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A fractional diffusion random laser
Yuyao Chen  1, Alfredo Fiorentino2,3 & Luca Dal Negro1,4,5

The goal of this letter is to introduce the concept of a non-resonant fractional random laser. This is 
achieved by extending the classical Letokhov model of photon diffusion through disordered gain media 
to fractional differential operators in space and time. Fractional transport equations effectively describe 
anomalous photon sub-diffusion phenomena in non-uniform random scattering media with memory 
and long-range spatial correlation effects. In particular, by analytically solving fractional transport 
equations in the one-dimensional slab geometry we obtain simple closed-form expressions for the 
critical amplification volumes required to initiate the laser action in both fractional-order (FO) and 
distributed-order (DO) space-time fractional reaction-diffusion equations. Our findings demonstrate 
the benefits of anomalous sub-diffusive photon transport in active media with correlated disorder and 
stimulate the engineering of novel non-resonant random lasers with significantly reduced footprint and 
amplification volumes beyond the limitations of uniform disorder and Markovian diffusion processes.

Traditional lasers require a gain medium and the implementation of a positive feedback loop. Typically, positive 
feedback is achieved by positioning the amplifying optical medium in between two parallel and highly reflective 
mirrors forming an optical cavity. At each photon round-trip the confined cavity radiation is amplified by the 
gain medium and gives rise, above a characteristic threshold, to the laser action. However, it was realized already 
in 1966 by Ambartsumyan et al.1 that by replacing one cavity mirror with a scattering surface a non-resonant, 
intensity-based feedback loop could be realized in which the radiation does not retrace its original position after 
one round-trip. In this case, a large number of spectrally overlapping resonances with a low quality factor Q is 
excited, forming a continuous spectrum in which the only resonant element is the spectral linewidth of the gain 
medium. The idea of a non-resonant photon feedback was further developed by Letokhov2 who in 1968 theoret-
ically considered light amplification in a gain medium of random scatterers within the classical photon diffusion 
picture valid when the photon mean free path is shorter than the linear dimension of the scattering medium and 
much longer than the optical wavelength. The resulting incoherent feedback random lasers have been experi-
mentally demonstrated in the mid 1980s using Nd3 + -doped scattering powders3 and in the early 1990s with the 
discovery of laser paints4,5, where the scattering and the amplification medium are separate. In 1998 a new kind 
of random laser with a phase-sensitive coherent feedback due to light trapping by recurrent scattering events has 
been experimentally demonstrated in semiconductor materials6,7. We note that the distinction between coherent 
and incoherent feedback mechanisms should not be considered as a fundamental one since interference effects 
are always present in the multiple scattering regime8. In fact, a more fundamental distinction would be the one 
between lasers that can be modeled using integer or fractional diffusion models and lasers whose description 
requires more accurate ab-initio methods based on the solutions of full-vector Maxwell’s equations in dielectric 
systems with randomly varying refractive index9–14. Currently, random lasers are investigated in a large number of 
material systems, and have attracted a significant interest due to their ease of fabrication and robustness combined 
with a small-size (micron-scale) offering unique characteristics such as low degree of spatial coherence, lack of 
directionality, bio-compatibility, etc. These are very promising features for a number of engineering applications 
to bio-sensing, medical diagnostics, on-chip spectroscopy, and optical imaging15,16.

In this letter, by focusing exclusively on random lasers with incoherent feedback that are described within 
the diffusion approximation, we propose to extend the traditional Letokhov model by considering fractional 
diffusion equations of arbitrary order, including distributed-order (DO) fractional diffusion processes. In recent 
years, a powerful mathematical framework was introduced in applied sciences and engineering that makes use 
of kinetic macroscopic (transport) equations with generalized derivatives and integrals of fractional order17,18. 
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This approach exploits the mathematics of fractional calculus and provides an efficient analytical description of 
complex anomalous transport phenomena in situations where long-range memory and spatial correlation effects 
become important and the traditional (Markovian) approach to uniform random media is simply inadequate. 
Fractional diffusion equations involve integro-differential operators with non-local power-law kernels that phys-
ically account for space-time correlations in the scattering events within non-homogeneous or correlated random 
environments. Non-local effects in multiple light scattering naturally arise due to the fact that the mean field at 
a given position inside a complex medium generally depends on the distribution and spatial correlation of the 
surrounding scattering particles as well. In the case of structurally complex, nonuniform photonic random media 
and metamaterials with structural correlations the onset of such non-local effects poses fundamental challenges 
to the traditional numerical analysis techniques, motivating the development of alternative approaches based on 
macroscopic transport models of fractional order19. Our comprehensive analytical and numerical analysis of frac-
tional photon transport regimes in gain media demonstrates the relevance of engineered photon sub-diffusion 
processes to realize novel lasers and complex aperiodic structures with strongly reduced amplification threshold 
and footprint.

