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Geographical origin traceability of 
Cabernet sauvignon wines based 
on Infrared fingerprint technology 
combined with chemometrics
Xiao-Zhen Hu1, si-Qi Liu1,2, Xiao-Hong Li2, Chuan-Xian Wang2, Xin-Lu Ni2, Xia Liu2,  
Yang Wang3, Yuan Liu4 & Chang-Hua Xu1,5,6,7,8

Mid-infrared (MIR) and near-infrared (NIR) spectroscopy combined with chemometrics were explored 
to classify Cabernet Sauvignon wines from different countries (Australia, Chile and China). Commercial 
wines (n = 540) were scanned in transmission mode using MIR and NIR, and their characteristic 
fingerprint bands were extracted at 1750-1000 cm−1 and 4555-4353 cm−1. Through the identification 
system of Tri-step infrared spectroscopy, the correlation between macroscopic chemical fingerprints 
and geographical regions was explored more deeply. Furthermore, Principal component analysis 
(PCA), soft independent modelling of class analogy (SIMCA) and discriminant analysis (DA) based 
on MIR and NIR spectra were used to visualize or discriminate differences between samples and to 
realize geographical origin traceability of Cabernet Sauvignon wines. Through “external test set 
(n = 157)” validation, SIMCA models correctly classified 97%, 97% and 92% of Australian, Chilean 
and Chinese Cabernet Sauvignon wines, while the DA models correctly classified 86%, 85% and 77%, 
respectively. Based on unique digital fingerprints of spectroscopy (FT-MIR and FT-NIR) associated with 
chemometrics, geographical origin traceability was achieved in a more comprehensive, effective and 
rapid manner. The developed database models based on IR fingerprint spectroscopy with chemometrics 
could provide scientific basis and reference for geographical origin traceability of Cabernet Sauvignon 
wines (Australia, Chile and China).

Geographical origin traceability is of great importance in the process of food quality control. At present, the con-
cept of original geographical indication has become one of the important factors affecting consumers’ purchasing 
preferences in the food and beverage industry1. Especially for wine, geographical origin has long been regarded 
as an inherent criterion in wine identification or classification systems2,3. The implementation of comprehen-
sive technologies for origin traceability is urgently needed for consumers, manufacturers, retailers and admin-
istrations1,4,5. To date, well-established standard means, sensory evaluation, chromatographic and spectrometric 
methods with expensive instrumentation or time-consuming operation such as gas chromatography (GC), liquid 
chromatography (LC), mass spectrometry (MS), high performance liquid chromatography (HPLC), elemental 
and isotopic analysis were applied to discriminate wines on the basis of different geographical origin1,6–8.

In contrast, molecular spectroscopy technologies have become attractive technique with a bright prospect 
in applications of batch detection for wine industry5,9–11, due to environmentally friendly characteristics, as 
well as the potential savings in analysis time and cost. Infrared spectroscopy that could reflect comprehensive 
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information and behaves as a “fingerprint” of the sample, in the MIR spectral region (4000-400 cm−1), which 
is caused by the fundamental stretching, bending, and rotating vibrations of the sample molecules, while NIR 
spectra (12,800-4000 cm−1) results from complex overtones and high-frequency combinations at shorter wave-
lengths12–14. In particular, Tri-step infrared spectroscopy, a comprehensive spectral technique integrating Fourier 
transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy (SD-IR) and two-dimensional 
correlation infrared spectroscopy (2DCOS-IR), has been proved to be an effective technique to reveal main con-
stituents in complicated mixture systems and distinguishing the types and contents of chemical components in 
highly similar matrices15–19. However, few studies focused on the exploration of the key spectral information of 
origin traceability by recognition mechanism of Tri-step infrared spectroscopy.

Furthermore, multivariate data analysis techniques such as principal component analysis (PCA), cluster 
analysis (e.g. soft independent modelling of class analogy, SIMCA) and discriminant analysis (DA) can effec-
tively realize the detection of feature patterns or “fingerprint” information related to the geographical origin 
of samples5,20, especially for large-scale sample sets. PCA simplifies the data structure by reducing dimension, 
which is usually used to detect outliers and to identify patterns in the sample distribution before establishment 
of classification models21,22. While SIMCA and DA are supervised classification methods5,23, which have been 
commonly used in conjunction with MIR and NIR spectroscopy. Previous studies have demonstrated that both 
the combined application of MIR-SIMCA and the combination of NIR-DA could provide high predictive ability 
in the analysis of geographical traceability of wines9,20,24–26. Therefore, the application of infrared spectroscopy 
combined with appropriate chemometrics has potential to realize discrimination and traceability of wines with 
different geographical origins in a more rapid direct and comprehensive manner.

Cabernet Sauvignon (Vitis vinifera L.) is considered as an ancient and traditional red wine grape variety 
derived its fame from the south west of France27. In emerging grape growing regions called New World wine 
production countries such as Australia, Chile and China, this variety has become an important red cultivar owing 
to unique flavor characteristics and broad planting area. Particularly, in China, Cabernet Sauvignon has been 
currently the most famous red grape variety accepted and favored by wine producers and consumers28.

Herein, the aim of this study was to explore the macroscopic chemical fingerprints and key spectral infor-
mation of geographical regions by Tri-step infrared spectroscopy, and further to establish high-throughput 
classification database models of Cabernet Sauvignon wines with different geographical countries (Australia, 
Chile, and China) based on unique digital fingerprints of spectroscopy (FT-MIR and FT-NIR) associated with 
chemometrics.

