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Synchronization of megathrust 
earthquakes to periodic slow 
slip events in a single-degree-of-
freedom spring-slider model
Makiko Ohtani   1, Nobuki Kame   2 & Masao Nakatani   2

Recently recognized slow slip events (SSEs) recurring in the deeper extensions of seismogenic zones 
along plate boundaries are drawing attention to their potential for triggering megathrust earthquakes 
that rupture the entire seismogenic zone. We describe how earthquakes simulated in a single-degree-
of-freedom model are synchronized to the rhythm of imposed periodic SSEs. The time lag tQ from the 
one most recent SSE to a seismic event varies with system parameters and may take a broad range of 
eligible values between 0 and TSSE (SSE recurrence period). Earthquakes were found to synchronize with 
SSEs in various patterns depending on the proportion of SSE-driven loading within an SSE cycle, the 
recurrence period of the SSEs, and the duration of the SSEs, although synchronization itself remained a 
prevalent feature. Asynchrony was found only for long SSE durations.

Global Navigation Satellite System (GNSS) networks, being deployed recently, have revealed the presence of slow 
slip events (SSEs) in the deeper extensions of seismogenic zones1–4. SSEs often occur in a brittle-to-ductile transi-
tion zone just below the brittle zone where large earthquakes occur, so they are believed to be affecting earthquake 
occurrences to some extent or other5. It is therefore essential to study possible effects of SSEs on earthquake 
timings.

The SSEs are characterized by their recurrent nature. It is known, for example, that SSEs measuring about 
20 cm in slip amounts occurred three times over 30 years at an identical location beneath Lake Hamana along the 
Nankai Trough (Tokai SSEs)6,7. SSEs with slip amounts of 20–30 cm are also occurring, more steadily, every 6–7 
years beneath the Bungo Channel west of Shikoku (Bungo SSEs)8,9. SSEs measuring some 2 cm in slip amounts are 
recurring with a period of 14 months or so in Cascadia2.

A deep, repeating SSE of a similar type is known to have actually triggered an earthquake. In the Guerrero 
region of Mexico, where SSEs recur every 3–4 years, an earthquake occurred in an area adjacent to the location of 
an ongoing SSE in 2014 (Papanoa earthquake). It is believed the seismic event was triggered by the SSE10.

A variety of models have so far been used to study how an earthquake fault responds to stress perturbations 
from nearby events11–13. Those models used the steady increase of fault stress to represent tectonic loading, and 
a stress perturbation was imposed at an arbitrary magnitude and timing. These studies consider only one-time 
stress perturbation event, so the impact of the history of SSEs recurring throughout a seismic cycle cannot be 
evaluated. The present study uses a single-degree-of-freedom spring-slider model to represent the impact of 
repeating SSEs on an earthquake fault as changes in the pulling velocity of the spring (episodic-loading model) 
and to study their impact on the timing of earthquakes.

In our numerical experiments, we assume different values of the characteristic slip distance L, which is a key 
fault-surface friction parameter, and focus on the recurrence intervals of earthquakes and their timing (phase dif-
ference) with respect to SSE recurrence. The fault toughness is proportional to L, and the earthquake recurrence 
interval grows continuously in proportion to L under tectonic, steady loading14. The recurrence interval in that 
situation (steady-loading model) shall be denoted by T0, the natural characteristic period. In the episodic-loading 
model, by contrast, we have found that earthquakes are synchronized with SSEs, with their recurrence interval T 
behaving characteristically of a synchronization phenomenon. Surprisingly, synchronization occurred even by 
the repetition of very small SSEs, and we could not reach a physiological understanding such as a characteristic 
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evolution of the stress and the strength leading to synchronization. However, through experiments with various 
patterns of SSEs, we could find that the overall behavior of this synchronization phenomenon makes good sense 
in a lot of ways.

An earlier study pointed out that synchronization occurs in a spring-slider model15. It was numerically shown 
how more than one block engages in stick slip with one and the same period in a system of weakly interact-
ing blocks that are mutually coupled via springs and have much the same characteristic periods when they are 
free from the influence of the other blocks. Another study attributed the observed clustering in time of great 
earthquakes in a given region to a synchronization phenomenon16. The situation assumed in the model study 
corresponds to that case. Unlike these studies, however, our study deals with earthquakes that are affected by a 
phenomenon (SSEs) with a much shorter period than the earthquakes themselves. We demonstrate that synchro-
nization still occurs in that case.