The Letokhov Diffusion Model
We begin our discussion by first reviewing the main features of the Letokhov diffusion model of a non-resonant 
random laser, which provides the necessary background to appreciate our subsequent fractional generalizations. 
Mathematically, photon diffusion through a uniform disordered random medium with optical gain is described 
by a reaction-diffusion equation that supports exponentially increasing solutions beyond a critical amplifica-
tion volume Vcri, as first realized by Letokhov in his 1968 seminal paper2. The classical Letokhov model of a 
non-resonant random laser is formulated in terms of the following reaction-diffusion equation obeyed by the 
optical energy density:
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where D is the diffusion constant of photons, v is the speed of light in the medium, and 
g  is its characteristic gain 

length. Following ref.2 in our work we will consider g t� � � , where t  is the transport mean free path. 
Furthermore, we have that =D v n/2t

17, where n is the dimensionality of the problem. In order to more clearly 
understand the role of fractional operators on the critical volume for light amplification we will focus on 
one-dimensional (1D) random media. Moreover, it will be convenient to work with scaled variables in order to 
generalize our treatment to fractional operators. Specifically, we will consider the scaling τ = 
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which are the characteristic time for the scattering and the amplification time of a photon, respectively. In these 
transformed variables Eq. (1) by τd can be rewritten as:

W x t
t

D W x t
x

W x t( , ) ( , ) ( , )
(2)

d
d

g

2

2τ
τ
τ

∂ ′ ′
∂ ′

=
∂ ′ ′

∂
+ ′ ′

where we additionally defined the scaled time variable as t t

d
′ =

τ
, and W′(x, t′) = W(x, t). We notice that the gain 

coefficient can now be expressed as =τ
τ

d

g

t

g





, which will turn out to be a fundamental parameter in our description 
of the fractional random laser regimes. The equation above can be solved by the separation of variables method, 
which yields the separated form as:
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where Ψn(x) and Bn are the eigenfunctions and the eigevalues of the following equation:
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and W x a x( , 0) ( )n n n′ = ∑ Ψ . The constants an and Bn are determined by the choice of the initial-boundary condi-
tions. This solution can be readily generalized to the three-dimensional random media by considering the equa-
tion ∇ Ψ + Ψ =B 0n

2 2  instead. In that case, the method of separation of variables represents the solution in the 
form W(x, y, z, t) = Ψ(x)Θ(y)Λ(z)f(t′), which reduces to the solution of the 1D problem W(x, t) = Ψ(x)f(t′) in each 
spatial dimension.

The boundary condition Ψn(x) = 0 is typically imposed at the extrapolation length xe beyond the physical 
border of the scattering medium. Since ~x Le t� �  we assume for simplicity Ψ(0) = Ψ(L) = 0. Here L is the total 
length of the 1D system. By imposing the boundary conditions, we obtain = πBn

n
L

, where n is a positive integer. 
It is important to realize that the time-dependent part of the solution of Eq. (3) switches from an exponential 
decay to an exponential growth at a threshold value determined by:
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where B1 = π/L is the lowest-order (n = 1) eigenvalue. Therefore, a critical volume ≈V Lcri cri
3  can be defined for the 

laser action according to:
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In the following sections we will generalize the Letokhov model using fractional operators and obtain analyti-
cal expressions for the critical volume in sub-diffusive and super-diffusive transport regimes that can be efficiently 
modelled by considering fractional reaction-diffusion equations.

Fractional Random Lasers: Single-Order Sub-Diffusive Regime
The goal of our paper is to study the lasing properties of random systems governed by anomalous diffusion. We 
will assume � � �g t as used in the Letokhov model2,20 and consider analytically the role of different fractional 
operators on the critical amplification volume of one-dimensional (1D) random media with gain.

We now introduce the single-order time-fractional generalization of the Letokhov model, which macro-
scopically describes sub-diffusive transport in a correlated random medium with gain. In order to generalize 
the standard diffusion equation to its sub-diffusion counterpart17, it is necessary to replace the time derivative 
with a fractional derivative of order α (0 < α < 1) and the classical diffusion constant D with a constant Kα that 
has units m2s−α. Therefore, working in scaled (adimensional) time t′ we can write the single-order fractional 
diffusion-reaction equation as:
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where Dt
α
′  is the Caputo fractional derivative operator in dimensionless time and:
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=
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is the expression of the generalized diffusion coefficient17, which reduces to the standard value D when α = 1. 
However, when α < 1 Eq. (7) macroscopically describes the anomalous regime of sub-diffusion photon 
transport17.