Results and Discussion
Chemical analysis. Supplementary Table S1 showed the one-way variance analysis (ANOVA) for the chem-
ical constituents of Cabernet Sauvignon wines from different countries (Australia, Chile and China). No statis-
tically significant differences between wine samples analyzed with different countries were observed for Alcohol 
Content (AC), Glucose plus Fructose (G + F), and Total Phenols (TP). However, the differences in pH, Titratable 
Acidity (TA) and Volatile Acidity (VA) were statistically significant (p < 0.05). By comparing the composition 
of wines from three countries, Australian Cabernet Sauvignon wines present the highest TA, G + F and TP and 
the lowest alcohol content, Chilean Cabernet Sauvignon wines present the lowest content of TA, and Chinese 
Cabernet Sauvignon wines had the highest values of alcohol content, VA and pH, and the lowest content of G + F.

Tri-step IR spectral analysis. IR spectra of three cabernet sauvignon wines. According to the 
one-dimensional FT-MIR spectra (Fig. 1) and the information of corresponding characteristic absorption 
peaks29–33 (see Supplementary Table S2), main constituents of Cabernet Sauvignon wine samples from three 
countries were considered to be the same. Through the overlapping and separated MIR spectra (Fig. 1), significant 
differences of multiple characteristic peak intensity and shape among wines from three countries (Chile, China 
and Australia) were observed, such as peaks at 2940, 2890, 1723, 1618, 1409, 1109 and 1046 cm−1, etc. The peak 
height ratio (1723/1618) of the two main absorption peaks at 1723 and 1618 cm−1 were 0.588, 0.475 and 1.091 for 
Chile, China and Australia (Fig. 1b), which indicated that relative content of the corresponding esters and car-
boxylic acids were different in wine samples from different countries. Australian Cabernet Sauvignon wines had 
the largest intensity of v(C=O) absorption peak at 1723 cm−1, while the peak intensities of stretching vibrational 

Figure 1. MIR spectra of Cabernet Sauvignon wines from different countries (Chile, China and Australia) in 
the range of 4000~680 cm−1.
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absorption peak of COO− at 1618 and 1409 cm−1 were significantly weaker than other two countries. Chinese 
Cabernet Sauvignon wines had the strongest stretching vibration absorption peaks of C−H bond at 2940 and 
2890 cm−1, COO− bond at 1618 and 1409 cm−1, and C−O bond at 1107 cm−1 and 1046 cm−1, which indicated 
that the content of alcohol, glycerol and carboxylic acids were higher than the others. Absorption bands around 
1275-1200 cm−1 were mainly associated with aromatic compounds and their derivatives, ether-containing com-
pounds. In general, according to the absorption peaks intensities (Fig. 1), Australian Cabernet Sauvignon wines 
present the highest content of ester and carboxylic acids, and the aromatic substances are abundant. Chinese 
Cabernet Sauvignon wines had less esters, and the carboxylic acid content was much higher than that of the ester. 
For Chilean Cabernet Sauvignon wines, the esters content was the lowest, while the alcohol and carboxylic acid 
content were moderate. It has been indicated that Cabernet Sauvignon wines from different countries present 
unique flavor personality with different flavor components such as alcohol, ester, acids and carbohydrate.

Second derivative IR spectra of three Cabernet Sauvignon wines. Generally, the overlapping absorption peaks can 
be separated, as well as components with low content or weak absorption intensities in the mixture can be more 
intuitively identified and compared by SD-IR spectra. Characteristic peaks around 1080-1044 cm−1 representing 
the vibration of C-OH bonds of ethanol, glycerol and sugars (G + F) were observed more directly in the SD-IR 
spectra of Cabernet Sauvignon wines in the range of 1710-850 cm−1 (Fig. 2). Moreover, more information about 
absorbance peaks appeared, such as peak related to aromatic groups at 1265 cm−1, v(OC=O), v(C=C), v(C−H2), 
v(C−H3) absorbance peaks presenting organic acids and aldehyde at 1464-1400 cm−1, v(C=O) peak associated 
with free amino acids and peptides at 1650 cm−1, and absorption bands of amino acids and their derivatives 
at 1600-1530 cm−1. According to the macroscopic fingerprint differences (peak intensity, position and shape) 
in SD-IR spectra of three Cabernet Sauvignon wines, it showed that the amino acid and aromatic compounds 
including their derivatives (phenols) types and contents of Cabernet Sauvignon wines in three countries are sig-
nificantly different. Compared with Australia and Chile, sugar and phenols contents of the Cabernet Sauvignon 
wine samples from China were less.

2DCOS-IR spectra of three cabernet Sauvignon wines. To identify differences among the wines from different 
countries (Chile, China and Australia) more remarkably and convincingly, the synchronous 2DCOS-IR spectra 
has been applied in the wave number range of 1800~850 cm−1. In synchronous 2DCOS-IR spectrum, the peaks 
show the coincidence of the spectral intensity variations at corresponding variables along the perturbation and 
can be used to verify differences between samples15. The auto-peaks on the diagonal line represented the suscep-
tibility and auto-correlativity of certain absorption bands, which produced changes in spectral intensity by ther-
mal treatment. Positive correlation (red/green area) in 2DCOS-IR spectra indicates that a group of absorption 
bands change simultaneously (either stronger or weaker), while negative correlation (blue area) is completely the 
opposite34–36.

