters of the generalized 
circulator in Fig. 1; finally, the generalized circulator analytical model is validated by comparing its results to the 
experimental data.

Standalone Switch Model in Frequency Domain
This work proposes an innovative and illustrative model that describes the dynamic behaviour of a switch period-
ically toggled on and off using a resistor in parallel with a current-controlled current source (CCCS) (see Fig. 2a 
and refer to Methods Section for the derivation). The resistor models the frequency dependent (ω) on-impedance 
of the switch, zS(ω). The CCCS models the effect of periodic modulation. The current of the CCCS is controlled by 
the current flowing through the resistor. The quantitative relationship between the CCCS and the current through 
the resistor is presented in this section and is derived analytically in the Methods Section.

Given a carrier frequency, ωRF, and a modulation frequency, ω0 (=2π/T0, where T0 is the period of the modu-
lation signals), the steady-state current through the switch (and the network it connects with) contains intermod-
ulation products at ωRF ± nω0, where n is an integer. Termed as “harmonic index” in this work, n can theoretically 
span from negative to positive infinity. However, considering that most systems have a finite bandwidth (BW) 
and that the magnitude of the intermodulation products is proportional to 1/n, it is enough to include a finite 
number of intermodulation products in the analysis. If the maximum harmonic index is N, there are (2N + 1) 
frequency components, i.e. from (ωRF − Nω0) to (ωRF + Nω0). Roughly, N only needs to be greater than BW/ω0, 
which ensures that all effective intermodulation products fall within the band of the system regardless of the rela-
tive position of the carrier frequency with respect to the band centre frequency. More broadly, the larger the value 
of N, i.e. the number of higher-order intermodulation products included in the analysis, the more accurately the 
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model describes the behaviour of the network. Conversely, when N = 0, the number of frequency components 
is 1 and only the carrier frequency is analysed, which models the network without modulation present (i.e., the 
switches are always on).

The LPTV currents generated by periodic switching are represented in the frequency domain by vectors com-
prised of complex current phasors (frequency information is omitted but implied by the positions and subscripts 
of phasors), as shown in Fig. 2a. As explained in the Methods Section, the correlation between IS0, IZ0, and IC0 can 
be expressed as

α θ= −I YC Y I( , ) (2)C Z0
1

0

= +I I I (3)S Z C0 0 0

where α is the duty cycle, θ is the phase delay of the modulation signal, Y is a diagonal spectral admittance 
matrix of the switch defined in Eq. (33), and C(α, θ) is a (2N + 1)-order matrix dictating the mapping relationship 
in frequency conversion defined in Eq. (34), whose elements are strongly related to the complex Fourier trans-
form coefficients of the switch’s periodic behaviour in time-domain. In the two extreme cases of no modulation, 
α = 0 or α = 1, C(0, θ) is a (2N + 1)-order negative identity matrix, while C(1, θ) is a (2N + 1)-order zero matrix, 
which respectively produce:

α= − = =I I I, 0, when 0 (4)C Z S0 0 0

Figure 2.  Schematic representation of switch model and its application to a generalized single-switch LPTV 
circuits. (a) Switch model in frequency domain: a resistor in parallel with a current-controlled current source 
(CCCS). IS0, IZ0, and IC0 are the currents through the switch S0, equivalent resistor, and CCCS. Each current 
is a column vector that groups (2N + 1) complex current phasors at corresponding frequencies, which are 
implied by the positions and subscripts of the phasors. For example, IS0,n in IS0 represents IS0,n exp[j(ωRF + nω0)]. 
zS(ω) is the spectral on-impedance of the switch, which is inversely related to its on-admittance, yS(ω). (b) The 
interaction between a switch and a general LTI network, and its corresponding equivalent circuit. The circuit is 
driven by a voltage source with internal impedance, Z0. The source impedance is called “Port”. (c,d) The two LTI 
circuits and corresponding transfer functions used to analyse the LPTV circuit in (b). The italic lower-case “i” 
means current scalar, while the bold upper-case “I” represents current vector, with italic upper-case “I” referring 
to the current elements in the vector.
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I I I0, , when 1 (5)C S Z0 0 0 α= = =

Intuitively, Eq. (4) represents the behaviour of an open switch for zero duty cycle, while Eq. (5) indicates that 
no modulation is present for 100% duty cycle, i.e. the switch is always closed. These two prosperities are inde-
pendent of ω0 and N.

