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The LL-100 panel: 100 cell lines for 
blood cancer studies
Hilmar Quentmeier   , Claudia Pommerenke, Wilhelm G. Dirks, Sonja Eberth, Max Koeppel, 
Roderick A. F. MacLeod, Stefan Nagel, Klaus Steube, Cord C. Uphoff & Hans G. Drexler

For many years, immortalized cell lines have been used as model systems for cancer research. Cell line 
panels were established for basic research and drug development, but did not cover the full spectrum of 
leukemia and lymphoma. Therefore, we now developed a novel panel (LL-100), 100 cell lines covering 
22 entities of human leukemia and lymphoma including T-cell, B-cell and myeloid malignancies. 
Importantly, all cell lines are unequivocally authenticated and assigned to the correct tissue. Cell line 
samples were proven to be free of mycoplasma and non-inherent virus contamination. Whole exome 
sequencing and RNA-sequencing of the 100 cell lines were conducted with a uniform methodology 
to complement existing data on these publicly available cell lines. We show that such comprehensive 
sequencing data can be used to find lymphoma-subtype-characteristic copy number aberrations, 
mRNA isoforms, transcription factor activities and expression patterns of NKL homeobox genes. These 
exemplary studies confirm that the novel LL-100 panel will be useful for understanding the function of 
oncogenes and tumor suppressor genes and to develop targeted therapies.

Human cancer cell lines form a renewable resource and are vital models for studying the cellular and molec-
ular mechanisms underlying tumorigenesis as well as for anti-cancer drug screening1,2. In particular, 
leukemia-lymphoma (LL) cell lines serve as convenient in vitro tool due to their world-wide accessibility, straight-
forward manipulability and low culture costs, providing experimental models to address a multitude of questions 
in the field of LL biology3. Indeed, the scientific benefits of utilizing LL cell lines have definitely boosted our 
knowledge on a plethora of aspects of these diseases4. Importantly, many studies contoured our appreciation of 
the suitability of LL cell lines as model systems, replicating faithfully most features of the primary cells5,6.

The National Cancer Institute (NCI) tumor cell line panel (known as NCI-60 as 60 cancer cell lines were 
assembled) was developed in the 1980s as an in vitro drug discovery tool intended to supplant animal studies in 
drug screening (reviewed in7). This screening tool was quickly appreciated as an invaluable source of information 
about the mechanisms of growth inhibition and tumor cell cytotoxicity7. Later in the 2000s, the NCI-60 panel 
transitioned from a drug-discovery pipeline to a more general research tool in support of the cancer research 
community7,8. Another panel incorporating a reduced number of cell lines of particular interest which had been 
derived from several solid tumor types was established in Japan9. These two cell line panels did not aim at one 
single cancer category but were designed to represent a variety of different tumor entities. Nevertheless, these 
sets have provided the framework for the use of defined panels of cell lines at the same time as keeping with the 
information-rich character of screens7.

The majority of studies in the arena of LL focus on a narrow number of cell lines. We realized that there is 
a need for a reference panel specialized on LL cell lines to facilitate hypothesis-driven research efforts10. We 
have assembled a panel of 100 authenticated LL cell lines that reflects the heterogeneity of the entities under 
the umbrella category of LL. In addition to well-known and commonly analyzed cell lines, this invaluable and 
publicly available platform includes additional cell lines assigned unequivocally to the various entities but with 
specific characteristics. It is hoped that this focused LL-100 cell lines panel may enhance the current scientific 
momentum, helping to fully elucidate the underlying pathology of these LL malignancies and providing an 
important and unique resource for the testing of novel therapeutic agents.

Based on data of the human genome project, high-throughput methods have boosted the knowledge of pro-
cesses in normal and malignant cells. The microarray technology showed for the first time simultaneous activities 
of thousands of genes and allowed the classification of tissues and diseases11. This approach is being steadily 
replaced by next generation sequencing technologies which comprise the sequencing of complete transcriptomes, 
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exomes and whole genomes. These applications are used in cancer research to identify aberrations in the genome, 
deregulated and mutated genes, and alternative splicing. The obtained data are helpful to classify malignancies, 
to improve existing therapies, and to identify new targets for novel therapeutic approaches12. Here, we present 
transcriptome and exome sequencing data of a panel of 100 authenticated LL cell lines (LL-100) and selected 
examples of their utilization.

Results and Discussion
Sequencing of exomes and transcriptomes of the LL-100 panel.  We performed whole exome 
sequencing (WES) and mRNA-sequencing (RNA-seq) on a panel of 100 LL cell lines representing 22 subtypes 
(Table 1). For exomic analyses over 10 million reads (2 × 151 bases) per sample were sequenced resulting in at 
least 50x coverage on a 60 MB exome size. RNA-seq yielded over 29 million (2 × 151 bases) reads per sample. 
Sequencing data have been deposited at ENA under the accession number PRJEB30297 for WES and PRJEB30312 
for RNA-seq, respectively.