Cabernet Sauvignon wines from three countries (Chile, China and Australia) responded differently to thermal per-
turbation, which made the mean 2DCOS-IR spectra display obvious variation (Fig. 3). The information about positions, 
relative intensities and correlation of auto-peaks in the temperature ranges of 65–110 °C and 110–120 °C were summa-
rized (see Supplementary Tables S3 and S4). During the thermal perturbation at 65–110 °C, the presence of the strong-
est auto-peaks at 1648 cm−1 and two weak peaks at 1516 cm−1 and 1044 cm−1 for Chilean Cabernet Sauvignon wines. 
Australian Cabernet Sauvignon wines had the strongest auto-peak at 1042 cm−1 and four weak auto-peaks (1448 cm−1, 
1408 cm−1, 1164 cm−1, 965 cm−1), whereas Chinese Cabernet Sauvignon wines had one strong auto-peak at 1044 cm−1 
and four weak auto-peaks (1721 cm−1, 1560 cm−1, 1512 cm−1, 1164 cm−1). Furthermore, during the thermal pertur-
bation at 110–120 °C, the presence of the strongest auto-peaks at 1580 cm−1 and four weak auto-peaks (1435 cm−1, 
1250 cm−1, 962 cm−1, 884 cm−1) for Chilean Cabernet Sauvignon wines. Australian Cabernet Sauvignon wines had the 
strongest auto-peaks at 1160 cm−1 and three weak auto-peaks (1408 cm−1, 1152 cm−1, 1042 cm−1), whereas Chinese 
Cabernet Sauvignon wines had one strong auto-peak at 1650cm−1 and three weak auto-peaks (1448 cm−1, 962 cm−1, 
884 cm−1). Therefore, Cabernet Sauvignon wines had respective unique fingerprints in the range of 1710-850 cm−1 in 
the synchronous 2DCOS-IR spectra.

Form the all above, the strong automatic peak of Chinese Cabernet Sauvignon wines was mainly the contribu-
tion of ethanol and glycerin by the thermal perturbation of 65–110 °C, and the presence of the strongest automatic 
peak during 110–120 °C was the response of free amino acids and polypeptide components. During the whole 

Figure 2. Second derivative spectra of Cabernet Sauvignon wines from different countries (Chile, China and 
Australia) in the range of 1710~850 cm−1.
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process of thermal perturbation, the strongest change in temperature response of Chilean wines was primarily 
amino acid, followed by aromatic substances (phenols) and glycerol components, while Australian wines was 
mainly contributed by the ethanol, glycerol and phenolic compounds, followed by esters, carboxylic acids and 
aromatic amino acids.

According to the response intensity of different components to the thermal perturbation in the 2DCOS-IR 
spectra, geographical differences between the Cabernet Sauvignon wines could be directly judged. Therefore, 
Chillan, Chinese and Australian wines could be identified and distinguished more clearly and completely based 
upon the MIR macro-fingerprint characteristics.

PCA analysis. Combining the spectral characteristics extracted from Tri-step IR analysis, the pre-processed 
MIR spectra (Standard Normal Variate, SNV and De-trending, 1710-850 cm−1) of the Cabernet Sauvignon wine 
samples were analyzed by PCA (Fig. 4), which could visualize systematic differences between samples from the 
three countries. The first two PCs displayed almost 92% of total variance in the selected wine samples from three 
countries. Three clusters representing all wine samples (Chile, China, and Australia) were observed, however, 
some samples mainly from China and Australia did overlap. To investigate the potential relationship between 
characteristics of origin and specific chemical composition, the PCA eigenvectors and the spectral character-
istics (see Supplementary Fig. S1) were analyzed. PC1 explained 81.82% of the total variance, and the highest 
loadings were located in the absorption band around 1080-1045 cm−1, which represented the vibration of C-OH 
band. Additional absorption bonds were observed at 1650 cm−1 and 864 cm−1, associated with C=O and −CH 
bands, respectively. In PC2 (10.12%), the highest eigenvectors were observed at around 1650-1620 cm−1 and 

Figure 3. 2DCOS-IR synchronous spectra of Cabernet Sauvignon wines from different countries (Chile, China 
and Australia) in the range of 1800~850 cm−1.

Figure 4. Score plot of the first two PCs for Cabernet Sauvignon wines from different countries (CLC: Chile; 
CNC: China; AC: Australia) based on FT-MIR spectra.
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1100-980 cm−1. Therefore, the PCA analysis for Australian, Chillan and Chinese Cabernet Sauvignon wines were 
performed based on spectral fingerprint information of MIR. It further demonstrated that alcohols, carbohy-
drates (glucose and fructose), organic acid and phenolic compounds contributed the strongest differences among 
the Cabernet Sauvignon wines from different countries (Australia, Chile and China).

Cluster analysis. In order to realize cluster analysis of Cabernet Sauvignon wine samples from three countries, 
SIMCA was performed on the spectral characteristics of wine samples extracted by PCA. 540 parallel samples 
were objectively classified, and 157 samples (54 samples for Australia, 55 for Chile, 48 for China) were randomly 
selected as external validation set. The parameters of SIMCA model were summarized (Supplementary Table 
S5). The between-class distance between the Cabernet Sauvignon wine samples from three countries was >1 
(Supplementary Table S6), which indicated that the degree of separation between various categories was relatively 
large, and the difference of categories was obvious in the SIMCA model. In addition, the reliability of classification 
model has been verified by recognition and rejection rate.