When the periodically modulated switch interacts with an arbitrary LTI network driven by a voltage source, 
the switch can be replaced by its equivalent model shown in Fig. 2b. By applying linear superposition theory, the 
analysis of the circuit in Fig. 2b can be decomposed into the analysis of two LTI circuits as shown in Fig. 2c,d, 
which consider the contribution of a voltage source (corresponding to the driving source) and a current source 
(corresponding to the CCCS generated by the switch), respectively. The contribution to the currents at the loca-
tions of interest, for example, the port (see Fig. 2b) and the equivalent resistor in this work, can be characterized 
by four transfer functions, P0(ω), R0(ω), Q0(ω), and T0(ω) as defined in Fig. 2c and d. It is worth noting that the 
circuit in Fig. 2c is equivalent to the circuit in Fig. 2b without modulation. As proven in the Methods Section, the 
CCCS pumps currents into the equivalent resistor, which adds to the circuit current without modulation (Fig. 2c) 
to yield the following steady-state current:

I I A I (6)Z Z T C0 0
(0)

00
= +

where IZ0
(0) is the current through the equivalent resistor when the switch is always on, AT0 represents the absorp-

tion matrix that depicts the ability of the switch equivalent resistor to absorb current from the CCCS at different 
intermodulation frequencies, as defined in Eq. (37). Similarly, the modulation modifies the port current, IP0, in a 
way that

= +I I A I (7)P P Q C0 0
(0)

00

where IP0
(0) is the current through the port without modulation, AQ0 represents the absorption matrix that depicts 

the ability of the termination port to absorb current from the CCCS at different intermodulation frequencies, as 
defined in Eq. (38).

Looking at Eqs (6) and (7), it is interesting to note that the steady-state currents of the resulting LPTV circuits 
in which the switches are used (Fig. 2b) are composed of two parts: the initial current without modulation and 
the contribution from the CCCS due to modulation. Therefore, the analysis of the overall current in the LPTV 
network can be easily conducted by deriving the transfer functions of two LTI circuits as shown in Fig. 2c,d, i.e. by 
using P0(ω), R0(ω), Q0(ω), and T0(ω). In summary, the proposed switch model permits treating LPTV circuits (in 
Fig. 2b) as the linear superposition of two LTI circuits’ states. This point will be illustrated further in the following 
section.

Generalized Analysis of the Circulator Circuit
In RF domain, S-parameters are commonly used to describe the network behavior38. Our ultimate goal is to 
derive the closed-form S-parameters of the proposed circulator in Fig. 1a. Due to the 3-fold rotational symmetry 
of the circulator topology, there are only three independent S-parameters: S11, S21, and S31. Among them, |S21| is 
referred to as insertion loss (IL), while |S21|/|S31| is called isolation, both being expressed in dB. These two param-
eters are the most important ones in characterizing the circulator performance. Generally speaking, one wants 
to minimize IL while maintaining high isolation. To compute the S-parameters, a single-tone voltage source 
(with carrier frequency, ωRF) excites the circuit at Port 1 (Ant), as shown in Fig. 3a. From the above analysis of the 
switch, we can replace the switches with resistors and CCCSs (see Fig. 3b). This circuit can be solved by applying 
linear superposition theory, which corresponds to the analysis of the two core LTI circuits as shown in Fig. 3c,d.

For convenience, we first define p- and r-transfer functions for the circuit in Fig. 3c:
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as well as q- and t-transfer functions for the circuit in Fig. 3d:
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Intuitively, p- and q-transfer functions describe the fraction of current that each port can absorb from the 
voltage source and current source, respectively, while r- and t-transfer functions indicate the respective capability 
of the voltage source and current source to pump currents into the equivalent resistor. It is interesting to note that, 
PI(ω) and PIJ(ω) are related to the S-parameters (S S S, ,11

(0)
21
(0)

31
(0)) of the circuit in Fig. 3a without modulation 

(namely, when switches are always on) in the following way:
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ω ω

ω ω ω
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(0)
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where Z0 is the termination impedance, typically 50 Ω. ω ω=S S( ) ( )21
(0)

