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Visual Field prediction using 
Recurrent Neural Network
Keunheung park1,3, Jinmi Kim2 & Jiwoong Lee1,3

Artificial intelligence capabilities have, recently, greatly improved. In the past few years, one of the 
deep learning algorithms, the recurrent neural network (RNN), has shown an outstanding ability in 
sequence labeling and prediction tasks for sequential data. We built a reliable visual field prediction 
algorithm using RNN and evaluated its performance in comparison with the conventional pointwise 
ordinary linear regression (OLR) method. A total of 1,408 eyes were used as a training dataset and 
another dataset, comprising 281 eyes, was used as a test dataset. Five consecutive visual field tests 
were provided to the constructed RNN as input and a 6th visual field test was compared with the output 
of the RNN. The performance of the RNN was compared with that of OLR by predicting the 6th visual 
field in the test dataset. The overall prediction performance of RNN was significantly better than OLR. 
The pointwise prediction error of the RNN was significantly smaller than that of the OLR in most areas 
known to be vulnerable to glaucomatous damage. The RNN was also more robust and reliable regarding 
worsening in the visual field examination. In clinical practice, the RNN model can therefore assist in 
decision-making for further treatment of glaucoma.

Glaucoma is a leading cause of blindness worldwide1,2. It is a chronic, irreversible optic neuropathy characterized 
by the progressive loss of retinal ganglion cells (RGCs) and their axons. Structural changes in ganglion cells even-
tually result in functional impairment of the visual field2 and greatly impact quality of life. In practice, monitoring 
visual field examination and determining its progression is an important process in the prevention of vision loss.

However, proper interpretation of visual field progression is difficult. In particular, the visual field test contains 
a large number of random errors and fluctuations that result in a low signal-to-noise ratio. The fluctuations are 
more severe in glaucoma patients than in normal subjects3,4. The pattern of visual field progression over time 
substantially differs among patients5,6. Previous studies have attempted to predict visual field: McNaught et al.7 
compared curve-fitting models and reported that the linear regression model was best for generating the most 
accurate predictions of future visual field status8. However, more recent studies have reported that models of 
increasing complexity result in superior predictions. Caprioli et al.9 compared linear, quadratic, and exponential 
models; they reported that exponential models resulted in the best fit. Murata et al.10 used a type of machine 
learning algorithm, variational Bayes linear regression (VBLR); they reported that it demonstrated superior per-
formance, compared with pointwise linear regression.

Recently, with tremendous advancements in computer performance, artificial intelligence capabilities have 
also greatly improved. Vast computational capacity and improved neural network algorithms have enabled arti-
ficial neural networks with increasingly greater depth. Eventually, “deep learning algorithms” emerged, with per-
formance nearly comparable to that of humans. The greatest advantage of machine learning is that it does not 
require a precise mechanism to resolve complex problems; rather, it learns such mechanisms independently. In 
many cases, there is not a complete theoretical understanding of the problem. Visual field progression is a proto-
typical complicated problem with many unpredictable errors and large variations among patients.

In the past few years, 1 deep learning algorithm, the recurrent neural network (RNN), has shown outstanding 
achievement. Along with the convolutional neural network (CNN), which is successful with respect to image 
recognition, RNN has demonstrated great success in sequence labeling and prediction tasks for sequential data. 
A well-known application of RNN is represented by Apple’s Siri and by Google Voice11,12. Language is a notable 
example of sequential data by nature; the RNN has shown good performance in processing of the natural lan-
guage problem13,14. Unlike other neural networks, RNN maintains the history of input data within the neural 
network15; thus, RNN output is produced with consideration for past input. A series of visual field examinations 
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also comprises sequential input, by which the RNN can better interpret the true progression of the visual field and 
more accurately predict the future, compared with conventional methods.

In this study, we built an RNN architecture that receives a series of visual field examinations and predicts 
future visual field damage. We then evaluated the performance of the RNN by comparison with the conventional 
ordinary linear regression method (OLR).

Methods
This was a retrospective study, performed in accordance with the tenets of the Declaration of Helsinki. The study 
was approved by the institutional review board (IRB) of Pusan National University Hospital; the requirement for 
patient consent was waived by the IRB because of the retrospective nature of the study.