Based on the analysis of WES and RNA-seq data we show the usefulness of the LL-100 panel for LL research 
in five exemplary studies.

PEL and HL cell lines cluster separate from cell lines of other B-NHL entities.  For many years, 
expression profiling has been applied to classify tumors including LL11. RNA-seq and microarray analyses show 
highly reproducible results with correlation between expression profiles13. We performed cluster analysis to test 
whether the two techniques yield comparable results also in the LL-100 panel. We analyzed gene expression of 
primary effusion lymphoma (PEL) cell lines and of cell lines from various other B-non Hodgkin lymphoma 
(B-NHL) entities as well as from Hodgkin lymphoma (HL).

Unsupervised cluster analysis showed that all PEL cell lines grouped together, separate from cell lines derived 
from activated-B-cell-like (ABC) and germinal center (GC) diffuse large B-cell lymphoma (DLBCL), mantle cell 
lymphoma (MCL), primary mediastinal B-cell lymphoma (PMBL) and from cell lines derived from HL (Fig. 1a). 
Notably, PEL and HL cell lines clustered on one arm, separate from all cell lines representing the other B-NHL 
entities (Fig. 1a). Microarray and RNA-seq data yielded identical results, confirming the suitability of both tech-
niques (Figs 1a, S1).

PEL and HL cell lines are characterized by a set of common up- and downregulated genes (Fig. S2). Prominent 
were expression of CCND2 and the absence of B-cell markers in PEL and HL cell lines. CD19, CD20 (MS4A1), 
CD24, CD79A and CD79B were expressed in all tested lymphoma entities beside PEL and HL (Fig. S2). Absence, 
low or rare expression of these “early” B-cell markers in PEL and HL has been described for both primary lym-
phoma cells and cell lines14–16.

Highly expressed in PEL – but not in HL - were CD138 (SDC1), IL-10, IL2RB, and PRDM1, all described 
as PEL-characteristic genes (Fig. 1b)17–19. Not reported hitherto was that PEL cells expressed CD96, SLAMF7, 
S100A2, S100A4 and S100A6 (Fig. 1b). RT-PCR, flow cytometry and Western blot analysis confirmed the 
PEL-associated expression of CD138, PRDM1/BLIMP1, SLAMF7 and the three S100A family genes (Fig. S3a–c).

PRDM1/BLIMP1 is a master regulator of terminal B-cell differentiation. Originally described as repressor20, 
BLIMP1 can also enhance transcription of SLAMF7 in multiple myeloma21 and of IL-10 in type 1 regulatory 
T-cells22. Thus, coexpression of the three genes in PEL suggests a causal relationship between transcriptionally 
active PRDM1 and the targets SLAMF7 and IL-10 also in this B-NHL entity. Independent of its regulation, the 
expression of SLAMF7 in PEL is remarkable because a monoclonal antibody targeting SLAMF7 (elotuzumab) 
has recently been approved for treatment of patients with multiple myeloma23. RQ-PCR analysis showed that 
SLAMF7 is comparably expressed in PEL and multiple myeloma cell lines (Fig. S4).

PEL is a rare, aggressive form of NHL, cells typically being infected with HHV-814. With a median survival 
time of six months the prognosis for PEL patients is poor24. If our cell line results can be translated to primary 
tumor cells, PEL patients might benefit from targeted therapy with elotuzumab.

Activities of hematopoietic transcription factors in leukemia-lymphoma cell lines.  Numerous 
transcription factors (TF) regulate normal hematopoiesis and their activities are precisely controlled during 
hematopoietic stem cell self-renewal and their differentiation into the diverse blood cell lineages. Consequently, 
many of these TFs emerged as proto-oncogenes or tumor suppressors because deregulation of these TFs alters 
the cellular transcriptional program eventually impairing differentiation and thus fostering malignant transfor-
mation. Aberrant activities of TFs which can be caused by a variety of direct or indirect mutations and epigenetic 
alterations, are a hallmark of cancer, including hematological malignancies25,26.

We aimed to analyze TF activities from TFs relevant for hematopoiesis across the LL-100 panel. Because the 
expression level of a TF itself barely gives information about its downstream activity27, activities of TFs were pre-
dicted via the expression levels of their direct target genes. TF activities were estimated via so-called consensus 
TF regulons (CTFRs) which have been defined recently by Garcia-Alonso et al. on the basis of diverse sources for 
human TF-target interactions28,29. For each cell line from the LL-100 panel relative TF activities were computed 
from RNA-seq data applying DoRothEA (Discriminant Regulon Expression Analysis) for CTFRs from 289 single 
TFs (Table S1). From these 289 TFs we selected 20 TFs based on their known role in hematopoiesis. The activities 
of the respective CTFRs in the LL-100 cell lines are represented in Fig. 2.