31
(0)  because of the symmetric circuit 

topology.
For brevity in the derivation of the circulator model, Table 2 shows the defined naming convention for cur-

rents at different locations in the circuit. By using the naming convention, we can re-write equations for each 
CCCS based on Eq. (1) as:

I YC Y I
I YC Y I

( , )
( , ) (13)

Ci i Zi

Ci i Zi

1
1

1

2
1

2

α θ

α θ

=

=

−

−

where α θ α απ θ= − +C( , ) C(1 , 2 )i i , and θi = (i − 1)2π/3, i = 1, 2, 3. Similar to Eqs (6) and (7), the current 
through equivalent resistors and ports are expressed as the sum of the initial current without modulation and the 
contribution from CCCSs due to modulation. With the assumption of 3-fold rotational symmetry of the LTI 
networks, these currents can be expressed as

Figure 3.  Schematic representation of the proposed methodology for the analysis of the circulator circuit. (a) 
An excitation source is applied at the antenna of the proposed circulator and steady-state port currents, IP1-P3, 
are induced. (b) Switches in (a) are replaced with zS(ω) Ω resistors in parallel with CCCSs according to the 
equivalent model described in Fig. 2. (c,d) The two core LTI networks used to analyse the proposed circulator 
and corresponding transfer functions are defined. PI, PIJ, RI, and RIJ in (c) are used to describe the initial circuit 
states without modulation, while QI, QIJ, TI1, TIJ1, TI2, and TIJ2 help quantify the effect of modulation on the 
circuit states.
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= + + + + + +I I A I A I A I I A I I( ) ( ) (14)Zih Zih T Cih T Cil T Cjh Ckh T Cjl Ckl
(0)

I I IJ IJ1 2 1 2

( )I I A I I A I I I I( ) (15)Pi Pi Q Ci Ci Q Cj Cj Ck Ck
(0)

1 2 1 2 1 2I IJ
= + + + + + +

where i, j, and k are the permutation of 1, 2, and 3, h and l are the permutation of 1 and 2, and AX represents 
the absorption matrix that depicts the ability of ports or switch equivalent resistors to absorb current from CCCS, 
and it is written as

ω ω

ω ω ω ω ω ω ω

ω ω

=

= − … − + …

+

diag X N X X X

X N

A A ( , )

[ ( ), , ( ), ( ), ( ), ,

( )] (16)

X X RF

RF RF RF RF

RF

0

0 0 0

0

where X(ω) represents t- or q-transfer functions. By rewriting Eqs (13–15) in a compact form, we obtain:

I YCY I (17)C Z
1

=
∼∼ ∼−

= +
∼I I A I (18)Z Z T C

(0)

= +
∼I I A I (19)P P Q C

(0)

where

α θ α θ α θ α θ α θ=
∼ diagC C C C C C[ ( , ) ( , ) ( , ) ( , ) ( , )], (20)1 2 2 3 3

=
∼ diagY Y Y Y Y Y Y[ ], (21)

	 (22)

Notation Meaning

IPi
Steady-state current of i-th port with modulation, defined as  I I I I II [ ] ,Pi Pi N Pi Pi Pi Pi N

T
, , 1 ,0 , 1 ,= − − + +  where i = 1, 2, 

3. The current element at the frequency (ωRF + nω0) in IPi is represented as IPi,+n.

IP Steady-state currents of 3 ports with modulation, defined as I I I( ) ( ) ( )P
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P
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P
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T

1 2 3

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
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IXih

Steady-state current of ih-th X element with modulation, defined as  = − − + +I I I I II [ ] ,Xih Xih N Xih Xih Xih Xih N
T

, , 1 ,0 , 1 ,  
where X represents either Z (switch equivalent resistor), or C (CCCS), i = 1, 2, 3, and h = 1, 2. The current element at the 
frequency (ωRF + nω0) in IXih is represented as IXih,+n.