Results
Model.  To simulate plate-boundary megathrust earthquakes, we assume a system of a block being pulled on 
a frictional floor via a spring at velocity Vload (Fig. 1a). Recurrent SSEs in the deeper extension of an earthquake 
fault are modeled as changes in the load-point velocity (Fig. 1b; pulling displacement uload; Vload = duload/dt) so the 
impact of the repeating SSEs is integrated into the loading history. We conduct a quantitative study of dependence 
of the system behavior on the proportion r of the loading driven by SSEs within an SSE cycle, their recurrence 
period TSSE and their duration dSSE. An SSE begins at time t = jTSSE − dSSE and ends at t = jTSSE (j: integer). The Vload 
is set at rVplTSSE/dSSE when an SSE is going on and at (1 − r)VplTSSE/(TSSE − dSSE) during the rest of the time so the 
long-term pulling velocity remains at Vpl, where Vpl = 5 cm/yr and r = 0–1. A step displacement ΔuSSE = rVplTSSE 
is imposed, however, when dSSE = 0. The time evolution of the slip is calculated according to the Method.

Synchronization of earthquakes to repeating SSEs.  In this subsection, we illustrate the example of a 
numerical test with r = 0.5, TSSE = 5 yr and dSSE = 0 to outline the synchronization phenomenon observed. The red 
curves in Fig. 2a,b show the time evolution of the slip rate V and stress τ, respectively, of the block in the case of 
L = 0.0618 m. The step-like growths in V and τ during the interseismic period are attributable to SSEs that occur 
every 5 years. In this case, earthquakes were found always to recur at an interval of T = 85 yr. A steady-loading 
model (Vload = Vpl) with the same L value gives, by contrast, T0 = 83.87 yr. The episodic-loading model gave a 
longer earthquake recurrence interval for an identical long-term loading rate.

Figure 2 also shows, in green and blue, the results for larger L values of 0.0626 m and 0.0636 m, respectively. 
In both cases, T remained unchanged at 85 yr. As we have stated above, T0 grows continuously in proportion to 
L in the steady-loading model. When L = 0.0636 m, T0 = 86.31 yr, which means the recurrence interval in the 
episodic-loading model remains fixed and is now, contrary to the case of L = 0.0618 m, smaller than T0. And 
interestingly, the persistent value of T = 85 yr is exactly 17 times TSSE, which means the earthquakes are synchro-
nized to the periodicity of the SSEs. This suggests a so-called entrainment phenomenon is at work. The fact that 
earthquakes see the rhythm of SSEs means that the timings of individual earthquakes is affected not only by the 
most recent SSE but also by the earlier sequence of SSEs.

Figure 3b top shows the response of T over a broader range of L. Plotted in the panel are all the 200 or so values 
of T that emerged during the time interval t = 10,000 yr–30,000 yr in each of the simulation runs with different 
L values, which were sampled at intervals of 2 × 10−4 m. The light-blue lines in the figure show, for reference, the 
values of T0(L) in the steady-loading model. The results came in two patterns: regime (i), where a unique T value 
is determined for a given L, and regime (ii), where more than one T value is ascribable to a given L.

The interval L = 0.0616 m–0.0636 m, for example, falls in regime (i). This interval is centered on a value of L, 
which we shall call L17, at which the natural characteristic period T0 is exactly 17 times the SSE recurrence period 
(T0(L17) = 17TSSE). In this interval, which we shall call I17, T remains fixed at 85 yr = 17TSSE, and the periodicity of 
earthquakes is synchronized to the periodicity of SSEs. The cases shown in Fig. 2 all fall in the same interval I17.