According to the classification result of SIMCA model (Table 1, Supplementary Table S9), the recognition 
rate of calibration set and the rejection rate of validation set in samples with three countries were 100%, which 
demonstrated that the sensitivity of the calibration set and the specificity of the validation set in SIMCA model 
were accurate. Nevertheless, the recognition rate of the verification set in Chinese samples was only 73%. Correct 
classification rates for Australian, Chilean and Chinese wines were 97%, 97%, and 92%, respectively. It has been 
showed that Cabernet Sauvignon wines from three countries were classified effectively by MIR coupled with 
PCA-based SIMCA.

Discriminant analysis (DA). Supplementary Tablesnon wine samples (406 samples for the calibration set and 
134 samples for the validation set) were analyzed using the Mahalanobis distance discriminant analysis (DA). 
According to the NIR spectral information and optimization analysis (see Supplementary Tables S72,37–39 and S8), 
the pre-processed NIR spectra (SNV, 4555-4353 cm−1) of the Cabernet Sauvignon wine samples were selected 
for modeling (Supplementary Fig. S2). Through the projection and distribution of the wine samples in the 
three-dimensional feature space (Fig. 5), the samples of three countries were distinguished. Furthermore, the 
clustering trend based on FT-NIR is basically consistent with the results of FT-MIR.

Cabernet Sauvignon wine samples from three geographical countries were classified based on Mahalanobis 
distance discrimination (Fig. 6). Correct classification rates for Australian, Chilean and Chinese Cabernet 
Sauvignon wines were 86%, 85% and 77% (Table 2), respectively. Consistent with SIMCA model based on 

Cabernet 
Sauvignon wines % Recognition rate (C) % Rejection rate(C) % Recognition rate (V) % Rejection rate (V)

Australia 100 (123/123) 99 (248/251) 91 (49/54) 100 (103/103)

Chile 100 (131/131) 97 (236/243) 89 (49/55) 100 (102/102)

China 100 (120/120) 100 (254/254) 73 (35/48) 100 (109/109)

Table 1. Classification performance report of Calibration (C) and Validation (V) for discriminating Cabernet 
Sauvignon wines from different countries based on MIR.

Figure 5. Three-dimensional PCA plot for Cabernet Sauvignon wines from different countries (Australia (AC), 
Chile (CLC) and China (CNC)) based on NIR spectra.
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FT-MIR, prediction effects of Australian and Chilean wines were better than Chinese wines. Furthermore, the 
accuracy and sensitivity of the SIMCA model based on FT-MIR were better than that of the DA model using 
FT-NIR.

Conclusion
In this study, we have attempt to establish high-throughput classification models of Cabernet Sauvignon wines 
with three geographical countries based on unique digital fingerprints of spectroscopy (FT-MIR and FT-NIR) 
associated with chemometrics.

Through the identification system of Tri-step mid infrared spectroscopy technology, with chemical analysis 
results of alcohol, pH, total acid, volatile acid, total phenol, glucose and fructose as reference, the macroscopic 
characteristic fingerprint bands of different countries were extracted at 1750-1000 cm−1. As the increasing reso-
lution of Tri-step infrared spectroscopy, apparent differences in the Cabernet Sauvignon wine samples have been 
fully visualized due to the fingerprint information (positions and relative intensities of characteristic peaks). 
Three Cabernet Sauvignon wines from different countries were successfully discriminated and classified in a rapid 
and holistic manner. Moreover, 540 Cabernet Sauvignon wine samples have been objectively used by chemom-
etrics (PCA, SIMCA and DA) based on MIR and NIR macro-fingerprints to realize rapid traceability analysis of 
unknown Cabernet Sauvignon wine samples from Australia, Chile and China. These results suggested that the 
prediction effects of Australian and Chilean wines were better than that of Chinese wines, and the classification 
effect of SIMCA model based on FT-MIR was more precise than DA model based on FT-NIR. For the detection 
of Chinese wines, it is necessary to improve the accuracy of the classification by establishing robust models with 
more samples.

Conclusively, it has been demonstrated that the developed database models based on FT-MIR and FT-NIR 
coupled with chemometrics (PCA, SIMCA and DA) could be applied as a reference for geographical origin trace-
ability of Cabernet Sauvignon wines (Australia, Chile and China) in a more comprehensive, effective and rapid 
manner.

experimental
Samples and reference data. Commercial Cabernet Sauvignon wine samples from Australia (South 
Australia, Western Australia, Victoria and New South Wales, respectively), Chile (Central Valley) and China 
(Hebei, Shandong and Ningxia, respectively) were collected from commercial wineries and Shanghai Entry-
Exit Inspection and Quarantine Bureau. A total of 540 wine samples includig Australian (61 labels × 3 bottles), 
Chilean (62 labels × 3 bottles) wines and Chinese (57 labels × 3 bottles) wines were used in this study. All sam-
ples were from 2010 to 2016 vintages, produced in the main wineries of the geographical zones: Penfolds, Capel 
Vale, McWilliam’s, Vina Ventisquero, Concha y Toro, Montes, Baron Philippe de Rothschild, ChangYu, Greatwall 
Manor, Chateau Bacchus, Imperial Horse and Dynasty. Reference data for alcohol content (AC), glucose and 
fructose (G + F), pH, titratable acidity (TA), volatile acidity (VA) and total phenols (TP) were obtained using 
standard methods (GB 15037-2006)31,40.