IX Steady-state currents of 6 X elements with modulation, defined as 

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2, 3. All components are zero except its element at the carrier frequency. The current element at the frequency (ωRF + nω0) in IPi
(0) 

is represented as IPi n,
(0)

+ .
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Steady-state currents of 3 ports without modulation, defined as 
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.I I I( ) ( ) ( )P
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1
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2
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3
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I Zih
(0)

Steady-state current of ih-th switch’s equivalent resistor without modulation, defined as 
 I I I I II [ ] ,Zih Zih N Zih Zih Zih Zih N

T(0)
,

(0)
, 1

(0)
,0

(0)
, 1

(0)
,

(0)= − − + +  where i = 1, 2, 3 and h = 1, 2. All components are zero except its 
element at the carrier frequency. The current element at the frequency (ωRF + nω0) in I Zih

(0)  is represented as IZih n,
(0)

+ .

I Z
(0)

Steady-state currents of 6 switches’ equivalent resistors without modulation, defined as 






.I I I I I I( ) ( ) ( ) ( ) ( ) ( )Z
T

Z
T

Z
T

Z
T

Z
T

Z
T

T

11
(0)

12
(0)

21
(0)

22
(0)

31
(0)

32
(0)

Table 2.  Naming convention of currents in the proposed circulator topology.
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	 (23)

The same sub-matrices in matrix AT
∼  and AQ

∼  have the same colours to help the reader recognize how these two 
matrices are arranged. Combining Eqs (17) and (18), IZ can be calculated as

I I A YCY I
(24)Z d T Z

1 1
(0)˜= 


 − 




∼∼ ∼∼ − −

where Ĩd is a 6(2N + 1)-order identity matrix. Substituting Eqs (24) and (17) into Eq. (19) produces

˜I I A YCY I A YCY I
(25)P P Q d T Z

(0) 1 1 1
(0)= + 


 − 




∼ ∼∼ ∼ ∼ ∼∼ ∼− − −

In Eq. (25), IP
(0) and IZ

(0) represent the circuit response to the exciting voltage source without modulation. These 
matrices are easy to compute by LTI theory. The non-zero elements in IP

(0) and IZ
(0) are:

I P U I I P U

I I R U I I I I R U

, ,

, (26)

P I P P IJ

Z Z I Z Z Z Z IJ

1,0
(0)

1 2,0
(0)

3,0
(0)

1

11,0
(0)

12,0
(0)

1 21,0
(0)

22,0
(0)

31,0
(0)

32,0
(0)

1

= = =

= = = = = = .

The S-parameters for the proposed circulator can be obtained by

= − = − = − .S
I
U

Z S
I
U

Z S
I
U

Z1 2 , 2 , 2
(27)

P P P
11

1,0

1
0 21

2,0

1
0 31

3,0

1
0

where IPi,0 (i = 1, 2, 3) is the carrier frequency steady-current current at i-th port as defined in Table 2.
Equations (25)–(27) constitute the complete semi-analytical model of the proposed circulator as shown in 

Fig. 1. As evident from the derivation process, the model is agnostic of the LTI network and the switch perfor-
mance and only needs linear matrices to describe the behaviour of these components. This is the most powerful 
aspect of this model, which dramatically simplifies the description of LPTV networks.