Obviously, activity patterns of several TFs within the cell lines mirror their cell of origin: PAX5 and OCT-2 
(encoded by POU2F2) are critical for B-cell development30. Accordingly, the CTFRs of these TFs showed strong 
activity in cell lines from B-cell derived malignancies but were inactive in myeloid-derived leukemias (Fig. 2). 
Other TF activities reflect the differentiation status of their respective normal counterparts: the strong activity 
of the CTFRs from GATA1 and GATA2 was highly specific for the cell lines from erythroid and megakaryocytic 
AML, CML and in cell line SET-2 (myeloproliferative neoplasm) (Fig. 2), which is in line with the role of GATA1 
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Entity Cell line
DSMZ 
ACC # Selected aberrations

Pre-B-ALL

697 42 TCF3-PBX1

KOPN-8 552 KMT2A-MLLT1

NALM-6 128

REH 22 ETV6-RUNX1; RUNX1-PRDM7

SEM 546 KMT2A-AFF1

B-NHL: Burkitt/B-ALL

BJAB 757 KMT2A-CLTC*

DAUDI 78 t(8;14)(q24;q32)

RAJI 319 IGH-MYC

RAMOS 603 IGH-MYC

VAL 586 t(8;14;18)(q24;q32;q21)

B-NHL: CLL/PLL

HG-3 765

JVM-3 18

JVM-13 19

MEC-1 497 R3HCC1L-HTRA1*

PGA-1 766

B-NHL: DLBCL ABC

NU-DHL-1 583 t(3;8)(p25;q24); t(14;18)(q32;q21)

OCI-LY3 761 IGH-SPIB

RI-1 585 t(4;8)(q22;q24); BCL2 amp

U-2932 633 t(8;14)(q24;q32) in clone R2

U-2946 795 IGH-MYC

B-NHL: DLBCL GC

DOHH-2 47 t(8;14;18)(q24;q32;q21)

OCI-LY7 688 IGH-MYC

OCI-LY19 528 t(14;18)(q32;q21)

SU-DHL-4 495 EZH2 Y646S; IGH-BCL2

SU-DHL-6 572 EZH2 Y646N; IGH-BCL2

WSU-DLCL2 575 EZH2 Y646F

B-NHL: HCL

BONNA-12 150

HAIR-M 762 IGH-TCL1A*

HC-1 301

B-NHL: MCL

GRANTA-519 342 t(11;14)(q13;q32)

JEKO-1 553 t(11;14)(q13;q32)

JVM-2 12 t(11;14)(q13;q32)

MINO 687 t(11;14)(q13;q32)

REC-1 584 t(11;14)(q13;q32)

B-NHL: PEL

BC-3 679

BCBL-1 683 MYC amp

CRO-AP2 48

CRO-AP5 215

B-NHL: PMBL U-2940 634 biallelic SOCS1 del

Multiple Myeloma/PCL

KMS-12-BM 551 t(11;14)(q13;q32)

L-363 49

LP-1 41 IGH-WHSC1*

OPM-2 50 IGH-WHSC1

RPMI-8226 402

U-266 9

Hodgkin Lymphoma

HDLM-2 17

KM-H2 8 CIITA-C15ORF65

L-428 197 EZH2 Y646S

L-1236 530 SOCS1 L150V; SOCS1 L162R

SUP-HD1 574

T-ALL/T-LL

CCRF-CEM 240 NKX2.5-BCL11B

DND-41 525 TLX3-BCL11B

HPB-ALL 483 t(5;14)(q35;q32); CBFB-MYLPF*

JURKAT 282

MOLT-4 362

RPMI-8402 290 LMO1-TRD; SIL-TAL1

Continued
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Entity Cell line
DSMZ 
ACC # Selected aberrations