All training and test data were obtained from subjects who had visited the glaucoma clinic at Pusan National 
University Hospital (South Korea) from 2005 to 2018. Subjects who had minimum of 6 consecutive visual field 
examinations were included in both training and test datasets. The training dataset consisted of 1408 eyes of 841 
subjects; its demographic characteristics are summarized in Table 1. Training data were not labeled by diagnosis. 
Therefore, normal visual field data, as well as data from subjects with glaucoma and other optic neuropathies, 
were included; retinal disease and ocular media opacity (such as cataract) could also affect the visual field data. 
Subjects’ mean follow-up duration (years) and age were 4.5 ± 1.8 and 58.9 ± 16.2 (mean ± SD), respectively. The 
average initial visual field mean deviation (MD) was −7.02 ± 6.09 (mean ± SD). A total of 1408 records from the 
training dataset was randomly split into training data + validation data at a ratio of 9:1. Validation data were used 
to check the current fitness of the neural network during training to prevent overfitting.

Apart from the training dataset, another dataset, 281 eyes from 281 subjects, was prepared as the test dataset. 
There was no patient overlap between training and test datasets. For all subjects in the test group, retrospec-
tive review was performed of the detailed results of ophthalmic examinations; these ophthalmic examinations 
included the following measurements: best corrected visual acuity (BCVA), slit-lamp examination, fundus-
copy, biometry using the IOL Master (Carl Zeiss Meditec, Dublin, CA, USA), central corneal thickness (CCT) 
using ultrasonic pachymetry (Pachmate; DGH Technology, Exton, PA, USA), and keratometry using Auto 
Kerato-Refractometer (ARK-510A; NIDEK, Hiroshi, Japan). Glaucomatous optic neuropathy was defined 
upon meeting 1 or more of the following criteria: focal or diffuse neuroretinal rim thinning, localized notching, 
cup-to-disc ratio asymmetry ≥0.2, and the presence of retinal nerve fiber layer defects congruent with visual 
field defects16. Normal subjects were defined as those with no history of ocular disease, intraocular pressure 
(IOP) < 21 mmHg, absence of glaucomatous optic disc appearance, and a normal visual field.

Visual field examination. Automated perimetry was performed by using a Humphrey Visual Field 
Analyzer 750i instrument (Carl Zeiss Meditec) with the Swedish interactive threshold algorithm (SITA) 24-2 or 
30-2. Among 54 test points of the 24-2 test pattern, 2 points of physiologic scotoma were excluded; the remaining 
52 test points were used. The 30-2 test pattern was converted to 24-2 by using overlapped test points. Reliable 
visual field tests were defined as false-positive rate <33%, false-negative rate <33%, and fixation loss <33%. 
Normal subjects were defined as those with a glaucoma hemifield test (GHT) within the normal limits, and with 
mean deviation (MD) and pattern standard deviation (PSD) within 95% of the normal population. Glaucomatous 
visual fields were those that met at least 1 of the following criteria: GHT outside the normal limits and/or PSD 
probability outside of 95% of the normal population.

Artificial neural network. The open source neural network platform, Keras library, running on the tensor-
flowTM (Google, Mountain View, CA, USA) python API r1.10, was used. Python language version 3.5 was used 
with CUDA toolkit 9.0 and cuDNN 7.0 library to utilize GPU computation power. The hardware environment 
was Intel i5-8400 CPU, 32 GB RAM, and two Geforce 1080Ti video cards (NVIDIA, Santa Clara, CA, USA) con-
nected with an SLI bridge.

The final deep neural network architecture used in this study is shown in Fig. 1. A state-of-the-art RNN 
architecture, long short-term memory (LSTM), was used. A single layer of 6-LSTM cells received input data 
comprising 52 total deviation values (TDV), 52 pattern deviation values (PDV), reliability data (false negative 
rate, false positive rate, and total fixation loss rate), and time displacement value. Before they were fed into the 
neural network, TDV, PDV, and time displacement values were respectively divided by 50, 50, and 10000, for 

Demographics Value

Total number of patients 841

Follow up duration (years), mean ± SD 4.5 ± 1.8

Age (years), mean ± SD 58.9 ± 16.2

Initial visual field MD (dB), mean ± SD −7.02 ± 6.09

Number of eyes

- Total 1408

- visual field: MD ≥ –6 dB 803

- visual field: –6 dB > MD ≥ –12 dB 330

- visual field: –12 dB > MD 275

Table 1. Demographic characteristics of the training dataset. MD = visual field mean deviation; SD = standard 
deviation.
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the purpose of normalization. Time displacement value was defined as the number of days from the most recent 
visual field examination. For example, the most recent visual field examination has the time displacement value 
of “0,” whereas the visual field examination that was performed 1 month (−31 days) prior to “0” has the time 
displacement value of “−31.” A negative sign in the time displacement value indicates that the examination was 
performed in the past.