Similarly to the case of the classical Letokhov model we proceed to obtain the solution of the single-order 
fractional model using the separation of variables technique. The spatial part of the separated solution is the same 
as for the Letokhov case, and it will not be discussed further. Here we are interested in understanding the build-up 
of the energy density in the medium versus time, i.e. in the behavior of the time-dependent part of the separated 
solution f(t′). This can be analytically obtained via Laplace transformation, yielding21:
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where s is the Laplace transform variable conjugate to t′, and Bn is the eigenvalue of Eq. 4. The time-dependent 
solution f(t′) can be obtained by inverse Laplace transformation, which can be written in closed-form by using 
the Mittag-Leffler function Eα

22 as:
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where α τ τ τ= −α
α

αA B K( ) ( / )d g n d
2  is the function that determines the corresponding lasing threshold. We can 

note that similarly to the classical Letokhov model, Eq. (10) predicts that, for a given value of the gain length g , 
the time-dependent solution of the fractional transport equation will increase in time when A(α) > 0 and 
decrease when A(α) < 0. Thus, the lasing threshold for our fractional in time generalization of the Letokhov 
model is provided by the condition:

τ τ τ− =α
α

αB K( / ) 0 (11)d g n d
2

Considering only the fundamental mode = πB
L1  we can obtain a simple expression for the critical amplifica-

tion length Lα and consequently the critical lasing volume:
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The asymptotic scaling versus time t of the sub-diffusive equation is known to be described by the law17:
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2
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Moreover, the mean-squared displacement (MSD) 〈x2(t)〉 and time t are proportional to t
2
  and  v/t , respec-

tively, so that we can write in dimensional units the equation:
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where c is a constant. Since we require that K1 = D, we obtain =c 1
2

 and therefore we can rewrite the generalized 
diffusion constant as:
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We note that Eq. (14) is also supported by the so-called aging argument, as detailed in ref.23. In short, this is 
based on the fact that sub-diffusion processes are always associated to memory effects in time. Consequently, at 
short times after a sub-diffusive transport process starts we can always write τ = t v/d t~ , exactly like in any 
traditional (memory-less) diffusion process governed by the parameters v, t. Therefore, in this short-time regime 
we have x x( ) ( )d d

2 2~τ τα . Such an initial-time condition yields ( )K D l
v

1
t

α

α−
~  which, when substituting 

D v /2t= , agrees exactly with our result in Eq. (15). Finally, we now combine Eqs (12) and (14) and obtain an 
analytical expression for the critical amplification volume that corresponds to a fractional derivative in time of 
order α:
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Our result above shows that for a gain length 
g  larger than t  we have:

V V (17)cri≤α

so that the critical amplification volume can be significantly smaller for a fractional random laser that operates 
in the sub-diffusive transport regime compared to its non-fractional (standard diffusion) counterpart. This fact 
motivates the engineering of correlated random scattering media in order to achieve better performances than 
what possible with homogeneously disordered active materials.

Figure 1 shows the calculated critical length for a sub-diffusive fractional random laser with respect to the gain 
length for different values of the fractional order α. The case of α = 1 corresponds to the Letokhov model, which 
shows significantly larger values of Vcri when g t > , i.e., when scattering plays a role in photon amplification. We 
remind that small values of the fractional order α indicate strong photon sub-diffusion in the medium. In 
Fig. 2(a) we show the behavior of the critical amplification length Lα and of the function A(α) with respect to α. 
Interestingly, we observe that at small values α (i.e. for strong sub-diffusion) the reduced critical amplification 
length is accompanied by a larger value of A(α), which gives rise to light amplification. This behavior is also 
reflected in Fig. 2(b) that additionally shows the time evolution of the solution of Eq. (7) for different values of α. 
In particular, we find that by increasing the fractional order up to the threshold value α = 0.83, the emitted pho-
ton flux f(t′) increases less rapidly with time, and that when α > 0.83 (so that A(α) < 0) the solution f(t′) starts to 
decrease and no amplification takes place in the medium. Because we choose the system’s length L to be smaller 
than the Lcri of the classical Letokhov model that correspond to α = 1, in Fig. 2(b) the photon flux for such a 
model is decreasing in time. These results clearly demonstrate how, for a fixed value of the gain length 

g  of the 
system, fractional random lasers dramatically benefit from the slower sub-diffusive photon transport in the active 
medium compared to traditional random lasers.

Figure 1. Critical volume with respect to the gain length for different sub-diffusive time fractional orders α and 
for the Letokhov model. A value of  m10t µ=  was used in this example.
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We can quantify the benefits of the sub-diffusive transport in random lasing by defining the figure of merit ηα 
for the single-order sub-diffusive case as:

η = =








α α

α−




V V/
(18)

cri
g

t

3(1 )
2

where Vcri is the critical amplification volume of the integer order case (α = 1, standard diffusion). Calculated 
values of ηα for different choices of 

g  at three fixed values of α and for t  =  10 μm are shown in Table 1. In all 
cases we notice that a smaller α value leads to a larger η value, with up to two orders of magnitude decrease in the 
critical amplification volume of fractional random lasers at the largest gain length that we considered. The table 
also displays the corresponding values of η obtained considering ultra-slow photon diffusion processes modeled 
by the distributed-order (DO) in time fractional transport models discussed in the next section.

Fractional Random Lasers: Distributed-Order Sub-Diffusive Regime
We now further generalize the the time-fractional diffusion Eq. (7) by considering time-fractional derivative 
of distributed-order (DO). DO time-fractional diffusion equations have been shown to effectively describe the 
complex transport properties of multi-scale structures and non-homogeneous random media with ultra-slow 
kinetics19,24. Microscopically, such situations correspond to the dynamics of non-Markovian random walk pro-
cesses that are asymptotically characterized by logarithmic scaling versus time of the MSD.