Experimental Verification of the Circulator Model
To verify the previously described circulator model, we set up a circulator circuit as shown in Fig. 4a and b 
by using MiniCitcuits discrete RF high isolation switches, ZFSWHA-1-20+, and bandpass filters (BPF), SBP-
21.4+. Figure 5a,b show the frequency responses of the selected switch and filter, respectively. The filter centre 
frequency is 21.4 MHz and its 3dB-bandwidth (BW) is 7.4 MHz. The insertion loss (IL) of the filter and switch at 
21.4 MHz are 0.81 dB and 0.61 dB, respectively. As shown in Fig. 5a, since the magnitudes of y1 and y2 are at least 
100 times smaller than yS, it is reasonable to neglect their shunt components in the model of the switch and only 
take its series admittance, yS, into account. As for the modulation signals, three pulse trains were generated by 
two synchronized 2-output pulse generators, Agilent 81110 A, which are then fed to a hex inverter, 74HCT04, to 
generate 3 complementary pairs of square waves, as shown in Fig. 4c. The phase differences between these signals 
were monitored by a 4-channel oscilloscope, Agilent DSO6014, and are automatically adjusted to be 120° by a 
MATLAB program. By sweeping the modulation frequency and duty cycle of the signal applied to the switches, 
we obtained a family of responses for the circulator. Figure 6a shows an overlapped contour map between circu-
lator isolation and IL for different modulation characteristics. The shaded area is the region where modulation 
parameters are chosen to offer both good isolation and IL. It can be concluded that trade-offs between IL and 
isolation exist because the best IL and the largest isolation occur for different modulation parameters. We are not 
interested in explaining the reasons behind these trade-offs, which can be found in C. Xu et al.31, but rather focus 
on the validation of the proposed theoretical model. We chose two example points, i.e. Point A and B in Fig. 6a, 
to compare the theoretical and experimental results, as shown in Fig. 6b and c, respectively. Point A is an example 
of the circulator operating in the shaded region, which offers IL of 5.7 dB and isolation of ~15 dB over a 3-dB 
bandwidth of ~1.5 MHz. Point B is another set of parameters providing slightly lower IL (6.4 dB) yet much larger 
isolation (>30 dB) for some particular frequencies. For both cases, S11 is well below −10 dB. As a corner case, 
Fig. 6d shows the circulator response for α = 1, which effectively turns on only the normal set of switches (black 
ones in Fig. 1a) and thus blocks the complementary branch of LTI network. This configuration is reciprocal since 
the switches are kept either on or off and thus no modulation effect is imparted to the networks. The reciprocity 
is validated by S21 = S31.

It is observed that the theoretical results overlap well with the experimental ones in all three cases (Fig. 6b–d). 
To guarantee such good agreement between theory and experiment for the first two cases (Fig. 6b,c), a maximum 
harmonic index N = 14 is used in this work, which is slightly greater than BW/ω0 (equal to 9.3 and 13.7 for Point 
A and B, respectively). Minor discrepancies exist between the model and experiments. These originates from the 
deviation of the circulator from 3-fold rotational symmetry due to differences in the BPFs transfer function as 
evident from the measured S21 and S31 shown in Fig. 6d.

Figure 7 shows how the choice of smaller values of N (=0, 1, 5, 10) affects the prediction accuracy of the 
proposed circulator model. In particular, N = 0 (Fig. 7a,e) means no intermodulation products are accounted 
for, which essentially represents no modulation of the circulator. Therefore, Fig. 7a,e have the same theoretical 
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response, in which S21 = S31, regardless of the modulation parameters. As expected, N = 1, i.e. only ωRF and 
ωRF ± ω0 being taken into consideration, cannot accurately predict the circulator behaviours, as shown in Fig. 7b,f. 
It is also interesting to note that, N = 5 is large enough to predict the in-band performance of the circulator, 
because the magnitudes of the intermodulation products are proportional to 1/n. By comparing Fig. 7c,d and 
Fig. 7g–h (N = 5, 10) to Fig. 6b,c (N = 14), respectively, it is worth noting that increasing N improves the accu-
racy in predicting the out-of-band response of the circulator. Interestingly, for circulator operated at Point A, the 
prediction with N = 10 (Fig. 7c) has no significant difference from that with N = 14 (Fig. 6b). Hence, selecting N 
slightly greater than BW/ω0 should be considered as a general rule of thumb to obtain an accurate description of 
the circulator network. As for the third case where α = 1 (Fig. 6d), any N ≥ 0 produces the same results from the 
circulator model as expected from Eqs (4) and (5) Further details of reproducing plots herein can be referred to 
Supplementary Information for “A Generalized Model for Linear-Periodically-Time-Variant Circulators”.

It is worth noting that the model does not make any assumption on the nature of the control signals. For 
example, the clock signal of any switch overlaps with that of two others at any given time in both cases that were 

Figure 4.  Schematic diagram and photo of the circulator and the experimental setup for the characterization 
of the circulator. (a,b) The schematic representation and the photo of the circulator architecture implemented 
by using MiniCitcuits discrete RF high isolation switches, ZFSWHA-1–20+, and bandpass filters (BPFs), 
SBP-21.4+ to validate the theoretical model. The modulation signals are the same as represented in Fig. 1. 
In this implementation, the LTI networks are Y-connected BPF networks. (c) Experimental setup for the 
characterization of the proposed circulator. For the inverter PCB, each Out-k (k = 1, 2, 3) is a pair of pins, 
carrying two signals, one of which is the same as In-k (k = 1, 2, 3) and the other is its complementary.
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Figure 5.  Response spectrum of the switch and filter used in the circulator circuit. (a) Measured frequency 
response of each of the element of the switch’s π-network equivalent model shown in the inset of the phase 
diagram. (b) Measured S-parameters of the selected filter, SBP-21.4+.