Instrument. FT-IR spectrometer (Spotlight 400, PerkinElmer, UK) equipped with a deuterated triglycine 
sulfate (DTGS) detector and Universal ATR sampling accessory. Thermo Scientific Nicolet iS5 FT-IR spectrome-
ter equipped with ATR temperature controller which performed the thermal perturbation was used to obtain the 

Figure 6. Classification of three Cabernet Sauvignon wines from different countries using Mahalanobis 
distance discriminant analysis method (□)AC; (△)CLC; (○) CNC.

Cabernet 
Sauvignon wines % Recognition rate (C) % Rejection rate (C) % Recognition rate(V) % Rejection rate (V)

Australia 87 (117/135) 100 (258/258) 84 (37/44) 100 (90/90)

Chile 85 (111/130) 91 (240/263) 84 (46/55) 89 (70/79)

China 78 (100/128) 91 (241/265) 71 (25/35) 88 (87/99)

Table 2. Classification performance report of Calibration (C) and Validation (V) for discriminating Cabernet 
Sauvignon wines from different countries based on NIR.
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two-dimensional correlation spectra. The IR spectra were recorded from 4000 to 400 cm−1 and 12,800-4000 cm−1. 
Spectra were recorded with 32 scans and 0.5 cm/s−1 of OPD speed.

Other equipments include ultrapure water machine (Milli-Q Reference, Elix Reference), Seven Excellence 
S400-B multifunction tester (METTLER TOLEDO, Switzerland), LC-20A high performance liquid chroma-
tograph (SHIMADZU, Japan), T70 full-automatic potentiometric titrometer (0.01 pH) (METTLER TOLED, 
Switzerland), Evolution™ 300 UV-Visible spectrometer (Thermo Fisher Scientific, USA), DMA4500 digital 
densitometer (Anton-Paar, Austria) and rotary evaporator (IK ARV10 basic, HB10 digital, German) and Freeze 
Dryer BTP-3XLOVX (Virtis, American).

Procedure. Spectroscopic measurements of FT-MIR. 3 mL of each wine sample was taken from freshly 
opened bottles and distilled at 40 °C for about 8 min by rotating evaporator until the resulting wine sample was 
essentially alcohol-free. Then the resulting sample was freeze-dried for 24 h, each sample (1~2 mg) was mixed 
with KBr (100 mg) into powder and finally pressed into tablets. FT-IR spectra of samples were scanned at room 
temperature by PerkinElmer FT-IR spectrometer in transmission mode. Each spectrum was recorded as the 
average of 32 scans with 4 cm−1 resolution in the wavenumber range of 4000-400 cm−1. The SD-IR spectra was 
obtained by Savitzky-Golay polynomial fitting (13-point smoothing) with PerkinElmer Spectrum software 
(Version 10.4.3).

In order to obtain 2DCOS-IR spectra representing the overall difference of selected samples, each wine sample 
from three countries was placed in ATR accessory connected with the temperature controller and recorded in 
two variable temperature-gradients: from 65 to 110 °C with an increasing rate at 2 °C/min at an interval of 10 °C, 
and from 110 to 120 °C with an increasing rate at 2 °C/min at an interval of 2 °C. After removing the abnormal 
sample information, a series of mean dynamic spectra of three countries in variable temperature-gradients were 
processed using 2DCOS-IR correlation analysis software (Thermo Scientific, Nicolet iN10 SpectraCorr). Then, 
the mean 2DCOS-IR spectra of three countries were obtained.

Spectroscopic measurements of FT-NIR. Wine Samples were scanned in transmission mode using 
near-IR fiber-optic probe accessory of Nicolet iS50 (Thermo Fisher Scientific, America) equipped with an 
indium-gallium-arsenide (InGaAs) detector. Each spectrum was recorded as the average of 32 scans with 4 cm−1 
resolution in the wavenumber range of 12,800-4000 cm−1. Spectra of all samples were collected at room tem-
perature with reference background spectrum recorded using air. All the raw FT-NIR data were processed with 
Omnic spectrum software (Version 9.2.106).

Multivariate data analysis. A total of 540 dry wine samples (183 samples for Australia, 186 for Chile, 171 for 
China) were used to establish models of geographical origin traceability by PCA, SIMCA and DA. PCA was 
conducted based on FT-MIR spectra (1710-850 cm−1) by Spectrum Quant+ v 4.6.0.0176 (Perkin Elmer Inc.). 
SIMCA models (FT-MIR) based on PCA were performed by Assure ID v 4.1.0.0195 (PerkinElmer Inc.). And 
Mahalanobis distance discriminant models (FT-NIR) based on PCA were developed by TQ Analyst v 9.7.179 
(Thermo Fisher Scientific Inc.). Statistical analysis of chemical components was analyzed by SPSS Statistics 
(Version 23.0) software.

Data Availability
The dataset generated or analyzed during the current study are available from corresponding author upon rea-
sonable request.

References
 1. Luykx, D. M. A. M. & Van Ruth, S. M. An overview of analytical methods for determining the geographical origin of food products. 

Food chemistry 107, 897–911, https://doi.org/10.1016/j.foodchem.2007.09.038 (2008).
 2. Cozzolino, D., Smyth, H. E. & Gishen, M. Feasibility study on the use of visible and near-infrared Spectroscopy together with 

chemometrics to discriminate between commercial white wines of different varietal origins. Journal of Agricultural and Food 
Chemistry 51, 7703–7708, https://doi.org/10.1021/jf034959s (2003).