A DO sub-diffusion equation can be obtained when integrating with respect to a given distribution of frac-
tional orders a single-order fractional transport equation such as the one in Eq. (7). Therefore, the prototypical 
DO sub-diffusion equation model is formulated as24:
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where K∼ is a constant parameter with dimensions m2s−1 and the fractional derivative operator Dt
α is averaged by 

the integration with a normalized distribution function (or weighting function) p(α) ≥ 0 that satisfies 
∫ α α =p d( ) 1
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1 . In order to obtain a DO diffusion reaction equation consistent with the single-order sub-diffusive 

Eq. (7), we need to average the gain coefficient 







τ
τ

α
d

g
 according to the distribution function. It is important to 

Figure 2. (a) Threshold parameter A(α) and critical amplification length Lα as a function of the time fractional 
order α, for a fixed system length L = 60 μm. (b) Time evolution of the solution f(t) for different values of A(α) 
from panel (a).

lg(μm)

α = 0.2 α = 0.5 α = 0.8 DO−U DO−PL, ν = 2 DO−PL, ν = 4 DO−PL, ν = 50

ηα ηα ηα ηDO−U ηDO−PL ηDO−PL ηDO−PL

100 15.8 5.6 2.0 7.7 4.0 2.3 1.1

200 36.4 9.5 2.5 16.0 6.7 3.0 1.1

400 83.7 16.0 3.0 34.4 11.8 4.2 1.1

600 136.1 21.6 3.4 54.7 16.8 5.2 1.1

800 192.2 26.7 3.7 76.5 21.7 6.0 1.1

1000 251.2 31.6 4.0 99.7 26.6 6.8 1.2

Table 1. Figures of merit η for different fractional models with fixed lt = 10 μm.
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realize from Eq. (15) that for any 0 < α < 1 the quantity K Dd dτ τ=α
α  does not depend on the order of the frac-

tional time derivative. Hence, it is not necessary to perform the weighted average of the coefficient in front of the 
second order spatial derivative. Therefore, we model a DO-fractional random laser using the diffusion-reaction 
equation:

d p D W K W
x

W x t d p( ) ( , ) ( )
(20)t d

d

g0

1 2

2 0

1

∫ ∫α α τ α
τ
τ

α′ =
∂
∂

+ ′ ′












∼α

α

′

Notice that the equation above recovers exactly the single-order sub-diffusive Eq. (7) when p(α) = δ(α − α′) 
and =

∼K D. The meaning of the coefficient ∼K  is discussed in more detail in the methods section.
By using the separation of variables technique and the Laplace transform method25, the time-dependent part 

of the solution to the DO Eq. (20) can be readily obtained in the Laplace domain:

τ
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where B1 is the lowest eigenvalue from Eq. (4), I s p s d( ) ( )
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1
∫ α α= α , and τ=



 =



 −

∼τ
τ

A I s K Bd 1
2d

g
 is the threshold 

function for the DO case. In Fig. 3, we evaluate numerically the inverse Laplace transform of Eq. (21) for two 
different distribution functions: the DO uniform case (DO−U) where p(α) = 1 and the power-law distribution 
function (DO−PL) that corresponds to α α= −p v( ) v 1. In particular, when =v 4 this model produces logarith-
mic in time Sinai-type sub-diffusion19. We observe from Fig. 3 that f(t′) is increasing with time when A is positive 
and it is decreasing when A is negative, consistently with the lasing threshold condition A = 0. Moreover for the 
DO−U case we have I s( ) s

s
1

log( )
= −  so that we can obtain the following expression for the critical amplification 

length LDO−U from the condition:
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where we used again the expression for the lowest eigenvalue B1 = π/L. Finally we obtain the critical amplification 
length as:

π=
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and the corresponding critical volume VDO−U. Recalling that the critical volume for the Letkhov model is 

π=  ( )V /2cri g t
3

3
2 , we can derive the figure of merit for the DO−U case as:
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Representative values of this figure of merit are shown for different values of the amplification length in 
Table 1. An alternative derivation of this figure of merit based on the scaling of the MSD in DO-fractional equa-
tions is reported in the methods section.

Figure 3. (a) Time evolution of the solution f(t′) of the DO−U fractional laser as a function of the threshold 
function A. (b) Time evolution of the solution f(t′) of the DO−PL fractional laser with ν = 2 (continuous lines) 
and ν = 4 (dashed lines) as functions of the threshold function A.
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We now consider the solution of a DO fractional laser with power-law distribution function p(α) = ναν−1, 
referred to as the DO−PL case. The DO−U is clearly a special case of DO−PL corresponding to ν = 1.

Figure 3(b) shows the monotonic trend of f(t′) determined by the sign of the threshold function A plotted for 
two different values of ν. Therefore, we can follow the same solution method based on the Eq. (21) and obtain the 
critical amplification length for the DO−PL fractional laser in the form:

π=


 =





τ
τ

−L
I s

1

2
(25)

DO PL t
d

g

Therefore, we can write the figure of merit of the DO−PL random laser as:

η
τ
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t

d
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However, the expression above involves the integral I s s d( )
0

1 1∫ να α= α ν−  that cannot be evaluated analyti-
cally. Therefore we evaluated it numerically as explained in detail in the methods section. Finally in Table 1 we 
show the computed values of the figure of merit for the DO−PL case at different values of g  and for three differ-
ent values of the exponent ν.