Figure 6.  Circulator performance measurement results. (a) The performance in isolation (represented by 
colour) and IL (red contour lines) of the implemented circulator versus modulation frequency and duty cycle. 
The area within the black contour line is the parameter space that produces isolation larger than 14 dB, while the 
shaded area is the region that can offer IL lower than 6 dB at the same time. (b) The overlap between theoretical 
(solid lines) and experimental (dotted lines) responses of the circulator with modulation parameters (0.8 MHz, 
50%) given by point A in (a). (c) The overlap between theoretical (solid lines) and experimental (dotted lines) 
responses of the circulator with modulation parameters (0.55 MHz, 44%) given by point B in (a). (d) The 
overlap between theoretical (solid lines) and experimental (dotted lines) responses of the circulator with duty 
cycle of 100%, in which one of the LTI network is off. The IL at 21.4 MHz is 6.52 dB. These losses are due to 
power splitting (3.52 dB), the IL of two BPF filters in series (1.62 dB) and two series switches (2.84 dB). The 
remaining 0.16 dB comes from the connectors.
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analysed. Furthermore, even two different duty cycles (44% and 56%) were used for the case in Point B. This fur-
ther proves the power of our generalized circulator model.

In conclusion, we have proven the validity of our circulator model, which can be used to predict circulator 
behaviours accurately, given specific switch performance, LTI response, modulation frequency, and duty cycle. It 
should be emphasized that no particular LTI network property is used in the derivation of the circulator model. 
Therefore, the model is broadly valid for all LTI networks with 3-fold symmetry. Moreover, it is easy to extend 
the model to account for general LTI networks and arbitrary switch configurations. It is also worth pointing out 

Figure 7.  Comparison between theoretical (solid lines) and experimental (dotted lines) responses of the 
circulator for different N values and two sets of modulation parameters. N = 0, 1, 5, and 10. The modulation 
parameters for (a–d) and (e–h) are given by Point A Point B in Fig. 6a, respectively.
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that a simplified model of the switch was used in this theoretical analysis for the experimental validation of the 
circulator model. A perfect open was used to model the switch in the off state and shunt parasitics were neglected 
in both the on and off states. Although beyond the scope of this work, the finite off-impedance and shunt par-
asitic can be separated from the switch and treated as part of LTI networks so that no modification to the form 
of the semi-analytical model is needed. Similarly, the switching speed was assumed to be infinite, but this is not 
a requirement for the proposed methodology. Any real switch signals in the time-domain can be described by 
complex Fourier transform coefficients (as explained in Methods section), hence easily incorporating the impact 
of non-ideal switching into the model.

Conclusions
This work rigorously derived and experimentally validated a generalized frequency-domain semi-analytical 
model for LPTV circulators. The overall model is enabled by describing the behaviour of the switch using a resis-
tor in parallel with a CCCS. With the help of the switch model, the analysis of LPTV circuits can be reduced to the 
linear superposition of LTI circuits. Although applied to a particular circulator network, the proposed model can 
be used to describe any LPTV circulators.

Methods
The switch behaviour is described by building a model of its I-V relationship under modulation. In the off-state, 
the switch presents a small admittance when in the off-state and a large one, yS(ω), when in the on-state. Since a 
switch with non-zero off-admittance can be treated as equivalent to a zero off-admittance switch in parallel with 
a component that has the same admittance of the switch’s off-admittance incorporated in the LTI network, we can 
consider the switch off-state admittance to be zero without imposing any particular restrictions on the validity of 
the model. Therefore, without loss of generality, we can assume that the switch admittance spectrum is equal to 
yS(ω) Siemens when in on-state and 0 Siemens when in off-state. When a voltage of uS0(t) = US0exp(jωRFt) at the 
carrier frequency, ωRF, is applied across the switch (Fig. 8a), the corresponding excited steady-state current, iS0 
(assuming iS0 exists), through the switch in the time domain is