Figure 1.  (a) A schematic diagram showing a single-degree-of-freedom spring-slider model. (b) Evolution 
of the displacement uload(t) of the spring’s load point (open circle in a) with respect to time t. Orange stripes 
indicate ongoing SSEs (from t = jTSSE − dSSE to t = jTSSE, where j is an integer).
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A range of greater L values, at L = 0.0638 m–0.0650 m, falls in regime (ii). More than one value of T, lying 
between 17TSSE and 18TSSE, emerges at each L during a single simulation run (we shall call this interval II17−18). 
When L = 0.0644 m, for example, there are two alternating varieties of T, namely T1 = 86.43 yr and T2 = 88.57 yr, 
which add up to 35TSSE. In other words, an earthquake occurrence pattern is repeating with a period of 
P = T1 + T2 = 35TSSE, so earthquakes can be deemed synchronized to SSEs. The number of earthquakes per repeat 
cycle shall be called as nEQ. In this case, nEQ = 2; period-doubling bifurcation17 occurred. When L = 0.0650 m, 
nEQ = 3 varieties of the recurrence interval, namely T1 = 88.76 yr, T2 = 89.55 yr and T3 = 86.69 yr, repeat period-
ically. An earthquake occurrence pattern is repeating with a period of P = T1 + T2 + T3 = 53TSSE. A relationship 
P = nSSETSSE (nSSE: the number of SSEs per repeat cycle) always holds under regime (ii), so earthquakes can be 
deemed synchronized to SSEs under regime (ii), just as they are under regime (i). With L growing further, regime 
(i) sets in again at L = 0.0652 m–0.0672 m, with T fixed at 18TSSE (we shall call this interval I18).

This illustrates how regimes (i) and (ii) alternate with each other with changing system parameter L. With 
growing L, in other words, T continues to cling around T0(L) as it also grows, and goes alternately through an 
interval Im with T = mTSSE and an interval IIm−(m+1) with mTSSE < Tk (1 ≦ k ≦ nEQ) < (m + 1)TSSE, where m is an 
appropriate integer.

In both regimes (i) and (ii), P = nEQ T  = nSSETSSE, where T  is the mean earthquake recurrence interval, so 
m = nSSE/nEQ, nEQ = 1 under regime (i) and nEQ > 1 under regime (ii). Regime (ii) is so-called high order synchro-
nization (HOS) or n:m synchronization18. The triangles in Fig. 3b top show values of T , which grows monotoni-
cally, and in steps, with growing L. Apart from what looks like stair treads under regime (i)—a feature that is also 
seen in the variation pattern for T—the panel also shows the presence of fine, step-like features in T  within regime 
(ii). This type of behavior is characteristic of synchronization phenomena and is known by the name of the devil’s 
staircase19.

Let us introduce ΔTmax, or the upper limit of |Tk − T0| (amount of the deviation of an earthquake recurrence 
interval from the natural period T0) within the entire experimented range L = 0.06–0.07 m as an indicator for 
measuring how far the values of T, realized under synchronization effects, can deviate from T0. The |Tk − T0| was 
found to peak at both ends of each interval Im, and ΔTmax = 1.51 yr = 0.30TSSE in Fig. 3b. The ΔTmax can be inter-
preted as representing the magnitude of the “entrainment potential” of SSEs for entraining earthquake recurrence 
intervals into periodicity of a different nature.

The variation pattern for T may be interpreted as follows if we assume that SSEs cannot alter the perio-
dicity of earthquakes above and beyond their entrainment potential. The T can only vary within the range T0 

Figure 2.  Time evolutions of (a) V [m/s] and (b) τ [MPa] for r = 0.5, TSSE = 5 yr and dSSE = 0, with red, green 
and blue showing the results for L = 0.0618 m, 0.0626 m and 0.0636 m, respectively, all within interval I17. In all 
cases, T = 85 yr. The time lag tQ [yr] from the onset of the most recent SSE (orange; t = 10,020 yr, 10,105 yr and 
10,190 yr) to the seismic event is also indicated for each case in the figure.
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− ΔTmax < T < T0 + ΔTmax, and if any mTSSE values are available within that range, T is entrained into the closest 
of those mTSSE values, and regime (i) sets in. When no mTSSE value is available within that range, by contrast, the 
occurrence intervals keep varying within that eligible range and form a sequence of more than one seismic event, 
whose intervals sum up to an integer multiple of TSSE. That sequence serves as a repeat unit for achieving synchro-
nization to SSEs. This is regime (ii). Regime (i) amounts, so to speak, to direct synchronization to the periodicity 
of SSEs, whereas regime (ii), with a weaker degree of synchronization than in (i), could be described as rounda-
bout (indirect) synchronization. We here define a phenomenological parameter S, the proportion of the L inter-
vals that realize regime (i), which is a measure of the prevalence of direct synchronization. In this case, S = 0.60.