To better appreciate the behavior of the figure of merit beyond what reported in Table 1, we computed the 
analytical and the numerical solutions for η over an extended range of 

g  for a fixed μ= m10t . Our results are 
shown in Fig. 4(a,b) on a semi-logarithmic scale where we compare the behavior of η for the cases of fractional 
single-order, DO−U, and DO−PL random lasers. The data in Fig. 4(a) clearly demonstrate how disordered gain 
media with strong sub-diffusive behavior, which are described by smaller values of the fractional order α, feature 
the largest value of η. In Fig. 4(b) we show our results for the DO fractional lasers with different distribution func-
tions, which are obtained numerically from Eq. (25).

Our findings demonstrate that the figure of merit η for the fractional random lasers is maximized for the DO 
sub-diffusion process (when g t� � � ) with a uniform distribution function (i.e. DO−U), which is a special case 
of the power-law distribution function (DO−PL) obtained for ν = 1. This is to be expected on the basis that 
DO−U sub-diffusion describes transport in the most heterogeneous environments where the multi-scale struc-
tural complexity of the medium significantly slows down the transport dynamics at each scale promoting optical 
amplification.

We can directly compare the figures of merit of the fractional single-order laser and the DO−U fractional 
laser by considering the ratio ηDO−U/ηα,which can be written as:
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−
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/

log /
(27)

DO U g t

g t g t

DO U g t

g t
1

3
2

/

3
2

g t

It can be noticed that the expression above exceeds unity in the limit /g t → ∞ 
 as a function of /g t 

, irre-
spective of the value of α. Therefore, random laser structures governed by ultra-slow DO diffusion processes will 
always outperform their single-order fractional counterparts. This conclusion is natural from a physical view-
point since DO-fractional diffusion processes are microscopically equivalent to correlated random walks charac-
terized at large times by a logarithmic MSD scaling, which grows much slower than any power-law achieved by 
single-order processes. Therefore the photon dwell time in a DO sub-diffusive gain medium is much longer than 

Figure 4. (a) The figure of merit η obtained analytically as a function of 
g  for the time fractional single-order 

diffusion-reaction equation and (b) the numerical solutions obtained for the DO−U and DO−PL fractional 
processes with different ν values. The continuous red line is the analytical solution of the DO−U case.
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in a single-order sub-diffusive one, thus increasing the probability for amplification and reducing the critical 
volume. The analytical theory of the DO−U process also allows us to validate our numerical solutions for the 
DO−PL cases. This is done by comparing the numerical and the analytical results of the DO−U and DO−PL 
cases for ν = 1. The two curves perfectly overlap in Fig. 4(b). Furthermore, we observe that when ν → ∞ the dis-
tribution function of the DO−PL process converges to the Letokhov model of classical diffusion. This is also 
reflected by our numerical results for the DO−PL case at large ν values. In fact, as shown in Fig. 4(b), the value of 
ηDO−PL is close to unity already when ν = 50. A more detailed discussion on the fundamental solutions of the 
DO−PL model is reported in the methods section.

Fractional Random Lasers: Super-Diffusive Regime
We now discuss the role of photon super-diffusion in the context of fractional random lasers. Super-diffusion 
processes are elegantly described within the framework of fractional calculus by considering spatial derivatives 
of fractional order17. Super-diffusion of light has been experimentally demonstrated in recent years in relation to 
Lévy flights26,27 which are scale-invariant correlated random walks with a step length described by a probability 
distribution with heavy tails, implying diverging moment28,29.

Therefore, we now consider the reaction-diffusion space-fractional equation:

W x t
t

K D W x t v W x t( , ) ( , ) ( , )
(28)g

∂
∂

= +β
β

where the Dβ is the Caputo derivative in space (1 < β < 2) and Kβ is the diffusion coefficient that measures the 
asymptotic (long-time) limit of the ratio between the fractional spatial moment | |βx  and time17. Note that in the 
case of photon super-diffusion we do not need to scale the gain coefficient because the fractional process only 
affects the spatial operators. Using again the separation of variables technique it is straightforward to obtain the 
time evolution part of the solution in the form:

=





−



β

β

f t f e( ) (0) (29)
v K C
g

t

where C is a constant that will be determined below. The expression above is similar to the case of single-order 
sub-diffusion in time and the laser action (i.e. growing photon flux with time) will start when the following con-
dition is met:

C v
K (30)g

1



=










β

β

The value of the constant C can be found by solving the differential equation for the spatial part of the solution:

φ φ+ =β βD x C x( ) ( ) 0 (31)