ω= ⊗−i t y y t u t( ) [ ( )] ( ) ( ) (28)S S S0
1

0I

where ℑ−1(⋅) represents the inverse Fourier transform, ⊗ represents the convolution operator, and y(t) is the 
switch’s time-domain behaviour toggling between normalized ON, y(t) = 1, and OFF, y(t) = 0, as shown in Fig. 9a. 
y(t) can be represented by a complex Fourier series as

∑= θ ω

=−∞

+∞
−y t c e e( )

(29)n
n

jn jn t0

where θ is the phase delay of the modulation signal, cn is the n-th coefficient of the complex Fourier transform 
of the general periodic switching behaviour in time-domain. Without loss of generality in deriving the switch 
model, an ideally sharp switching behaviour, i.e. a square wave (Fig. 9b), is used to describe y(t) in this work so 
that:

y t rect t
T

t nT( ) 1
2

( ),
(30)n0

0∑α
δ τ=






−





⊗ − −
=−∞

+∞

where α is the duty cycle, and τ = T0∙θ/(2π) is the time delay of the modulation signal. In this case, 
cn = (1 − e−j2αnπ)/(j2nπ) and particularly, c0 = α.

Combining Eqs (28) and (29) produces,

∑= +ω ω ω

=−∞

+∞
+i t i e i e( )

(31)S Z
j t

n
C n

j n t
0 0,0 0,

( )RF RF 0

where iZ0,0 = yS(ωRF)US0, iC0,n = yS(ωRF + nω0)(e−jnθcn)zS(ωRF)iZ0,0(n ≠ 0), iC0,0 = (c0 − 1)iZ0,0. From Eq. (31), infinite 
intermodulation products (ωRF ± nω0) are generated due to the mixing effect. The first term ωi j texp( )Z RF0,0  obeys 
Ohm’s law as if a voltage US0exp(jωRFt) was applied across an equivalent resistor of zS(ω) Ohms, while the rest can 
be treated as current controlled current sources (CCCSs) with a signal equal to ω ω+i j n texp[ ( ) ]C n RF0, 0  dependent 
on iZ0,0 at the intermodulation frequencies, (ωRF + nω0), in parallel with the equivalent resistance of the switch, as 
shown in Fig. 8b. Equation (31) also implies that once there is current ω ω+i j n texp[ ( ) ]Z n RF0, 0  flowing through the 
equivalent resistor, CCCSs are generated accordingly. Upon the interaction of current sources with external cir-
cuits, the current sources inject currents into the equivalent resistor, then causing another iteration of mixing 
process. This process repeats until the circuit currents and voltages converge at steady state. In this state, there are 
infinite intermodulation frequency currents flowing through the equivalent resistor in parallel with infinite inter-
modulation frequency CCCSs, which are represented in a compact form as shown in Fig. 8c. For convenience, the 
vectors comprised of current phasors (frequency information is omitted but implied by the positions and sub-
scripts of phasors) are used to represent the circuit states. In this work, we call them phasor vectors. The 
steady-state currents, IZ0 and IC0, can be decomposed into the sum of infinite iterative currents, IZ

m
0

( ), and IC
m
0

( ), 
respectively, where m represents the iteration number.

Now, let us consider the interaction between a switch and a general LTI electrical network, which is driven by 
a voltage source, as shown in Fig. 10. The circuit states can be completely described by phasor vectors, IP0, IZ0, and 
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IC0, which are the sum of all the corresponding iterative currents, IP
m
0

( ), IZ
m
0

( ), and IC
m
0

( ), respectively. As explained in 
the main manuscript, it is not necessary to compute all infinite number of intermodulation terms in the circuit 
state vectors. Therefore, in Fig. 10, only (2N + 1) intermodulation frequencies, i.e. from (ωRF − Nω0) to 
(ωRF + Nω0), are taken into account. Fig. 10 also shows the correlation between iterative currents generated by the 
frequency mixing due to the switch modulation. To express the modulation effect, rewriting Eq. (31) in a matrix 
form produces

α θ=+ −I YC Y I( , ) (32)C
m

Z
m

0
( 1) 1

0
( )

where Y is a diagonal admittance matrix related to the switch’s on-admittance, yS(ω) = 1/zS(ω), which is given by

Figure 8.  Schematic representation of the flow process used to the derive the equivalent circuit of a switch. (a) 
Current is induced by a voltage across the switch at the initial iteration. (b) The equivalent circuit of the switch 
formed by a resistor of zS(ω) = 1/yS(ω) Ohms and infinite CCCSs at the initial iteration. (c) The equivalent 
circuit of the switch formed by a resistor of zS(ω) = 1/yS(ω) Ohms and a CCCS accounting for infinite number of 
harmonics and iterations.