Under the mechanism of entrainment proposed above, interval Im should be [Lm − ΔL, Lm + ΔL], where 
T0(Lm) = mTSSE, and ± ∆ = ± ∆T L L T L T( ) ( )m m max0 0 . Therefore, it is expected that

Δ= .S T T2 / (1)max SSE

Interval I18, for example, covers the range L = 0.0652 m–0.0672 m. The widths of similar L ranges remained 
largely invariant regardless of the index m, and S = 0.60. That, combined with ΔTmax = 1.51 yr = 0.30TSSE, con-
firms that Eq. (1) is met.

Let us next study the time lag tQ from the onset of the most recent SSE to a seismic event. In the case of Fig. 2 
(interval I17), tQ = 0.64 yr, 2.30 yr and 4.75 yr when L = 0.0618 m, 0.0626 m and 0.0636 m, respectively, with tQ 
growing with increasing L. Each of these timing relations between the SSEs and earthquakes remained invariant 
for all seismic events that recurred within a single simulation run. The earthquakes ended up phase-locked to 
the SSEs at the same T and tQ values even when the SSEs were shifted in occurrence time as part of the initial 
conditions.

Figure 3b bottom shows tQ values over a broader range of L. As seen earlier in Fig. 2, tQ grows with increasing 
L within an interval Im along a slightly convex-downward curve shown in bold in the figure, and takes a broad 
variety of values ranging from 0 all the way up to TSSE. Within an interval IIm−(m+1), more than one T value corre-
sponds to a given L, with each Tk associated with its own, different tQ value. In both regimes (i) and (ii), the time 
lag tQ was found to take a broad range of eligible values between 0 and TSSE. The earthquakes are synchronized to 
the SSEs, without, however, showing any strong tendency to occur shortly following an SSE.

Dependence of the system behavior on characteristics of the SSEs (their impact size r, recurrence period TSSE 
and duration dSSE) will be studied in the following subsections.

Effect of r.  This subsection addresses dependence of the system behavior on the proportion r of the stress 
attributable to SSEs to all stress loaded on the fault during an SSE cycle. Apart from the above-described case of 

Figure 3.  The T, T  and tQ [yr] in the case of TSSE = 5 yr and dSSE = 0 under (a) r = 0.1, (b) r = 0.5, (c) r = 0.9. In 
the top panels, circles and triangles denote T and T , respectively, whereas the bottom panels show tQ. The T 
alone is shown for r = 0.9, because T = T  in this case. The light-blue lines in the top panels show the 
corresponding T0 in the steady-loading model. In each panel, the light-yellow and light-green stripes indicate 
regime (i) (intervals Im) and regime (ii) (intervals IIm−(m+1)), respectively.
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r = 0.5, we also studied the cases of r = 0.1 and 0.9, and the results are shown in Fig. 3a,c, respectively. The study 
found that earthquakes are synchronized with SSEs when r = 0.1 and 0.9 as well, with T and T  generally growing 
with increasing L in following the “devil’s staircase” pattern, except the case of r = 0.9, when regime (ii) does not 
exist. Note regime (ii) under r = 0.1 (Fig. 3a top) does exhibit small steps, though not seen with the coarse sam-
pling of L in this figure (see Supplementary for finer sampling).

When r = 0.1, 0.5 and 0.9, S = 0.12, 0.60 and 1.00, respectively. All L values are under regime (i) when r = 0.9, 
and regime (ii) emerges in ever increasing proportions as r becomes smaller. Also, ΔTmax = 0.32 yr (0.06TSSE), 
1.51 yr (0.30TSSE) and 2.49 yr (0.50TSSE), respectively, which satisfies Eq. (1). Both ΔTmax and S grow in proportion 
to r until they flatten off at the upper limits of S = 1.00 and ΔTmax = 0.50TSSE, respectively, at r = 0.9.