Mature T-Malignancy

DERL-7 524

HH 707 FOXK2-TP63*

MOTN-1 559 TBL1XR1-TP63

NK Malignancy

KHYG-1 725

NK-92 488

YT 434

ALCL

DEL 338 NPM1-ALK

SR-786 369 NPM1-ALK

SU-DHL-1 356 NPM1-ALK

SUP-M2 509 NPM1-ALK

AML myelocytic

EOL-1 386 KMT2A PTD; FIP1L1-PDGFRA

HL-60 3

KASUMI-1 220 RUNX1-RUNX1T1

KG-1 14 FGFR1OP2-FGFR1

NB-4 207 PML-RARA

OCI-AML3 582 NPMcy type A, DNMT3A R882C

SKNO-1 690 RUNX1-RUNX1T1

AML monocytic

ME-1 537 CBFB-MYH11

MOLM-13 554 FLT3 ITD, KMT2A-MLLT3

MONO-MAC-6 124 KMT2A-MLLT3; RUNX1-ATP8A2

MUTZ-3 295

THP-1 16 CSNK2A1-DDX39B

U-937 5 MLLT10-PICALM

AML erythroid

F-36P 543

HEL 11 JAK2 V617F

OCI-M2 619 RUNX1-TSPEAR*

TF-1 334 CBFA2T3-ABHD12*

AML megakaryocytic

CMK 392 JAK3 A572V

ELF-153 693

M-07e 104 ANO7-DHDH*

MEGAL 719 SET-NUP214

MKPL-1 697 RBM6-CSF1R

UT-7 137

CML myeloid BC

EM-2 135 BCR-ABL1

K-562 10 BCR-ABL1

KCL-22 519 BCR-ABL1

KU-812 378 BCR-ABL1

LAMA-84 168 BCR-ABL1

MOLM-20 591 KMT2A-SEPT11

CML lymphoid BC

BV-173 20 BCR-ABL1

CML-T1 7 BCR-ABL1

NALM-1 131 BCR-ABL1

TK-6 723 BCR-ABL1; MAPK1-AIF1L*

MPN SET-2 608 JAK2 V617F

Table 1.  The LL-100 panel. Cell lines are available from the DSMZ cell lines bank (www.dsmz.de) which is a 
public cell line repository. The DSMZ is a non-profit research institute of the public Leibniz Association that 
is owned and subsidized by German federal and state governments. Abbreviations: ALCL, anaplastic large 
cell lymphoma; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; amp, amplification; BC, 
blast crisis; B-NHL, B-Non Hodgkin lymphoma; CLL, chronic lymphocytic leukemia; CML, chronic myeloid 
leukemia; DLBCL ABC, diffuse large B cell lymphoma activated B-cell subtype; DLBCL GC, diffuse large 
B cell lymphoma germinal center subtype; HCL, hairy cell leukemia; ITD, internal tandem duplication; LL, 
lymphoblastic lymphoma; NK, natural killer; MCL, mantle cell lymphoma; MPN, myeloproliferative neoplasm; 
PCL, plasma cell leukemia; PEL, primary effusion lymphoma; PLL, prolymphocytic leukemia; PMBL, primary 
mediastinal B-cell lymphoma; PTD, partial tandem duplication. *Yet undescribed aberrations detected in this 
study by WES or RNA-seq analysis of the LL-100 panel.
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and GATA2 in the differentiation of erythroid-megakaryocytic progenitors where alterations in their dosages are 
related to transformation31.

Other CTFR activities indicate the mutation status of hematopoietic TFs in specific entities: C/EBPα is a TF 
relevant for granulopoiesis and AML patients frequently show inactivating mutations of C/EBPα impairing final 
differentiation of the cells32. Accordingly, the activity of the CEBPA-CTFR was diminished in erythroid and meg-
akaryocytic AML cell lines compared to myelocytic and monocytic AML cell lines (Fig. 2).

Another subset of TF activities is characteristic for specific leukemia or lymphoma entities: TAL1 impairs 
T-cell differentiation and is a master oncogene in T-ALL33. Accordingly, T-ALL cell lines showed the strongest 
activity of the TAL1-CTFR (Fig. 2).

The lymphocyte specific TF LEF1 was primarily active in pre-B-ALL and CLL/PLL cell lines but rather inactive 
in T-ALL and ALCL cell lines (Fig. 2), which is in line with the current literature34–36. In addition, the LEF1-CTFR 
activity was moderately upregulated in MCL cell lines and some BL and GC-DLBCL cell lines (Fig. 2). This activ-
ity pattern seems to reflect the situation in patients because upregulation of LEF1 in subsets of B-NHL patients 
has been reported before37–39.

For 9 of the 20 hematopoietic TFs we observed a moderate positive correlation between gene expression 
levels of the TFs and their corresponding CTFR activities (Table 2, Fig. S5). Best correlations were detected for 
PU.1 (encoded by SPI1) and GATA2. However, in general hematopoietic TF activities determined via CTFRs did 
hardly correlate with gene expression levels of the TFs (Fig. S6). For example TAL1 expression was rather weak in 
cell lines from CML in blast crisis (Fig. S5), but the TAL1-CTFR activity was increased in these cell lines (Fig. 2). 
On the other hand TAL1 expression was detected in several AML cell lines on a comparable level to T-ALL cell 
lines (Fig. S5), but activity of the TAL1-CTFR was low in AML cell lines (Fig. 2). This underpins that upregulation 
of a TF alone is not sufficient to regulate its target genes. In some cases a defined CTFR (e.g. from TAL1) might 
also be regulated by further transcriptional activators or repressors.

In summary, activity scores of CTFRs are much more informative concerning the role of a TF than its tran-
script levels alone. We show that transcriptional activities in LL-100 cell lines mirror the lineage origin of hemato-
logic malignancies for a set of specific TFs (e.g. PAX5). Other TFs (e.g. GATA1) reflect the differentiation status of 
the respective normal counterpart and a third group of TFs (e.g. TAL1) depicts aberrant activities highly charac-
teristic for specific entities. In general, TF activities across all studied cell lines did rarely correlate with their gene 
expression levels. Thus, analyses of CTFR activities from RNA-seq data are a suitable tool to measure and evaluate 
the relevance of a specific TF in hematological cell lines.