 3. Green, J. A., Parr, W. V., Breitmeyer, J., Valentin, D. & Sherlock, R. Sensory and chemical characterisation of Sauvignon blanc wine: 
Influence of source of origin. Food Research International 44, 2788–2797, https://doi.org/10.1016/j.foodres.2011.06.005 (2011).

 4. Tregear, A., Kuznesof, S. & Moxey, A. Policy initiatives for regional foods: some insights from consumer research. Food Policy 23, 
383–394, https://doi.org/10.1016/s0306-9192(98)00044-x (1998).

 5. Cozzolino, D., Cynkar, W. U., Shah, N. & Smith, P. A. Can spectroscopy geographically classify Sauvignon Blanc wines from 
Australia and New Zealand? Food chemistry 126, 673–678, https://doi.org/10.1016/j.foodchem.2010.11.005 (2011).

 6. Kamiloglu, S. Authenticity and traceability in beverages. Food chemistry 277, 12–24, https://doi.org/10.1016/j.foodchem.2018.10.091 
(2019).

 7. Cordella, C., Moussa, I., Martel, A. C., Sbirrazzuoli, N. & Lizzani-Cuvelier, L. Recent developments in food characterization and 
adulteration detection: Technique-oriented perspectives. Journal of Agricultural and Food Chemistry 50, 1751–1764, https://doi.
org/10.1021/jf011096z (2002).

 8. Jiang, B., Xi, Z., Luo, M. & Zhang, Z. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine 
grape-growing regions in China. Food Research International 51, 482–489, https://doi.org/10.1016/j.foodres.2013.01.001 (2013).

 9. Liu, L., Cozzolino, D., Cynkar, W. U., Gishen, M. & Colby, C. B. Geographic classification of Spanish and Australian tempranillo red 
wines by visible and near-infrared spectroscopy combined with multivariate analysis. Journal of Agricultural and Food Chemistry 54, 
6754–6759, https://doi.org/10.1021/jf061528b (2006).

 10. Mandrile, L., Zeppa, G., Giovannozzi, A. M. & Rossi, A. M. Controlling protected designation of origin of wine by Raman 
spectroscopy. Food chemistry 211, 260–267, https://doi.org/10.1016/j.foodchem.2016.05.011 (2016).

 11. Chandra, S., Chapman, J., Power, A., Roberts, J. & Cozzolino, D. Origin and Regionality of Wines—the Role of Molecular 
Spectroscopy. Food Analytical Methods 10, 3947–3955, https://doi.org/10.1007/s12161-017-0968-1 (2017).

 12. Cozzolino, D., Cynkar, W., Shah, N. & Smith, P. Technical solutions for analysis of grape juice, must, and wine: the role of infrared 
spectroscopy and chemometrics. Analytical & Bioanalytical Chemistry 401, 1475–1484 (2011).

 13. Smyth, H. & Cozzolino, D. Instrumental Methods (Spectroscopy, Electronic Nose, and Tongue) As Tools To Predict Taste and 
Aroma in Beverages: Advantages and Limitations. Chemical reviews 113, 1429–1440, https://doi.org/10.1021/cr300076c (2013).

https://doi.org/10.1038/s41598-019-44521-8
https://doi.org/10.1016/j.foodchem.2007.09.038
https://doi.org/10.1021/jf034959s
https://doi.org/10.1016/j.foodres.2011.06.005
https://doi.org/10.1016/s0306-9192(98)00044-x
https://doi.org/10.1016/j.foodchem.2010.11.005
https://doi.org/10.1016/j.foodchem.2018.10.091
https://doi.org/10.1021/jf011096z
https://doi.org/10.1021/jf011096z
https://doi.org/10.1016/j.foodres.2013.01.001
https://doi.org/10.1021/jf061528b
https://doi.org/10.1016/j.foodchem.2016.05.011
https://doi.org/10.1007/s12161-017-0968-1
https://doi.org/10.1021/cr300076c


8Scientific RepoRts |          (2019) 9:8256  | https://doi.org/10.1038/s41598-019-44521-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

 14. Hou, S.-W. et al. Integrated recognition and quantitative detection of starch in surimi by infrared spectroscopy and spectroscopic 
imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 215, 1–8, https://doi.org/10.1016/j.saa.2019.02.080 
(2019).

 15. Liu, S. et al. Rapid identification of pearl powder from Hyriopsis cumingii by Tri-step infrared spectroscopy combined with 
computer vision technology. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 189, 265–274, https://doi.
org/10.1016/j.saa.2017.08.031 (2018).

 16. Xu, C.-H., Liu, S.-L., Zhao, S.-N., Li, S.-Z. & Sun, S.-Q. Unveiling Ontogenesis of Herbal Medicine in Plant Chemical Profiles by 
Infrared Macro-Fingerprinting. Planta Medica 79, 1068–1076, https://doi.org/10.1055/s-0032-1328764 (2013).

 17. Hu, W. et al. Rapid Discrimination of Different Grades of White Croaker Surimi by Tri-Step Infrared Spectroscopy Combined with 
Soft Independent Modeling of Class Analogy (SIMCA). Food Analytical. Methods 9, 831–839, https://doi.org/10.1007/s12161-015-
0258-8 (2016).

 18. Gu, D. C. et al. A rapid analytical and quantitative evaluation of formaldehyde in squid based on Tri-step IR and partial least squares 
(PLS). Food chemistry 229, 458–463, https://doi.org/10.1016/j.foodchem.2017.02.082 (2017).