All recurrence intervals are close to T0 when r is small. That is understandable, because a small r means only 
a small portion of the loads are driven by SSEs, so ΔTmax, or the entrainment potential of the SSEs, is also small, 
and T, therefore, cannot deviate too far from the natural period T0.

It was also found that more T and tQ values correspond to a single L under regime (ii) when r = 0.1 than when 
r = 0.5, so nEQ and nSSE can sometimes take very large values. Among the largest, for example, are nEQ = 43 and 
nSSE = 719 for L = 0.0616 m. Phase-locking, however, still persisted in that case, and earthquakes were still found 
to be synchronized with SSEs. It appears likely that large nEQ values are required to form a repeat pattern under 
the constraint that, as stated above, T cannot deviate very far from T0 when r is small.

When r = 0.1 and 0.9, tQ (Fig. 3 bottom) was found to grow with increasing L within an interval Im along 
a slightly convex-downward curve, just like in the case of r = 0.5. In both regimes (i) and (ii), the tQ values are 
distributed broadly across the range 0–TSSE, and the earthquakes exhibit no strong tendency to occur shortly 
following an SSE, even when SSE is large (r = 0.9).

Effect of TSSE.  Let us next study how earthquake recurrence patterns vary with changes in the SSE recurrence 
period TSSE. We fixed r at 0.5 and dSSE at 0 as we changed TSSE from the 5 yr as before (Fig. 3b) to 1 yr and 10 yr. The 
results are shown in Fig. 4. Just like before, each Tk was found to be associated with a fixed, unique value of tQ, and 
phase-locking was confirmed for all TSSE values. The T and T  grow with increasing L as they go alternately through 
regimes (i) and (ii), and, just like in the earlier cases, the tQ values were found to be distributed broadly across the 
eligible range of 0–TSSE. It was found that S = 0.59, 0.60 and 0.59, and ΔTmax = 0.30 yr, 1.51 yr and 3.14 yr for 
TSSE = 1 yr, 5 yr and 10 yr, respectively. In other words, ΔTmax = 0.30TSSE, 0.30TSSE and 0.31TSSE, respectively, which 
confirms Eq. (1).

Figure 4.  The T, T  and tQ [yr] in the case of r = 0.5 and dSSE = 0 under (a) TSSE = 1 yr and (b) TSSE = 10 yr. See 
caption to Fig. 3 for details.
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The ratio ΔTmax/TSSE remains almost unchanged, and that is also true in the cases of other r values, which we 
are not showing in our figures here. This, combined with ΔTmax ∝ r found in the previous subsection, shows that 
ΔTmax ∝ rTSSE. This means the entrainment potential is governed by the size of a single SSE step (rTSSEVpl).

We further see that S does not depend on TSSE because TSSE dependences of numerator and denominator of Eq. 
(1) cancel out. A comparison between the cases of TSSE = 1 yr (Fig. 4a) and 5 yr (Fig. 3b) shows, for example, that 
the size of a single SSE step is five times smaller in the former case than in the latter, so the width of an L interval 
under regime Im is also five times smaller. By contrast, SSEs occur five times more often, which translates to five 
times more opportunities for entrainment into the SSE periodicity, so there are five times more Im intervals per 
unit L interval. Combined, S remains unchanged overall, and understandably, does not depend on TSSE.

Effect of dSSE.  We are finally studying changes in the SSE duration dSSE. With r fixed at 0.5 and TSSE at 5 yr, we 
studied the cases of dSSE = 1 yr and 2 yr along with the earlier case of dSSE = 0 (Fig. 3b). The results are shown in 
Fig. 5. The results for dSSE = 1 month or so, which are not shown in the figure, were hardly distinguishable from 
the results for dSSE = 0.