Aberrant NKL homeobox gene activities in lymphoid malignancies.  Homeobox genes encode TFs 
which show basic impacts in developmental processes including embryonal development and cell differentia-
tion in the adult. Therefore, deregulation of homeobox genes generates developmental disturbances or cancer40. 
These genes are classified according to differences in their conserved homeobox and ordered into classes and 

Figure 1.  Microarray analysis of HL and B-NHL cell lines including PEL. (a) PEL cell lines (in red color) cluster 
separately from other B-NHL (in yellow color), but on the same arm as HL cell lines (in blue color). 30% of 
the most variant probe sets were taken for hierarchical clustering by average linkage. (b) PEL cell lines show 
tumor type-specific expression of genes including SLAMF7. For highest validity, the analysis was conducted 
with expression array data from LL-100 cell lines and additional cell lines. LL-100 cell lines are marked with 
an asterisk. Differentially expressed probe sets were filtered for one probe set per gene and top 50 positive and 
negative fold changes. Black: previously described PEL-specific genes; red: PEL-specific genes not described 
hitherto.
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Figure 2.  Activities of hematopoietic TFs across LL-100 cell lines according to their CTFR activity scores. 
Hierarchical clustering heatmap (distance: Euclidian; agglomeration method: complete; centered to row) of 
TF activities calculated via VIPER based on DoRothEA TF-interactions for each cell line from RNA-seq data. 
Each column represents a single cell line. Cell lines are grouped according to entities. The color code depicts the 
activity for each row-wise normalized CTFR. Bars on top of the heatmap indicate cellular origin of cell lines.

TF gene 
name

mean CTFR 
activity score

mean TF expression 
[logCPM]

Spearman correlation 
coefficient

BCL11A 2.68 3.34 0.32

CEBPA 0.16 1.23 0.28

CREB1 −0.51 6.19 −0.13

FLI1 −0.56 6.33 0.31

GATA1 −1.24 −1.31 0.55

GATA2 0.11 0.57 0.74

GATA3 −1.79 1.09 0.66

LEF1 −0.22 3.54 0.05

MEF2C 3.06 5.49 0.37

MEIS1 −0.81 1.38 0.02

NFKB1 −1.37 6.50 0.55

PAX5 2.95 2.82 0.71

POU2F1 0.06 5.91 0.27

POU2F2 2.77 4.37 0.64

RELA −0.49 6.44 0.06

RELB 2.12 4.82 0.70

SPI1 −0.78 3.31 0.75

TAL1 0.98 −0.55 0.28

TBX21 2.52 −0.64 0.55

TCF7 2.11 1.38 0.43

Table 2.  Correlation analysis between CTFR activity and gene expression levels. Correlation between CTFR 
activity and gene expression levels from 20 hematopoietic TFs across the LL-100 panel. CTFR activity scores 
were computed via VIPER based on DoRothEA interactions.
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subclasses41. The NKL subclass comprises 48 members which are involved in fundamental differentiation pro-
cesses like NKX2-1 in that of the lung and the thyroid, and NKX2-5 in the heart42,43. Normal expression patterns 
of nine NKL homeobox genes in early hematopoiesis and subsequent lymphocyte development have been iden-
tified and termed hematopoietic NKL-code44,45. According to this code, T-cells silence all NKL homeobox genes 
during their thymic development while mature NK-cells maintain expression of MSX1 and mature B-cells HHEX 
or NKX6-344–46. Alterations of the NKL-code may underlie the generation of particular hematopoietic malignan-
cies. According to this notion, 24 NKL homeobox genes are reported to date for aberrant activity in T-cell acute 
lymphoblastic leukemia (T-ALL), mediating differentiation arrest and transformation44,47,48.

Using the LL-100 transcriptome dataset we here screened NKL homeobox gene activities in cell lines and 
show some results for selected lymphoid entities. To discriminate active and inactive genes we have set a cut-
off at 500 normalized counts. Accordingly, aberrant activation of particular subclass members was detected 
in immature T-ALL but not in mature T-cell lines (Fig. 3a). This finding supported the observation that NKL 
homeo-oncogenes provoke an arrest in differentiation which plays a role in immature thymocytes but obviously 
not in mature T-cells. Furthermore, MSX1 is an oncogene in T-ALL and a tumor suppressor in NK-cells46,49, 
showing accordingly reduced activity in NK-cell leukemia cell lines (Fig. 3a). Thus, these data confirm pub-
lished deregulated NKL homeobox genes including MSX1, NKX2-5, NKX3-1 and TLX3 in T-cell and NK-cell 
leukemia. Moreover, our RNA-seq data indicated elevated NKX2-1 expression in T-ALL cell line RPMI-8402 
(Fig. 3a). Aberrant activation of NKX2-1 has been identified in T-ALL patients by chromosomal translocation, 
representing thus an additional clinically relevant oncogene50. Subsequent RQ-PCR analysis confirmed NKX2-1 
activity in this cell line (Fig. 3b). Of note, chromosomal and genomic analyses indicated absence of a translocation 
or an amplification targeting NKX2-1 in RPMI-8402 cells (data not shown). Therefore, this cell line may represent 
a model to examine alternative upstream and novel downstream factors of NKX2-1 in T-ALL.