Of the 6 consecutive visual field input data elements, 1 input data element contained a special format with 
positive time displacement (i.e., the point in the future that the user wishes to predict); all other data were set to 
0. This special input was used to give the neural network information regarding the date that the user wishes to 
predict. A series of input data were arranged by reducing the time displacement value (i.e., from future to past) 
and then supplying this information to the neural network. If the total number of input data elements surpasses 6, 
which exceeds the input window of the neural network, such data can serve as the most recent 6 visual field exam-
inations first; then, the next data can be supplied by sliding the time window 1 step into the future until the last 
input data are reached. However, in this study, we prepared all training and test datasets with exactly 6 consecutive 
visual field examinations, because we did not have a sufficient number of subjects with more than 6 visual field 
examinations. In the future, we plan to perform a multicenter study to collect sufficient data.

The LSTM layer is connected to the next single fully connected layer (dense layer), which consists of 52 neu-
rons. These 52 neurons generate a final visual field prediction (1 neuron generates 1 visual field test point). This 
final RNN architecture was determined experimentally. We tested many different neural network architectures by 
varying the number of LSTM layers, the number of fully connected layers, the activation function, and the input 
data fed into the LSTM layer. The best neural network architecture was a single layer of LSTM with a single-layer 
fully connected network.

Statistical analyses. To compare the performance of prediction, root mean square error (RMSE) and mean 
absolute error (MAE) of TDV were used as accuracy metrics. The same accuracy metrics were used in previous 
studies10,17. RMSE was calculated per each eye by using the equation below.

∑=
−

=

=
RMSE true TDV predicted TDV

n n test point of visual field exam

( )
52

,
n

n n

th
1

52 2

MAE was calculated per each test point of the visual field throughout all eyes by using the equation below.

Figure 1. Recurrent neural network architecture. The total number of trainable parameters in the neural 
network architecture was 3,124 (2760 in LSTM layer + 364 in fully connected dense layer). Input data comprised 
3 categories: relative time displacement in days, reliability data, and visual field data. Time displacement was 
defined as the most recent examination, and was set to zero; the past was indicated by using negative values and 
the future was indicated by using positive values (in days). Reliability data comprised false positive rate (FP), 
false negative rate (FN), and total fixation loss rate (FL). Visual field data comprised 52 pattern deviation values 
(PDV) and 52 total deviation values (TDV) of 24-2 Humphrey automated perimetry (2 points of physiologic 
scotoma were excluded). For normalization, total deviation values were divided by 50 before they were supplied 
to the neural network. The “input 0” is a special form of input data to provide the neural network with a future 
date for prediction. This input data contained only a positive time displacement value and all other values were 
set to zero. LSTM: long short-term memory, PDV: pattern deviation value, TDV: total deviation value, VF: 
visual field.
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With those formulas, RMSE or MAE of RNN and OLR were calculated, respectively. Because accuracy metrics 
were paired (RNN, OLR), we used a pairwise test for comparisons. Depending on its normality, paired t-test or 
Wilcoxon’s signed-rank test were used to evaluate a significant difference in accuracy metrics (RMSE or MAE) 
between RNN and OLR. We performed Spearman’s correlation analysis as well as simple linear regression analysis 
to observe both parametric and nonparametric tests. They were used to investigate trends of prediction errors 
according to various factors such as false positive ratio, false negative ratio, and fixation loss. The Shapiro-Wilk 
test was performed to check the normality of the data distribution. In all statistical analyses, SPSS (version 21.0 
for Windows; SPSS, Chicago, IL, USA) was used and a value of P < 0.05 was considered to indicate statistical 
significance.

Results
A total of 281 eyes from 281 subjects were used for the test data set. The demographic characteristics are shown 
in Table 2. Mean follow-up duration was 5.1 ± 2.0 years and mean prediction time (the time interval between 
prediction and the last visual field examination) was 1.3 ± 0.3 years. The mean initial age of the patients was 
63.2 ± 14.4 years. Initial visual field mean deviation (MD) was −6.35 ± 5.20 (dB).

The number of eyes binned by RMSE prediction error is shown in Fig. 2. The most frequent ranges of predic-
tion error by RNN were ≤2 dB (56 eyes, 19.9%) and 2–3 dB (60 eyes, 21.5%); the corresponding ranges of predic-
tion error by OLR were 2–3 dB (68 eyes, 24.2%) and 3–4 dB (52 eyes, 18.5%). The largest difference was observed 
in the range ≤2 dB (56 vs. 13 eyes, RNN vs. OLR); above 4 dB, the frequency was similar between RNN and OLR.