As readily seen from the existence of regime (i), synchronization occurred at least for certain L values 
even when dSSE > 0 (Fig. 5). However, in regime (ii), synchronization occurs only for some L values (black 
circles). For example, synchronization with nEQ = 7 is seen for L = 0.0684 m (black arrow) under dSSE = 2 yr 
(Fig. 5b bottom). For the other L values, synchronization does not seem to occur (red circles). For example, for 
L = 0.0612 m under dSSE = 2 yr (red arrow), no repeat pattern appeared throughout the entire experimented time 
(t = 10,000 yr–30,000 yr) worth 4,000 SSE cycles. We refer to this as asynchrony in the present study, although 
strictly speaking, we have not been able to make out for sure whether earthquakes and SSEs are still in sync in that 
case, only with immensely large nEQ and nSSE values beyond the tested number of SSE cycles, or they are really out 
of sync, with no periodic pattern whatsoever. For each L value with asynchrony, tQ took a broad range of eligible 
values.

It was found that S = 0.60, 0.38 and 0.14, and ΔTmax = 1.51 yr (0.30TSSE), 0.97 yr (0.19TSSE) and 0.32 yr 
(0.06TSSE), when dSSE = 0, 1 yr and 2 yr, respectively (Fig. 5 top). Equation (1) again holds true. The entrainment 
potential ΔTmax decreases with increasing SSE duration, which, combined with findings from the previous sub-
section, shows that ΔTmax = f(dSSE)rTSSE, where f(dSSE) is 0 < f(dSSE) < 1, a decreasing function of dSSE. Figure 5 top 

Figure 5.  The T, T  and tQ [yr] in the case of r = 0.5 and TSSE = 5 yr under (a) dSSE = 1 yr and (b) dSSE = 2 yr. See 
caption to Fig. 3 for details. The results (T in the top panels and tQ in the bottom) for the synchronized and 
asynchronized cases are indicated by the black and red circles, respectively. In the bottom panel of (b), the black 
and red arrows indicate the examples of synchrony (L = 0.0684 m) and asynchrony (L = 0.0612 m) in regime (ii), 
respectively.
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shows the variation of T at each L is bounded by 2ΔTmax constant throughout the experimented L range including 
both regime (i) and (ii), even when asynchrony occurs at some values of L in regime (ii). This suggests the concept 
of entrainment potential is valid even for the cases with asynchrony.

For regime (ii), we can define another measure of the prevalence of synchronization, S′; the proportion of 
the L values with synchrony among all the L values in the regime (ii). It was found S′ = 1.00, 0.45 and 0.09, when 
dSSE = 0, 1 yr and 2 yr, respectively. Asynchrony becomes more common with increasing dSSE.

Comparing Figure 5b (r = 0.5, TSSE = 5 yr and dSSE = 2 yr) and Figure 3a (r = 0.1, TSSE = 5 yr and dSSE = 0), we 
notice the entrainment potential ΔTmax and S are about the same. Values of L with asynchrony, however, emerged 
only in the former case (S′ = 0.09), so it can be said the system is less prone to synchronization in the former case 
than in the latter. This suggests the presence of a certain effect of dSSE, on the prevalence of indirect synchroniza-
tion in regime (ii).

In summary, the prevalence of direct synchronization (regime (i)), measured with S, is controlled by the 
entrainment potential ΔTmax = f(dSSE)rTSSE. Additionally, the prevalence of indirect synchronization within 
regime (ii), measured with S′, decreases with increasing dSSE.

Discussion and Conclusion
We have used a spring-slider model to simulate the occurrence of earthquakes that are synchronized to the peri-
odicity of loading by recurring SSEs. All seismic events in the experimented cases were found to be synchro-
nized with SSEs when dSSE = 0, and they were also found always to be in sync even when the single SSE size was 
small, such as when r = 0.1 and TSSE = 5 yr. We could confirm synchronization down to r as small as 0.03 when 
TSSE = 5 yr (figure not shown). When dSSE > 0, by contrast, earthquakes were found to be out of sync with SSEs at 
certain L values. It is understandable that, the longer the SSE duration, the smaller the difference in the loading 
rate between when an SSE is going on and during the rest of the time, and hence the system becomes less prone to 
synchronization because an SSE becomes less of a special event or a clear time marker. When r = 0.5, dSSE = 2 yr 
and TSSE = 5 yr, for example, there is an ongoing SSE over 40% of all time, and the loading rate then is only 1.5 
times the corresponding rate during the rest of the time, and asynchrony was found for the majority of the L val-
ues studied. Even in that case, however, synchronization was still found for some L values.