In normal B-cell development NKL homeobox genes HHEX and NKX6-3 are the only subclass members 
active in developing naïve and germinal center B-cells, and in mature memory B-cells and plasma cells while 
B-cell progenitor (BCP) cells additionally express HLX and MSX144,45. Our data show that malignant BCP-ALL 
cell lines lack activity of HLX, MSX1 and NKX6-3 (except SEM) (Fig. S7), showing fundamental changes in the 
normal expression pattern of NKL homeobox genes. Furthermore, three of five cell lines aberrantly expressed 
HMX2 or HMX3. The activity of these genes was confirmed by RQ-PCR in the indicated cell lines (Fig. 3c). 
Moreover, HMX2 overexpression was detected in 13% of 229 BCP-ALL patients by analysis of public dataset 
GSE79533 (Fig. 3c), supporting the clinical relevance of this finding. Thus, HMX2 (and HMX3) may represent 
NKL homeobox genes primarily deregulated in this type of B-cell malignancy, serving as diagnostic marker and/
or therapeutic target.

In DLBCL cell lines we detected silencing of HHEX (in OCI-LY7 and RI-1) and NKX6-3 (except DOHH-2) 
and aberrant activation of HLX (NU-DHL-1) and NKX3-1 (OCI-LY3) (Fig. S7). Of note, these data did not show 
significant differences between ABC- and GC-DLBCL cell lines, suggesting that NKL homeobox genes do not 
play a role in the discrimination of these disease subtypes. Surprisingly, PEL and MM cell lines (except RPMI-
8226 expressing BARX2) demonstrated complete absence of NKL homeobox gene activity (Fig. S7). Therefore, 
NKL subclass members may operate as basic tumor suppressors in these particular B-cell lymphoma types. The 
malignant cells of both PEL and MM are derived from mature B-cells suggesting that in final stages of develop-
ment NKL homeobox genes lose their oncogenic potential. Finally, the lack of B-cell specific NKL homeobox 
gene activity in PEL is in accordance with reported downregulation of general B-cell factors as indicated above 
(Fig. S2)15. Together, deregulation of NKL homeobox genes in B-cell malignancies is more important than hith-
erto expected. The identified cell lines may serve as models to investigate the role of these genes in the indicated 
tumor entities. Thus, the LL-100 datasets allow the identification of cell line models for the examination of dereg-
ulated NKL homeobox genes in particular disease entities. The expression patterns of this fundamental gene sub-
class in cell lines reflect the situation observed in normal lymphocytes and in primary tumor cells, highlighting 
the significance of these cell line data for cancer research.

Copy number alterations and their effect on gene expression in DLBCL.  DLBCL shows a high 
degree of genetic diversity with unique molecular patterns including varying occurrences of copy number altera-
tions (CNAs), resembling the different states of B-cell maturation they derive from and which is also reflected by 
the diverse clinical outcome51–54.

To evaluate such alterations and to test if differences in the molecular subtypes are maintained in culture, we 
used WES data generated in our study to call CNAs in DLBCL derived cell lines. In ABC and GC DLBCL, we 
identified on average 157 (+/−29) and 129 (+/−12) CNAs, respectively, with a size >10 kb (Fig. 4a and Table 3). 
While amplification of both arms of chr7 occurs frequently in both subtypes, certain events like the 6q-deletion 
seem to occur more often in the ABC-subtype. Intending to compare the identified events to primary tumors, we 
took a recently published set of significantly recurrent CNAs in DLBCL which described a total of 45 recurring 
focal events (14 amplifications and 31 deletions) in 304 patients55. Of those CNAs, we find 38 (84%) in at least one 
cell line, including all focal amplifications (Fig. 4a and Table S2).

Similarly, of the 20 arm-level alterations described, 10 out of 18 amplifications and both recurrent deletions 
are present in one or more cell lines (Table S2). Of particular interest are subtype specific alterations, possibly 
reflecting different mutational processes during tumor development. Therefore, we assessed such specific events 
by integrating another set of ABC- or GC-related CNAs56 and found 83% of patient-derived events in our cell 
lines (15 out of 18; Table S2). In addition to the previously observed 6q-deletion, we could confirm a preferen-
tially occurring gain of 18q22-q23 in ABC-DLBCL cell lines (3/5 ABC-DLBCL cell lines and 0/6 cell lines of the 
GC-subtype). Also, we find the deletion of the far end of 1p36 exclusively in 4/6 GC-DLBCL cell lines (Fig. 4b).