For super-diffusive transport the spatial dependent solution φ(x) can be explicitly obtained as18:

x c E Cx c J E Cx( ) ( ( ) ) [ ( ( ) )] (32)1 2
1φ = − + −β

β
β

β

where Eβ denotes the Mittag-Leffler function and J E Cx dx E Cx( ( ) ) ( ( ) )x1
0∫− = ′ − ′β

β
β

β . The constants C and the 
ratio c

c
1

2
 are determined by imposing the zero boundary conditions to φ(x) at x = 0 and x = L as discussed in detail 

in ref.24. For the two terms in Eq. (32) at x = 0 we have J E E[ (0)] (0) 01
0

0
∫= =β β , E (0) 0≠β . Implementing the 

boundary condition φ(0) = 0, we obtain c1 = 0. When imposing the boundary condition for φ(x) at x = L we have 
J1[Eβ(−(CL)β)] = 0. If we define λ = Cx and recall Eqs (9) and (10) we obtain:

 λ− =
+

.β
β

β

β

−
J E s s

s
[ [ ( ( ) )]]( )

1 (33)
1

2

The equation above can be Laplace inverted numerically to find the zeros λ* of the function J1[Eβ(−(λ)β)] for 
λ > 0. We report in Table 2 the values of the zeros λ* computed for different values of β.

We note that for 1 < β < 1.6, no zeros can be found when λ > 0, except for trivial (i.e. identically zero) solu-
tions. Finally, from the boundary condition φ(L) = 0 we obtain C

L
1≈  when 1.6 < β < 2, which yields using Eq. 

(30) an analytical expression for the critical lasing volume:

β = 1.95 β = 1.90 β = 1.75 β = 1.60

λ* 3.20 3.27 3.64 5.35

Table 2. Zero positions λ* of J1[Eβ(−(λ)β)].
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= ≈
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β β
V L

K
v (34)

g
3
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Spatial super-diffusion arises in the context of continuous time random walk (CTRW) processes where the 
jump length and the waiting time probability density functions (pdf) follow power-law distributions17. In this 
context the root mean squared displacement (rms fractional moment) of the solution is proportional to the min-
imal jump length, which is t . Remembering that time is expressed in unites of 

v
t , we see that β

β−~ K vt
1  from 

which we can estimate the critical lasing volume as:

∝








β

β
V

(35)
t

g

t

3

3







Despite we cannot find an analytical expression for this critical volume, the expression above makes us fully 
appreciate that when � � �g t the super-diffusive regime will not result in any advantage in lasing amplification 
volume compared to the sub-diffusive regimes previously discussed. In fact, for the super-diffusive case our scal-
ing argument shows that Vβ > Vcri. In addition, if we compute the figure of merit ηSD = Vcri/Vβ we have:

η ∝








β

β
−



 (36)
g

t

3
2

3

Since 1.6 < β < 2, then we have ηβ → 0 when → ∞/g t 
, rendering the super-diffusive fractional laser less 

efficient than the standard diffusion case. This is consistent with the fact that the photon dwell time in the 
super-diffusive medium is much smaller than in a sub-diffusive active medium, which reduces the probability for 
amplification resulting in larger critical volumes. A detailed discussion of the fundamental solution of the photon 
super-diffusive equation is provided in the methods section.

Conclusion
Our work generalizes the concept of a random laser to fractional order operators in time and space and addresses 
it analytically, within the powerful framework of fractional reaction-diffusion equations, the threshold behavior 
of fractional random lasers. We provide a figure of merit η that quantifies the benefits of fractional order lasing 
compared to the classical Letokhov model for standard diffusion in a gain medium. Our analysis shows that ran-
dom lasers that leverage engineered sub-diffusion phenomena and ultra-slow photon logarithmic in time photon 
transport feature significantly reduced amplification length compared to the classical Letokhov model. We also 
derived simple analytical relations that precisely quantify the critical lasing volumes achievable for different 
sub-diffusion regimes. In particular, we reveal that DO fractional lasers with uniform distribution (DO−U) are 
the most efficient systems among the class of DO fractional lasers and that the value of η is larger than the one 
possible with any single-order fractional laser case when 

  → ∞/g t . We finally considered the transport proper-
ties in the super-diffusive regime and demonstrated quantitatively that the corresponding figure of merit 
decreases when the gain length is increased, rendering super-diffusive fractional lasers less efficient and appealing 
compared to the ones based on both classical diffusion and sub-diffusion. Our work demonstrates the importance 
of engineering photon sub-diffusion phenomena in active photonic devices and can pave the way to the realiza-
tion of novel random lasers and aperiodic structures with designed correlated disorder and anomalous transport 
properties resulting in dramatically reduced amplification threshold and footprint. Finally, we remark that since 
photon sub-diffusive phenomena in non-resonant fractional lasers do not rely on wave interference effects, such 
mechanisms are intrinsically broadband and can open fascinating scenarios for the engineering of active photonic 
devices beyond random lasers, such as more efficient optical sensors, nonlinear optical converters, and energy 
harvesting devices. We believe that our study will stimulate future work on the engineering of fractional photon 
transport in random lasers that can be experimentally realized using correlated disordered media, metamaterials, 
or deterministic aperiodic structures.