Two modes of synchronization were recognized when earthquakes were in sync with SSEs: regime (i) of direct 
entrainment into the periodicity of the SSEs, and regime (ii) of indirect entrainment, which involves the forma-
tion of a repeat pattern consisting of more than one seismic event. Periodic SSEs have the potential to shift an 
earthquake recurrence interval from the natural period T0 by up to the magnitude of their entrainment potential 
ΔTmax. Whether the regime will be (i) or (ii) is determined by whether any mTSSE values are available within that 
allowable range. Then ΔTmax controls the prevalence of direct synchronization, whereas the prevalence of indirect 
synchronization in regime (ii) is affected by dSSE.

The settings we have studied in the present article—(1) a smaller r, (2) a smaller TSSE and (3) a larger dSSE—can 
all be regarded as a move toward the limit of the steady-loading model. The earthquake recurrence intervals T 
approached T0 under settings (1) and (3), and the system behavior approached that of the steady-loading model, 
wherein earthquake recurrence intervals vary continuously and linearly with L. No such approach, however, 
occurred under setting (2), because S does not depend directly on TSSE. Case (2) highlights a nonlinear nature of 
the synchronization system being studied here.

Our simulations over a wide range of settings have robustly exhibited synchronization of earthquakes to peri-
odic SSEs. The appearance of synchronization means that the whole history of SSEs matters for the timing of 
individual earthquakes. Time delay of an earthquake from the most recent SSE is distributed broadly across the 
entire range of eligible values 0–TSSE. Thus, from the viewpoint of forecasting, the risk enhancement implied 
by the observation of an SSE is much less than that expected from the clock advance effect due to a single SSE 
imposed at an arbitrary timing12.

Future research could provide evidence of synchronization between earthquakes and SSEs in field data. The 
present article has shown that earthquakes may occur not necessarily at fixed recurrence intervals (regime (i)) 
but also in a complicated pattern of synchronization that involves more than one recurrence interval, so that may 
not give the impression at first glance that the seismic events are synchronized with SSEs (regime (ii)). As long as 
few SSEs and earthquakes have been observed, it remains difficult to discuss the relations between the SSEs and 
seismic events unless a clear spatiotemporal relationship is recognizable as in the Guerrero case mentioned in the 
introduction10. In the future, however, the complicated synchronization phenomena may be found in the modern 
observation data accumulated over a long time.

Method
Under a pulling displacement uload (Fig. 1b), the equilibrium of forces acting on the block (Fig. 1a) can be 
described quasi-dynamically with the following Eq. (2) of motion20,21 by using the spring constant k, the block 
displacement u, the block slip rate V and the friction τ:

k u u GV
V

( )
2

,
(2)load

s
τ = − +

where the S-wave velocity Vs = 3.27 km/s and the rigidity G = 30 GPa. We assume the friction τ follows a 
rate-and-state friction (RSF) law (Eq. (3)) and use the aging law (Eq. (4)) to serve as an evolution law for the 
strength parameter Φ22:

τ τ σ= + + Φ∗ ∗a V Vln( / ) , (3)n
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=





−

Φ 




−
∗

where a, b and L are friction parameters, σn is the effective normal stress on the block’s sliding face, and V* is an 
arbitrary reference velocity (we set V* = Vpl in the present study). The τ* refers to the frictional stress under the 
steady state with velocity V*.

By way of initial condition, we set V at 0.9Vpl and Φ at the corresponding steady-state value when t = 0. The 
first and second terms on the right-hand side of Eq. (4) represent the processes of time-dependent healing and slip 
weakening of the strength, respectively. The block motion in this system is generally takes the form of intermittent 
stick slip (earthquakes) when a < b and k < kcritical (≡ σn(b − a)/L). We set σn at 100 MPa; a = 0.010 and b = 0.012; 
and k at 0.5kcritical, because we are interested in earthquake occurrences. We use the Runge-Kutta method with 
variable time steps23 to solve the system of Eqs (2–4) to obtain time evolutions of the slip rate and the stress.

Data Availability
No datasets were used in the current study.
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