While CNAs can serve as diagnostic markers, their main impact results from associated changes in 
gene expression. We therefore compared the expression of all affected genes in a DLBCL-subtype specific 
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manner, identifying around 20,000 genes to be affected by CNAs across all cell lines. Although we observe lit-
tle overall changes for the majority of genes, several outliers are present in each cell line (Fig. S8). To identify 
CNA-deregulated genes important for disease progression, we filtered for those genes included in the COSMIC 

Figure 3.  Expression data of 48 NKL homeobox genes in selected cell lines. (a) The indicated tables show 
expression levels of 48 NKL homeobox genes in six immature T-ALL cell lines (left), in two cell lines derived 
from mature T-cell malignancies (middle), and three NK-cell leukemia cell lines (right). The listed values are 
normalized counts (reads) obtained by DESeq2 calculation. Overexpressed or downregulated gene activities 
are highlighted by red or green boxes, respectively. (b) RQ-PCR analysis of selected T-ALL cell lines shows 
elevated NKX2-1 expression levels in RPMI-8402 cells (above). The indicated box plot (below) shows NKX2-1 
expression levels in 117 T-ALL patient samples obtained from GSE26713. Outliers indicate samples with NKX2-
1 overexpression. (c) RQ-PCR analysis in selected BCP-ALL cell lines shows elevated expression levels of HMX2 
in 697 cells and of HMX3 in SEM cells (above). The indicated box plot (below) shows HMX2 expression levels in 
229 BCP-ALL patient samples obtained from GSE79533. Outliers indicate samples with HMX2 overexpression.
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Figure 4.  Copy Number Alterations (CNAs) and their impact on gene expression in DLBCL cell lines. (a) 
Circos plots depict the landscape of CNAs in cell lines of DLBCL subtypes ABC-DLBCL (left) and GC-DLBCL 
(right). Chromosome 1–22 are shown with the copy number gains in red and deletions in blue, the cell lines 
analyzed are indicated. The inner ring displays significant CNAs identifed in patients from Chapuy et al.55. Red 
and blue boxes highlight individual regions with gains or deletions, respectively that are common to patients 
and cell lines. (b) Examples of DLBCL-subtype specific alterations. Region of 18q22-q23 preferentially amplified 
in ABC-DLBCL (left) and 6q deletion in the GC-subtype (right) are shown for the indicated cell lines. DLBCL 
cell lines of the ABC-subtype are shown in red, those of GC-origin in blue, the respective copy number is shown 
on the left. Each dot resembles one exon from WES, the black line denotes 2n – normal copy number state. 
(c) Expression of COSMIC cancer genes affected by CNAs in ABC- and GC-DLBCL cell lines, left and right, 
respectively. All genes with expression change >1.5 are shown either in red or light blue, labeled are those that 
have been described as deregulated in a patient cohort by Chapuy et al.55.
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Cancer Gene Census database57. Depending on the cell line, we find 25 (OCI-LY7) to 252 (OCI-LY3) of the 
COSMIC genes located in regions of CNA (Table S3), with 10 (DOHH-2) to 121 (OCI-LY3) showing changes 
in expression >1.5, concordant with the respective CN change (Fig. 4c). Several of these genes have been con-
firmed deregulated in patient derived RNA-seq data55, which we also find associated with the corresponding 
CNA, e.g. BCL2 and KDSR on chr18. Interestingly, we also find PRDM1 and FOXO3 to show reduced expression 
in ABC-DLBCL cell lines harboring a deletion of 6q21. This deletion has been described to be ABC-subtype 
related in an earlier study53. Nevertheless, these authors did not identify potential tumor-relevant genes in this 
deleted region53.

In summary, we exemplarily identified CNAs in cell lines derived from both DLBCL-subtypes and character-
ized the associated expressional changes. We find a high degree of similarity towards data from primary tumors 
and highlighted which cancer-relevant genes become deregulated in the individual cell lines.

This analysis (i) characterizes CNAs in cell lines of the two major DLBCL-subtypes and shows how they reca-
pitulate recurring events from patients, (ii) allows the identification of those genes that are deregulated by CNAs 
and likely have a disease-relevant function and (iii) by doing so enables the selection of appropriate models for 
further molecular research related to DLBCL. Furthermore, we believe that this kind of analysis is applicable to 
other entities and that thereby valuable models for those entities can be obtained.