 19. Zhu, L. et al. (2018) Rapid Quality Discrimination and Amino Nitrogen Quantitative Evaluation of Soy Sauces by Tri-Step IR and 
E-nose. Food Analytical Methods 11(11), 3201–3210, https://doi.org/10.1007/s12161-018-1284-0 (2018).

 20. Liu, L. et al. Preliminary study on the application of visible-near infrared spectroscopy and chemometrics to classify Riesling wines 
from different countries. Food chemistry 106, 781–786, https://doi.org/10.1016/j.foodchem.2007.06.015 (2008).

 21. Ríos-Reina, R., García-González, D. L., Callejón, R. M. & Amigo, J. M. NIR spectroscopy and chemometrics for the typification of 
Spanish wine vinegars with a protected designation of origin. Food Control 89, 108–116, https://doi.org/10.1016/j.
foodcont.2018.01.031 (2018).

 22. Ziegel, E. R. A User-Friendly Guide to Multivariate Calibration and Classification. Technometrics 46, 3 (2004).
 23. Gu, D.-C. et al. A novel method for rapid quantitative evaluating formaldehyde in squid based on electronic nose. LWT 101,  

382–388, https://doi.org/10.1016/j.lwt.2018.11.012 (2019).
 24. Urickova, V. & Sadecka, J. Determination of geographical origin of alcoholic beverages using ultraviolet, visible and infrared 

spectroscopy: A review. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 148, 131–137,  
https://doi.org/10.1016/j.saa.2015.03.111 (2015).

 25. Urbano Cuadrado, M., Luque de Castro, M. D. & Gomez-Nieto, M. A. Study of spectral analytical data using fingerprints and scaled 
similarity measurements. Analytical and bioanalytical chemistry 381, 953–963, https://doi.org/10.1007/s00216-004-2954-x (2005).

 26. Shen, F. et al. Discrimination Between Shaoxing Wines and Other Chinese Rice Wines by Near-Infrared Spectroscopy and 
Chemometrics. Food and Bioprocess Technology 5, 786–795, https://doi.org/10.1007/s11947-010-0347-z (2010).

 27. Bowers, J. E. & Meredith, C. P. The parentage of a classic wine grape, Cabernet Sauvignon. Nature Genetics 16, 84–87, https://doi.
org/10.1038/ng0597-84 (1997).

 28. Jiang, B. & Zhang, Z.-W. Comparison on Phenolic Compounds and Antioxidant Properties of Cabernet Sauvignon and Merlot Wines 
from Four Wine Grape-Growing Regions in China. Molecules 17, 8804–8821, https://doi.org/10.3390/molecules17088804 (2012).

 29. Cozzolino, D., Holdstock, M., Dambergs, R. G., Cynkar, W. U. & Smith, P. A. Mid infrared spectroscopy and multivariate analysis: 
A tool to discriminate between organic and non-organic wines grown in Australia. Food chemistry 116, 761–765, https://doi.
org/10.1016/j.foodchem.2009.03.022 (2009).

 30. Cozzolino, D., Cynkar, W., Shah, N. & Smith, P. Feasibility study on the use of attenuated total reflectance mid-infrared for analysis 
of compositional parameters in wine. Food Research International 44, 181–186, https://doi.org/10.1016/j.foodres.2010.10.043 
(2011).

 31. Zhang, Y.-l et al. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation 
spectroscopy. Journal of Molecular Structure 974, 144–150, https://doi.org/10.1016/j.molstruc.2010.03.021 (2010).

 32. Cocciardi, R. A., Ismail, A. A. & Sedman, J. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier 
transform infrared spectroscopy in the analysis of distilled liquors and wines. Journal of Agricultural and Food Chemistry 53, 
2803–2809, https://doi.org/10.1021/jf048663d (2005).

 33. Banc, R., Loghin, F., Miere, D., Fetea, F. & Socaciu, C. Romanian wines quality and authenticity using FT-MIR spectroscopy coupled 
with multivariate data analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42, 556–564 (2014).

 34. Guo, X.-X. et al. Rapid analysis and quantification of fluorescent brighteners in wheat flour by Tri-step infrared spectroscopy and 
computer vision technology. Journal of Molecular Structure 1099, 393–398, https://doi.org/10.1016/j.molstruc.2015.06.081 (2015).

 35. Zhang, X. et al. Accelerated chemotaxonomic discrimination of marine fish surimi based on Tri-step FT-IR spectroscopy and 
electronic sensory. Food Control 73, 1124–1133, https://doi.org/10.1016/j.foodcont.2016.10.030 (2017).

 36. Gan, J.-H. et al. Analysis and discrimination of ten different sponges by multi-step infrared spectroscopy. Chinese Chemical Letters 
26, 215–220, https://doi.org/10.1016/j.cclet.2015.01.012 (2015).

 37. Cozzolino, D. et al. Analysis of elements in wine using near infrared spectroscopy and partial least squares regression. Talanta 74, 
711–716, https://doi.org/10.1016/j.talanta.2007.06.045 (2008).

 38. Li, S., Wilkinson, K. L. & Cozzolino, D. The use of near infrared reflectance spectroscopy to identify the origin of oak shavings used 
in wine aging. Journal of Food Measurement and Characterization 8, 356–361, https://doi.org/10.1007/s11694-014-9196-1 (2014).