Mean RMSE values of prediction according to disease are summarized in Table 3 and representative examples 
are shown in Fig. 3. In all subjects, the mean prediction error of the RNN (mean ± SD) was 4.31 ± 2.54 dB and 
that of OLR was 4.96 ± 2.76 dB; these were significantly different (P < 0.001). With the exceptions of angle-closure 
glaucoma and pseudoexfoliation glaucoma, the prediction RMSE of RNN was significantly better than OLR in all 
diseases. Notably, in the other diseases (optic neuropathy other than glaucoma), the RNN showed low prediction 
error, resulting in a larger difference between OLR and RNN (ΔOLR−RNN = 1.53 dB). In angle-closure glaucoma 
alone, the RNN showed a larger prediction error (5.27 ± 2.52 dB) than that of OLR (5.09 ± 3.38 dB); however, this 
was not significant (P = 0.394).

Visual field test pointwise prediction error (MAE) is shown in Fig. 4. Of the 52 visual field test points, RNN 
showed a lower prediction error than OLR in 43 points; among these, 23 points were significantly different 
(shown in white numbers). Those significantly different points were generally located in superior, inferior, and 
temporal areas, which are typically vulnerable to glaucomatous damage. In 9 points, OLR was slightly better than 
RNN, but this difference was not significant, and was primarily located in the central area.

Demographics Value

Follow up duration (years), mean ± SD 5.1 ± 2.0

Prediction time interval (years), mean ± SD 1.3 ± 0.3

Age (years), mean ± SD 63.2 ± 14.4

Sex (male/female), number 150/132

Spherical equivalence (Diopter), mean ± SD −1.71 ± 3.40

Axial length (mm), mean ± SD 24.10 ± 1.71

Central corneal thickness (µm), mean ± SD 544.5 ± 35.1

Visual field exam

- Initial MD (dB), mean ± SD −6.35 ± 5.20

- Initial VFI (%), mean ± SD 88.0 ± 15.2

Number of eyes

- Total 281

- Normal 30

- Glaucoma suspect 39

- Ocular hypertension 26

- Open angle glaucoma 73

- Normal tension glaucoma 79

- Angle closure glaucoma 15

- Pseudoexfoliation glaucoma 3

- Others 16

Table 2. Demographic characteristics of the test dataset. MD = visual field mean deviation; SD = standard 
deviation; VFI = Visual Field Index.
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Mean RMSE values binned by various factors are summarized in Table 4 and Fig. 5. In RMSE vs. false pos-
itive rate, the prediction error of RNN was significantly lower than that of OLR until the false positive rate was 
<7.5. As the false positive rate increased, the difference between RNN and OLR became smaller and ultimately 
reversed, but was not significant (Table 4 and Fig. 5A). In RMSE vs. false negative rate, both RNN and OLR 
showed a prediction error that became greater as the false negative rate increased. However, RNN always showed 
lower prediction error than OLR; this was significant when the false negative rate was <7.5 (Table 4 and Fig. 5B). 
In RMSE vs. fixation loss rate, RNN always showed significantly lower prediction error than OLR (Table 4 and 
Fig. 5C). In RMSE vs. visual field MD, the prediction error of both RNN and OLR generally became greater as 
the visual field MD became worse; except for visual field MD <−12 dB, RNN showed lower prediction error than 
OLR. Notably, this difference was significant when MD was >−6 dB.

The correlation coefficients and linear regression analyses between prediction error and various factors are 
shown in Table 5 and Fig. 6. The prediction error (RMSE) of RNN and OLR was significantly correlated with 
false positive rate, false negative rate, and visual field MD (all P < 0.001), but not with fixation loss rate (P = 0.664 
vs. P = 0.469, RNN vs. OLR). Interestingly, both RNN and OLR had negative correlation with false positive rate; 
thus, as the false positive rate became greater, prediction error became smaller. However, the strength of corre-
lation was weak (Spearman’s rho = −0.230 vs. −0.226, RNN vs. OLR); in linear regression analysis, r2 was also 
small (0.020 vs. 0.029, RNN vs. OLR). Prediction error had moderate positive correlation with false negative rate 
(Spearman’s rho = 0.442 vs. 0.452, RNN vs. OLR); in linear regression analysis, r2 was 0.210 vs. 0.221 (RNN vs. 
OLR). Both RNN and OLR showed strong negative correlation with visual field MD (Spearman’s rho = −0.734 
vs. −0.618); in linear regression analysis, r2 was 0.380 vs. 0.215 (RNN vs. OLR). In summary, prediction error had 
a moderate to strong relationship with false negative rate and visual field MD, indicating that the prediction error 
became greater as the false negative rate or visual field MD became worse. However, the prediction error had no 
or weak correlation with fixation loss and false positive rate.