Methods
Fundamental solutions of different models. In this section we provide more detailed information on 
the analytical and numerical methods utilized to obtain the main results presented in the text. In particular, we 
will focus on the rigorous derivations of the fundamental solutions of different sub-diffusive and super-diffu-
sive transport models. We plot in Fig. 5 the fundamental solutions obtained for sub-diffusive, distributed-order 
(DO−U and DO−PL), and super-diffusive transport. All solutions have been obtained considering a generalized 
diffusion coefficient equal to unity.

Fundamental solutions are obtained by solving the initial-value Cauchy problem for different fractional diffu-
sion equations. The single-order sub-diffusion Cauchy problem is defined by25:

δ









=
∂

∂
=

α
αD W x t K W x t

x
W x x

( , ) ( , )

( , 0) ( ) (37)

2

2
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The equation solution is discussed in detail in ref.25. The Laplace domain expression of the fundamental solu-
tion W x s( , )∼ , where s is the Laplace domain argument, can be written as:

=




−







∼

α

α

α

α−W x s
K

s
x
K

s( , ) 1
2

exp
(38)

2 1 2

Following the approach in ref.30 we perform a numerical inverse Laplace transform and plot in Fig. 5(a) the 
single-order sub-diffusion fundamental solutions W(x, t) for different α at time t = 10 and for a generalized 
diffusion coefficient Kα = 1. We can observe that for α = 1 the result recovers to the well-known Gaussian funda-
mental solution25. However, when decreasing α, the W(x, t) solution increases in amplitude at the center where 
it develops a characteristic kink and shows small tails for large values of the space coordinate x. This shows that a 
smaller order α of the generalized time derivative leads to a slower diffusion process. The fundamental solution 
of the DO-fractional diffusion is obtained by solving the equation25:

p D W x t d K W x t
x

d

W x x

( )[ ( , )] ( , )

( , 0) ( ) (39)
0

1 2

2∫ α α α

δ









=
∂

∂
=

∼α

The fundamental solution W(x, t) in the Laplace domain is expressed as25:

( )
W x s I s

s K x I s K

( , ) ( )

2 exp ( )/
(40)

1
2

1
2

=







−









∼ ∼

∼

In Fig. 5(b) we show the numerically obtained fundamental solution for the DO−U model at t = 10. For the 
DO−PL case, the expression of I(s) is:

∫ να α ν γ ν= = − −α ν ν− −I s s d s s( ) [ ( , log( ))]( log( )) (41)0

1 1

Figure 5. (a) The fundamental solution W(x, t = 10) of single-order sub-diffusion for different fractional time 
derivative order α. (b) The fundamental solution W(x, t = 10) of DO diffusion follows power-law distribution 
function for ν = 1(DO−U), ν = 2, and ν = 4. (c) The fundamental solution W(x, t = 10) of super-diffusion for 
different fractional spatial derivative β in linear scale. (d) The fundamental solution W(x, t = 10) of super-
diffusion as shown in (c) in the logarithmic scale.
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where the γ(ν, −log(s)) is the lower incomplete gamma function defined as ∫γ = − −s x t e dt( , ) x s t
0

1 . Implementing 
directly the inverse Laplace transform on Eq. (41) is difficult because s is contained in the lower limit of the inte-
gral that defines γ. Therefore, we expanded this integral using the holomorphic extension of γ(ν, −log(s)) as 
following31:

s s s s
k

( , log( )) [ log( )] ( ) ( log( ))
( 1) (42)k

k

0
∑γ ν ν

ν
− = − Γ

−
Γ + +

ν

=

∞

Combining Eqs (40–42), we can now perform the numerical inverse Laplace transform and obtain the funda-
mental solution for different DO−PL cases. We plot in the Fig. 5(b) the fundamental solutions of DO−PL with 
ν = 2 and ν = 4 at t = 10. We can observe that by increasing ν from 1 to 4, the fundamental solution is decreasing 
in its value at the center and spreads spatially with longer tails indicating a faster diffusion. Therefore, the slower 
diffusion for the DO−PL case with ν = 1, which coincides with the DO−U model, leads to larger η values as 
shown in Table 1.

Below we provide an additional validation of the numerical method we used for obtaining the DO−PL funda-
mental solutions. In Fig. 6(a), we show the results obtained from the inverse Laplace transform of Eq. (40) when 
substituting I s( ) s

s
1

log( )
= −  and by using the holomorphic extension method for DO−PL with ν = 1. The results 

obtained using the two methods overlap completely, as shown in 6(a), fully validating our numerical approach. 
Moreover, the DO−PL recovers the standard diffusion solution when α → ∞. We plot the results of DO−PL with 
ν = 20 and ν = 50 in Fig. 6(b). Our numerical results approach the expected Gaussian line shape when increasing 
the values of ν. Interestingly there is an anlytical expression for the fundamental solution of the DO−PL model 
for t ≫ 1, which is given by32:

W x t
K t K

x
t

( , ) 1

4

( 1)
log( )

exp ( 1)
log( ) (43)

1/2 1/2

/2
ν ν

≈





Γ + 












−




Γ + 



| | 






∼ ∼ν ν

We find an excellent agreement between our numerical results obtained with the holomorphic extension 
method and the asymptotic analytical expression above when t > 500, whcih further validates our approach.