 39. Di Egidio, V., Sinelli, N., Giovanelli, G., Moles, A. & Casiraghi, E. NIR and MIR spectroscopy as rapid methods to monitor red wine 
fermentation. European Food Research and Technology 230, 947–955, https://doi.org/10.1007/s00217-010-1227-5 (2010).

 40. Industry, C. I. O. F. F. et al. Vol. GB/T 15037-2006 (General administration of quality supervision, inspection and quarantine of the 
People’s Republic of China) (2006).

Acknowledgements
This study was funded by Shanghai Pujiang Program (No. 18PJ1432600), National Key Research and 
Development Program of China (No. 2016YFD0401501), Special development fund project of China (Shanghai) 
Pilot Free Trade Zone Administration Shanghai FTZ Authority (SHFTZ No. [2016] 192), the Technology 
Standard Project of Shanghai Municipal Science and Technology Commission (No. 14DZ0501001), AQSIQ 
Project (No. 2015IK226). The authors are grateful to spiritual support from Mayday.

Author Contributions
X.Z.H. and S.Q.L. are involved in the experimental operation, statistical analysis and manuscript writing, and 
their contribution to this work is equal. X.H.L. and C.X.W. assisted in experimental research and revision of 
manuscripts. X.L.N. and X.L. helped analyze the IR datas. Y.W. developed the analytical method. Y.L. and C.H.X. 
provided research ideas for this work and helped with the design.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-44521-8.

https://doi.org/10.1038/s41598-019-44521-8
https://doi.org/10.1016/j.saa.2019.02.080
https://doi.org/10.1016/j.saa.2017.08.031
https://doi.org/10.1016/j.saa.2017.08.031
https://doi.org/10.1055/s-0032-1328764
https://doi.org/10.1007/s12161-015-0258-8
https://doi.org/10.1007/s12161-015-0258-8
https://doi.org/10.1016/j.foodchem.2017.02.082
https://doi.org/10.1007/s12161-018-1284-0
https://doi.org/10.1016/j.foodchem.2007.06.015
https://doi.org/10.1016/j.foodcont.2018.01.031
https://doi.org/10.1016/j.foodcont.2018.01.031
https://doi.org/10.1016/j.lwt.2018.11.012
https://doi.org/10.1016/j.saa.2015.03.111
https://doi.org/10.1007/s00216-004-2954-x
https://doi.org/10.1007/s11947-010-0347-z
https://doi.org/10.1038/ng0597-84
https://doi.org/10.1038/ng0597-84
https://doi.org/10.3390/molecules17088804
https://doi.org/10.1016/j.foodchem.2009.03.022
https://doi.org/10.1016/j.foodchem.2009.03.022
https://doi.org/10.1016/j.foodres.2010.10.043
https://doi.org/10.1016/j.molstruc.2010.03.021
https://doi.org/10.1021/jf048663d
https://doi.org/10.1016/j.molstruc.2015.06.081
https://doi.org/10.1016/j.foodcont.2016.10.030
https://doi.org/10.1016/j.cclet.2015.01.012
https://doi.org/10.1016/j.talanta.2007.06.045
https://doi.org/10.1007/s11694-014-9196-1
https://doi.org/10.1007/s00217-010-1227-5
https://doi.org/10.1038/s41598-019-44521-8


9Scientific RepoRts |          (2019) 9:8256  | https://doi.org/10.1038/s41598-019-44521-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-44521-8
http://creativecommons.org/licenses/by/4.0/

	Geographical origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint technology combined with chemome ...
	Results and Discussion

	Chemical analysis. 
	Tri-step IR spectral analysis. 
	IR spectra of three cabernet sauvignon wines. 
	Second derivative IR spectra of three Cabernet Sauvignon wines. 
	2DCOS-IR spectra of three cabernet Sauvignon wines. 
	PCA analysis. 
	Cluster analysis. 
	Discriminant analysis (DA). 


	Conclusion

	Experimental

	Samples and reference data. 
	Instrument. 
	Procedure. 
	Spectroscopic measurements of FT-MIR. 
	Spectroscopic measurements of FT-NIR. 
	Multivariate data analysis. 


	Acknowledgements

	Figure 1 MIR spectra of Cabernet Sauvignon wines from different countries (Chile, China and Australia) in the range of 4000~680 cm−1.
	Figure 2 Second derivative spectra of Cabernet Sauvignon wines from different countries (Chile, China and Australia) in the range of 1710~850 cm−1.
	Figure 3 2DCOS-IR synchronous spectra of Cabernet Sauvignon wines from different countries (Chile, China and Australia) in the range of 1800~850 cm−1.
	Figure 4 Score plot of the first two PCs for Cabernet Sauvignon wines from different countries (CLC: Chile CNC: China AC: Australia) based on FT-MIR spectra.
	Figure 5 Three-dimensional PCA plot for Cabernet Sauvignon wines from different countries (Australia (AC), Chile (CLC) and China (CNC)) based on NIR spectra.
	Figure 6 Classification of three Cabernet Sauvignon wines from different countries using Mahalanobis distance discriminant analysis method (□)AC (△)CLC (○) CNC.
	Table 1 Classification performance report of Calibration (C) and Validation (V) for discriminating Cabernet Sauvignon wines from different countries based on MIR.
	Table 2 Classification performance report of Calibration (C) and Validation (V) for discriminating Cabernet Sauvignon wines from different countries based on NIR.