Figure 2. Number of eyes binned by prediction error (RMSE). The most frequent ranges of prediction error by 
RNN were ≤2 dB (56 eyes, 19.9%) and 2–3 dB (60 eyes, 21.5%); the corresponding ranges of prediction error by 
OLR were 2–3 dB (68 eyes, 24.2%) and 3–4 dB (52 eyes, 18.5%). OLR: ordinary linear regression, RMSE: root 
mean square error, RNN: recurrent neural network.

Prediction error (RMSE, dB), 
mean ± SD

P valueRNN OLR ΔOLR−RNN

All patients 4.31 ± 2.54 4.96 ± 2.76 0.65 <0.001*

- Normal 2.94 ± 2.13 3.57 ± 2.15 0.63 <0.001*

- Glaucoma suspect 3.40 ± 2.88 4.29 ± 3.13 0.89 0.003*

- Ocular hypertension 3.77 ± 3.33 4.43 ± 2.99 0.66 0.043*

- Open angle glaucoma 5.29 ± 2.00 5.81 ± 2.44 0.52 0.004†

- Normal tension glaucoma 4.62 ± 2.15 5.23 ± 2.46 0.61 0.008*

- Angle closure glaucoma 5.27 ± 2.52 5.09 ± 3.38 −0.18 0.394†

- Pseudoexfoliation glaucoma 3.95 ± 2.04 5.80 ± 0.85 1.85 0.285†

- Others 3.08 ± 2.80 4.61 ± 3.57 1.53 0.009*

Table 3. Comparison of mean RMSE between RNN and OLR. OLR = ordinary linear regression; RMSE = root 
mean square error; RNN = recurrent neural network; SD = standard deviation. *Paired t-test. †Wilcoxon’s 
signed rank test.
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Discussion
The main objectives of this study were to build a state-of-the-art deep learning algorithm, RNN architecture, to 
predict visual field examination, and then to evaluate its accuracy in comparison with the conventional linear 
regression method. The performance of RNN was considerably better than that of OLR. Overall prediction error 
(RMSE) was 4.31 vs. 4.96 (RNN vs. OLR), which was significantly different (P < 0.001). In almost all diseases, 
including optic neuropathy other than glaucoma, RNN yielded superior predictions to OLR. RNN was also more 
robust to the worsening of visual field reliability. Prediction accuracy worsened as the false negative rate of the 
visual field increased in both RNN and OLR; however, the prediction error of RNN was lower than that of OLR. 
To our knowledge, this is the first report utilizing RNN architecture to predict visual field examination.

Recently, deep-learning architecture has been used in glaucoma. However, many of these studies are lim-
ited to classifying the visual field rather than being involved in any predictions. Aaoka et al.18 constructed a 
deep-learning architecture to discriminate preperimetric glaucoma from normal glaucoma. Its diagnostic per-
formance was 92.6% (area under the receiver operating characteristic curve, AUROC) and they reported the 
performance was superior to all other machine-learning methods such as random forests, gradient boosting, 
support vector machine, and neural networks. Kucur et al.19 developed a convolutional neural network (CNN), 
a kind of deep-learning architecture, to discriminate early glaucoma from normal glaucoma. They used two 
visual field examinations as input data, OCTOPUS 101 perimeter and Humphrey visual field 24-1. The average 
precision score performance of CNN was 0.874, which was better than conventional visual field global indi-
ces, with a mean defect square root of the loss variance. However, unlike us, the cited authors used a neural 
network to discriminate glaucoma from normal eye status; they did not seek to predict the outcomes of future 
visual field examinations. Yousefi et al.20 compared the performance of various machine-learning algorithms to 
detect glaucoma progression. They used both the retinal nerve fiber layer (RNFL) measured by optical coherence 

Figure 3. Representative examples of visual field predictions. Five consecutive input visual field examinations 
are shown in the left column followed by the actual visual field examination, predicted by OLR and RNN. In 
OLR, the outliers of past examinations are reflected, but RNN predictions were smoother. NTG: normal tension 
glaucoma, OLR: ordinary linear regression, PACG: primary angle closure glaucoma, POAG: primary open angle 
glaucoma, RNN: recurrent neural network.
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tomography (OCT) and the visual field mean deviation (MD) and pattern standard deviation (PSD) as input data. 
The best performance was achieved by a random forest-tree algorithm with an AUROC of 0.88. However, the 
machine-learning algorithms used in those studies also did not predict future visual field test results.