Finally, the fundamental solution for the super-diffusive case can be obtained by solving the equation:

W x t
t

K D W x t

W x x

( , ) ( , )

( , 0) ( ) (44)δ









∂
∂

=

=

β
β

Using Fourier transformation in space we can derive the fundamental solution W(k, t) in the form17:

= − | |
∼

βW k t K t k( , ) exp( ) (45)

where k is the Fourier domain argument. In Fig. 5(c,d) we show the corresponding fundamental solutions W(x, 
t) at t = 10 obtained by performing numerical Fourier inversion. We can observe that by decreasing β the funda-
mental solution will develop longer (heavy) tails in the spatial domain, which imply the divergence of its finite 
moments. This is more evident in Fig. 5(d) where we plot the solutions using semi-logarithmic scale. In Fig. 5(d) 
we also plot in green the fundamental solution of the standard diffusion model (α = 1, β = 2), which clearly shows 
slower diffusion fronts compared to the super-diffusive cases. This behavior explains why super-diffusive frac-
tional lasers will not benefit from reduced critical amplification volumes when compared to even the traditional 
Letokhov model.

Figure 6. (a) The fundamental solution W(x, t) from inverse Laplace transform and our numerical method for 
DO−PL, ν = 1 when t = 10. (b) The fundamental solution W(x, t) of standard diffusion and DO−PL obtained 
from our numerical method for ν = 20 and ν = 50 when t = 10.
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Diffusion constant in the uniformly distributed- order case. In our evaluation of VDO−U and VDO−PL 
we used the =

∼K D, where D is the classical diffusion constant. This assumption is justified by the aging phenom-
ena, as explained in details in ref.23. The time sub-diffusion reflects long-term memory effects. Consequently in 
the first steps of the process, when t ~ τd = lt/v, it behaves like a classical diffusion with the same parameters v, lt. 
Even if asymptotically classical diffusion and DO−U are totally different processes, we can expect that they give 
the same result at the beginning. Therefore, using the expression of τx( )2  for DO−U and strandard diffusion we 
obtain:

x K e E K x D( ) 2 ( (1)) 2 1 17 ( ) 2 (46)DO U cla
2

1
2τ τ γ τ τ τ< > = + ∗ ≈ ∗ . ≈ < > =

∼ ∼
−

where γ ≈ 0.577 is the Euler-Mascheroni constant and ∫=
∞ −

E z dy( )
z

e
y1

y
 is the exponential integral. Eq. (46) 

confirms that D is a good approximation for ∼K , as we used in the main text.

Scaling argument for the threshold condition of DO fractional lasers. A simple derivation based 
on MSD scaling provides an estimate of the lasing threshold for DO fractional lasers with uniform and power-law 
distribution. Let us consider a photon diffusing (classically or anomalously) in a active medium. A photon is 
amplified at least on average once before leaving the sample at the lasing threshold condition. With initial condi-
tion W(x,0) = δ(x), the expression of τx( )2  for DO−U can be found24 as follows:
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τ
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Assuming that the diffusion process is the same in both directions →x  and x−→, on average a photon can travel 
a root-mean-squared (rms) distance equal to L/2 before leaving the sample. Therefore, we consider 

L /2cri amp≈ , 
where 

amp is the rms distance corresponding to the time for propagation over a length g . Therefore we can write:
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The critical amplification volume VDO−U for the DO−U random laser follows as:
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The estimated figure of merit DO Uη′ −  can now be explicitly obtained as:
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When computed for the same values of the amplification length in Table 1 this simple method agrees quite well 
with the more rigorous derivation presented in the main text. In fact we obtain η η = . ± .− −

′/ 0 89 0 02DO U DO U . The 
origin of this discrepancy relies on the fact that the x2  expression is obtained under the initial condition W(x, 
0) = δ(x) and with no physical boundaries (i.e. ignoring the finite size L of the system). Moreover, for the rigorous 
result presented in Eq. (24) the figure of merit ηDO−U consistently goes to 1 when g t →  as for the Letokhov 
model case while the estimated value η′ −DO U  does not.

This approximate method can however be applied to the DO−PL case. The asymptotic expression of x t( )2  for 
a DO fractional transport model with power-law distribution can be expressed as32:
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Following the same steps as for the derivation of the DO−U we can obtain the critical volume. Since in our 
paper we are using the condition � � �g t as in ref.20, we should consider the second equation in (51). Therefore 
for the DO−PL case we can write directly:
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The critical amplification volume VDO−PL for the DO−PL random laser follows:
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Finally, the figure of merit for the DO−PL model can be approximated as:
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We note that the values of the DO PLη′ −  obtained with the simpler method describe above are found to be 
within 15% of the more accurate values of ηDO−PL (derived as explained in the main text) shown in Table 1 under 
the asymptotic condition � � �g t.
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