Figure 9.  Schematic representation of the switching behaviour of the switch in time domain toggling between 
normalized amplitudes of 1 (ON) and 0 (OFF). (a) general waveform and (b) square waveform.
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diag y N y y y

y N

Y Y( , )
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S RF S RF S RF S RF

S RF
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0 0 0 0 0 0 0

0 0

ω ω

ω ω ω ω ω ω ω

ω ω

=

= − … − + …

+

and C(α, θ) is a (2N + 1)-order matrix dictating the mapping relationship in frequency conversion, which is 
expressed as
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
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1,
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l k
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( )
. The second aspect depicted in Fig. 10 is the correlation between iterative 

currents as described by the transfer functions of the LTI network, T0(ω) and Q0(ω), defined in Fig. 2c,d. 
Expressing the current contribution from CCCS at either the equivalent resistor or the port in Fig. 2b leads to

=+ +I A I (35)Z
m

T C
m

0
( 1)

0
( 1)

0

=+ +I A I (36)P
m

Q C
m

0
( 1)

0
( 1)

0

where AT0 and AQ0 represent absorption matrices that depict the ability of the switch equivalent resistor and 
termination port to absorb current from CCCS at different intermodulation frequencies, respectively. They are 
written as

ω ω

ω ω ω ω ω ω ω

ω ω

=

= − … − + …

+ .

diag T N T T T

T N

A A ( , )

[ ( ), , ( ), ( ), ( ), ,

( )] (37)

T T RF

RF RF RF RF

RF

0

0 0 0 0 0 0 0

0 0

0 0

ω ω

ω ω ω ω ω ω ω

ω ω

=

= − … − + …

+ .

diag Q N Q Q Q

Q N

A A ( , )

[ ( ), , ( ), ( ), ( ), ,

( )] (38)

Q Q RF

RF RF RF RF

RF

0

0 0 0 0 0 0 0

0 0

0 0

Taking the summation of Eq. (32) from m = 0 to m = M gives

Figure 10.  Schematic diagram showing the switch in an arbitrary LTI circuit, its corresponding equivalent 
circuit and the interaction between currents in the circuit. IP0, IZ0, and IC0 are the steady-state currents of the 
port, the equivalent resistor, and the CCCS, respectively. Each current is the sum of its corresponding iterative 
currents, IP

m
0

( ), IZ
m
0

( ), or IC
m
0

( ). IP0
(0) and IZ0

(0) are the circuit response without modulation. The red arrows on the right 
represent the iteration flow of the mixing process. It is important to note that all components of IP0

(0) and IZ0
(0) are 

zero except their elements at carrier frequency, which are represented by IP0,0
(0)  and IZ0,0

(0) , respectively.
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By taking the limit when M approaches infinity as well as combining I IZ m Z
m

0 0 0
( )= ∑ =

∞  and I IC m C
m

0 1 0
( )= ∑ =

∞ , 
Eq. (2) is obtained. In particular, if the switch has a constant spectral on-impedance (including ideal 
zero-resistance), Eq. (2) can be simplified as

I C I( , ) (40)C Z0 0α θ=

Similarly, taking the summation of Eq. (35) from m = 0 to m = M produces
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+

=

+

Adding IZ0
(0) to both sides of Eq. (41) and taking the limit when M approaches infinity, we obtain Eq. (6). Again, 

taking the summation of Eq. (36) from m = 0 to m = M produces

I A I
(42)m

M
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M

Q C
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( 1)

0
0

( 1)
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=

+

=

+

Adding IP0
(0) to both sides of Eq. (42), taking the limit when M approaches infinity, and applying I IP m P

m
0 0 0

( )= ∑ =
∞ , 

we have Eq. (7).
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