Figure 4. Pointwise mean absolute error (MAE) of predicted total deviation value (TDV). The darker color 
indicates higher error. White numbers indicate significant differences between RNN and OLR (paired t-test); 
black numbers are not significant. RNN showed significantly better performance, especially in superior, inferior, 
and temporal areas that are important in glaucomatous progression. OLR: ordinary linear regression, RNN: 
recurrent neural network.

Correlation coefficients Linear regression analysis

Spearman’s rho P value Slope Intercept r2 P value

Prediction error vs false positive rate

RNN −0.230 <0.001 −0.140 4.710 0.020 0.016

OLR −0.226 <0.001 −0.181 5.483 0.029 0.004

Prediction error vs false negative rate

RNN 0.442 <0.001 0.302 3.004 0.210 <0.001

OLR 0.452 <0.001 0.337 3.508 0.221 <0.001

Prediction error vs fixation loss rate

RNN −0.026 0.664 −0.001 4.317 <0.001 0.960

OLR −0.043 0.469 −0.005 4.998 <0.001 0.884

Prediction error vs average visual field mean deviation (MD)

RNN −0.734 <0.001 −0.312 2.482 0.380 <0.001

OLR −0.618 <0.001 −0.255 3.471 0.215 <0.001

Table 4. Correlation coefficients and linear regression analyses between prediction error and reliability, and 
between prediction error and visual field MD. OLR = ordinary linear regression; RMSE = root mean square 
error; RNN = recurrent neural network.

https://doi.org/10.1038/s41598-019-44852-6


8Scientific RepoRts | (2019) 9:8385 | https://doi.org/10.1038/s41598-019-44852-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

There have been many efforts to precisely predict visual field; many have used mathematical regression models 
to fit a series of visual field examinations and predicted the next visual field by extrapolation. A pointwise linear 
regression model was simple but reliable for prediction of the visual field. Bengtsson et al.21 reported reliable 
prediction in most patients by using linear extrapolation based on 5 initial visual field tests. McNaught et al.7 
reported a similar result: they compared polynomial models to predict the next visual field by using 5 previous 
visual field tests; they found that the linear model provided optimal forecast of pointwise glaucomatous visual 
field progression. Other long-term studies have also reported that fitting by linear regression yielded the best 
model in a majority of patients22–24. Caprioli et al.9 developed a pointwise exponential regression model and 
reported that it better characterized fast or slow progression rate with respect to visual field damage, compared 
with linear models. More complex models have been developed to consider variations in the rates of glaucoma-
tous damage over time25. Chen et al.26 reported that the average RMSE values of visual field prediction were 2.925 
for logistic functions and 3.056 for exponential functions. More recently, Otarola et al.25 reported that a pointwise 
sigmoid regression model showed a mean RMSE of 4.1, and that it better characterized both early and late stages 
of glaucoma. However, an opposite study reported that of all exponential, quadratic, or logistic models, none 
exhibited accuracy superior to that of linear regression27.

Thus far, there have been few studies regarding the use of machine learning to predict future visual field. 
Murata et al.10 used the VBLR method to predict pointwise TDV. They evaluated the performance of the VBLR 
by varying the number of input visual field data elements from 2 to 10. Their overall RMSE was 4.5 ± 2.4 dB when 
5 input data elements were used. Our RNN model showed an overall RMSE of 4.31 ± 2.4 dB, slightly better than 
that of VBLR. Because the test datasets are not identical, it is difficult to conclude that our RNN model is nec-
essarily better than the VBLR approach. However, the number of training data elements differs widely between 
RNN (1408 eyes) and VBRL (5049 eyes) models, while the performance of RNN remains comparable and may 
be superior. In future studies, we expect better performance if we train the RNN with additional data. Yousefi et 
al.20 trained a machine learning algorithm with 2085 eyes and concluded that it could detect visual field changes 

Figure 5. Average prediction error (RMSE) binned by various factors. (A) RMSE vs. false positive rate (B) 
RMSE vs. false negative rate (C) RMSE vs. fixation loss (D) RMSE vs. visual field mean deviation (MD). In 
general, RNN almost always showed lower prediction error than OLR. RMSE uniformly increased in both 
RNN and OLR as the false negative rate increased. False positive rate and visual field MD were considered 
to demonstrate a possible linear relationship with RMSE, but this trend was not uniform. RMSE vs. fixation 
loss was considered to demonstrate no obvious linear relationship. The symbol, asterisk (*), on top of the bar 
plot indicates the difference between RNN (dark gray bar) and OLR (light gray bar) is statistically significant. 
MD: mean deviation, OLR: ordinary linear regression, RMSE: root mean square error, RNN: recurrent neural 
network.
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earlier than other methods; however, their method did not predict pointwise visual fields. Rather, it more closely 
resembled a classifier regarding whether visual field changes will progress. The introduction of a deep learning 
algorithm to predict visual field examination is more rarely reported. To our knowledge, there was a single study 
by Wen et al.28 utilizing Cascade-Net, a type of CNN architecture, to predict future Humphrey visual field (HVF). 
This study is not formally published yet (it is in preprint status). However, their deep learning network showed 
excellent performance to generate predictions for future HVF (total threshold values) up to 5.5 years, given a 
single HVF as input. The neural network was trained with approximately 32,443 consecutive 24-2 HVFs, and the 
overall RMSE was 3.47 dB. However, these are not published data; moreover, the use of single visual field data as 
input may not reflect true progression of the visual field. Chauhan et al.29 recommended that at least three visual 
field examinations scheduled over 2 years were required to reliably detect progression. Even though Cascade-Net 
showed a better performance than we report herein, we presume direct comparison may not be possible.

To build a deep neural network architecture, we used LSTM cells, a unique type of RNN algorithm, because 
it exhibits some advantages with respect to conventional RNN. LSTM was first introduced by Hochreiter & 
Schmidhuber in 199715. In their study, conventional RNN failed to learn when the time lag was >5–10 discrete 
time steps between relevant input data and output; thus, conventional RNN disregarded its input data too rap-
idly, because it must quickly vanish or backpropagated errors will multiply30,31. The LSTM is not affected by this 
problem because it utilizes separate internal states of memory and stores input data into the neural network for 
an extended period. To accurately predict the visual field, it has been reported that a minimum of 5 visual field 
examinations are required32. In this regard, the LSTM algorithm is more appropriate for the prediction of visual 
field progression than conventional RNN. In the year 2000, Gers et al.33 added an “adaptive forget gate” to the 
LSTM; this modified LSTM was more robust to noisy input because the “forget gate” releases its internal memory 
when data retention is no longer necessary. By enabling the release of unnecessary data, the LSTM became more 
robust to noisy input, known as the noisy temporal order (NTO) problem. Our model uses this modified LSTM 
with “forget gate”; we observed that the RNN exhibited significantly lower prediction error than OLR, even when 
the reliability of the visual field was worsened. We presume this was because we provided the neural network with 
a reliability index, as well as visual field data, and because the LSTM may selectively use the input data.

Among the reliability indices, the greatest influence on visual field predictions in our study was the false neg-
ative rate. However, the correlation coefficient of the false positive rate was weak (Spearman’s rho = −0.230 vs. 
−0.226, RNN vs. OLR); r2 in the linear regression analysis was also small (0.020 vs. 0.029, RNN vs. OLR), indi-
cating that the contribution of the false positive rate to the RMSE was <3% in both RNN and OLR. Interestingly, 
fixation loss did not affect prediction accuracy in either RNN or OLR models; our results were similar to those of 

Mean prediction error 
(RMSE), mean ± SD Number 

of eyes P valueRNN OLR

Prediction error vs false positive rate (FPR, %)

FPR ≤ 2.5 4.73 ± 2.68 5.39 ± 2.87 166 <0.001*

2.5 < FPR ≤ 5.0 3.67 ± 1.97 4.45 ± 2.42 68 <0.001*

5.0 < FPR ≤ 7.5 3.17 ± 2.14 4.09 ± 2.89 24 0.003*

7.5 < FPR ≤ 10.0 3.67 ± 2.83 3.80 ± 2.23 15 0.125*

FPR > 10 5.47 ± 2.02 5.20 ± 2.06 8 0.578†

Prediction error vs false negative rate (FNR, %)

FNR ≤ 2.5 3.33 ± 2.16 3.86 ± 2.03 111 <0.001*

2.5 < FNR ≤ 5.0 4.17 ± 2.08 5.00 ± 2.70 72 <0.001*

5.0 < FNR ≤ 7.5 4.57 ± 2.32 5.23 ± 2.82 50 0.028*

7.5 < FNR ≤ 10.0 5.95 ± 2.43 6.34 ± 2.23 22 0.190†

FNR > 10 6.96 ± 3.08 7.88 ± 3.24 26 0.052*

Prediction error vs fixation loss rate (FLR, %)

FLR ≤ 2.5 4.36 ± 2.14 5.18 ± 2.58 43 0.016*

2.5 < FLR ≤ 5.0 4.69 ± 3.13 5.42 ± 2.95 41 0.001*

5.0 < FLR ≤ 7.5 4.34 ± 2.34 4.95 ± 2.64 51 0.013*

7.5 < FLR ≤ 10.0 3.69 ± 2.52 4.22 ± 2.45 56 0.001*

FLR > 10 4.47 ± 2.52 5.11 ± 2.95 90 <0.001*

Prediction error vs average visual field mean deviation (MD, dB)

MD < −12 6.53 ± 1.61 6.18 ± 1.69 37 0.145†

−12 ≥ MD > −9 6.66 ± 2.09 8.21 ± 3.17 20 0.670*

−9 ≥ MD > −6 6.64 ± 2.76 7.28 ± 3.39 43 0.980*

−6 ≥ MD > −3 3.72 ± 1.66 4.46 ± 1.97 77 <0.001*

MD ≥ −3 2.53 ± 1.44 3.31 ± 1.57 104 <0.001*

Table 5. Mean prediction error (RMSE) binned by reliability indices and visual field MD. OLR: ordinary 
linear regression, RMSE: root mean squared error, RNN: recurrent neural network, SD: standard deviation. 
*Wilcoxon’s signed rank test between mean prediction error of RNN and OLR. †Paired t-test between mean 
prediction error of RNN and OLR.
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a previous study. Ramulu et al.34 reviewed 10,000 visual fields from 1,538 eyes; in their study, fixation losses were 
not significantly associated with unexpectedly high or low sensitivity at any stages of visual field damage, while 
the false negative rate and false positive rate contributed to the increased uncertainty. Rao et al.35 also reported 
similar results; they evaluated the effect of reliability indices (false negative rate, false positive rate, and fixation 
loss) on visual field assessment. In their study, the false negative rate significantly influenced visual field assess-
ment, while the false positive rate and fixation loss were not associated with visual field assessment. In our study, 
the false negative rate was the only index that truly affected visual field prediction among the reliability indices.

In this study, RNN provided more accurate predictions than OLR in the inferior and superior regions of the 
visual field. Garway et al.36 reported that these regions of the visual field can be mapped to the superotemporal, 
superonasal, inferotemporal, and inferonasal regions of the optic nerve head; these regions are closely associated 
with glaucomatous damage37. We presume this is because the RNN considers all visual field values, while point-
wise linear regression solely considers specific points. Visual field areas vulnerable to glaucomatous damage are 
more likely to progress stochastically. The neural network may have learned this trend in spatial distribution of 
visual field progression throughout the training dataset.

There were several limitations in our study. First, we trained and tested only 5 consecutive visual field data ele-
ments as input, because we did not have a sufficient number of patients with >6 visual field tests (5 for input + 1 
for prediction). However, many previous studies7,21,38 have also reported the same number of input visual field 
data elements, and we are planning a multicenter study to collect additional patient data. In future studies, we 
will evaluate a varying numbers of input data and the optimal number of LSTM cells in our RNN architecture 
can vary slightly. Second, all visual field data were acquired from a single center. Thus, our RNN model may not 
be widely applicable.

Figure 6. Linear regression analysis between prediction error (RMSE) and various factors. (A) RMSE vs. 
false positive rate (B) RMSE vs. false negative rate (C) RMSE vs. fixation loss (D) RMSE vs. visual field mean 
deviation (MD). Black circles and lines represent RNN and gray circles and lines represent OLR. False positive 
percentage demonstrated a significant relationship with prediction error; however, its r2 was low. False negative 
percentage showed a significant relationship with prediction error and a high r2 value. Fixation loss showed no 
significant relationship with prediction error. Visual field MD showed a significant relationship with prediction 
error and a high r2 value. MD: mean deviation, OLR: ordinary linear regression, RMSE: root mean square error, 
RNN: recurrent neural network.
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Conclusion
We constructed a novel deep learning architecture by utilizing a state-of-art LSTM algorithm, a type of RNN. 
Our RNN model predicted future visual field significantly better than a conventional pointwise linear regression 
method. This RNN model was also more robust to reductions in the reliability of visual field input data. In clinical 
practice, the RNN model can assist in decision-making for further treatment of glaucoma.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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