Tissue-specific RNA isoforms.  Allowing different combinations of exons, alternative splicing leads to the 
production of multiple mRNA isoforms of the same gene, often resulting in proteins of different functionality58. 
More than 90% of human genes are affected by alternative splicing59,60. Tissue-specific splice factors together with 
ubiquitious RNA binding factors cooperate to generate tissue-specific RNA isoforms59. The existence of different 
promoters can also lead to different N-terminal RNA variants.

The RNA-seq data of the LL-100 panel allowed us to find RNA isoforms that specify different hematopoetic 
lineages. Bioinformatic analysis identified genes with tissue-specific exons, e.g. LIMS1 in myeloid vs T-cell lines 
(Fig. S9). Two N-terminal variants of LIMS1 were expressed in myeloid cell lines, only one of them in T-cell lines 
(Fig. S9). These results were confirmed by RT-PCR and validated with a second cell lines cohort (Figs 5, S10). 
Altogether, data from 18 AML and from 17 T-ALL cell lines revealed that the two groups could be distinguished 
on the basis of LIMS1 exon 1 expression (NM_001193488) with a sensitivity of 1 and a specificity of 1.

In sum, our data show that RNA-seq analysis allows detection of cell lines from different lineages on the basis 
of alternatively expressed exons.

ABC subtype Gains Deletions Total events

NU-DHL-1 109 20 129

OCI-LY3 139 44 183

RI-1 133 27 160

U-2932 150 37 187

U-2946 94 32 126

GC subtype Gains Deletions Total events

DOHH-2 94 14 108

OCI-LY7 104 22 126

OCI-LY19 100 28 128

SU-DHL-4 123 21 144

SU-DHL-6 110 29 139

WSU-DLCL2 95 32 127

Table 3.  Chromosomal gains and losses in ABC and GC DLBCL. Cell lines were grouped according to ABC- 
or GC- subtype, total number of CNAs, and gains and losses. CNAs were called with control-FREEC using the 
B-lymphoblastoid cell line NC-NC as normal control. Neighbouring alterations with identical copy number 
were fused and CNAs <10 kb were omitted.

Figure 5.  Expression of N-terminal LIMS1 exons in myeloid and T-cell lines. RT-PCR analysis reveals 
expression of LIMS1 (NM_001193488) exon 1 in myeloid cell lines only, expression of LIMS1 (NM_001193483) 
exon 1 in myeloid cell lines and in T-cell lines. Data were confirmed in a second validation cohort (Fig. S10).
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Conclusion
One goal of personalized medicine in cancer medicine is the development of targeted therapies aiming to reverse 
detrimental effects of mutated or deregulated genes. The costs of sequencing technologies will presumably soon 
be low enough to allow routine diagnostics detecting genetic alterations for classification of the patient’s tumor 
and determining treatment strategies.

Immortalized tumor cell lines have been used for a long time to understand the molecular and cellular func-
tion of mutated genes and to develop new drugs. However, the cell line panels established hitherto did not rep-
resent most forms of leukemia and lymphoma7,9. Thus, the NCI-60 human cell line panel developed for use in 
drug development comprises sixty human cancer cell lines derived from nine different tissues7. Only six cell lines 
(CCRF-CEM, HL-60, K-562, MOLT-4, RPMI-8226, SR-786) represent tumors of the blood.

Covering 22 leukemia and lymphoma entities we present the novel LL-100 panel, 100 cell lines for use in basic 
research and drug development. The selected cell lines of this panel are authenticated and free of contamination 
by mycoplasma or non-inherent viruses. Furthermore, the methods of RNA- and DNA isolation and sequencing 
are identical in all cell lines. Therefore, this dataset allows comparative studies without methodical impact. We 
performed WES and RNA-seq analysis for all 100 cell lines. In exemplary studies, we show that lymphoma enti-
ties can be identified by gene expression analysis and splice variant analysis. WES analysis documented that copy 
number aberrations in DLBCL cell lines reflects the situation in primary tumor cells and may lead to the identi-
fication of potential oncogenes. RNA-seq analysis identified tumor entity-specific activities of CTFRs, demon-
strating the usefulness of cell lines as model systems for transcription factor research. Finally, RNA-seq analysis 
specified aberrant activities of NKL homeobox genes.

All data and cell lines are publicly available. As demonstrated exemplarily in this study, the sequencing data 
can be used for various approaches. We hope that the novel LL-100 panel described here will stimulate many 
studies in the field of leukemia and lymphoma research.

Methods
Cell lines.  Cell lines were taken from the stock of the cell lines bank (Leibniz Institute DSMZ – German 
Collection of Microorganisms and Cell Cultures). Cell lines were authenticated by DNA profiling and cytogenet-
ics. Detailed references and cultivation protocols have been described previously3.

RNA-sequencing analysis.  Total RNA was extracted via miRNeasy Mini Kit (Qiagen, Hilden, Germany) 
including DNase digestion. Library preparation and sequencing steps were commissioned to GATC Biotech 
(Cologne, Germany). The GATC pipeline included the production of strand-specific (fr-first strand) mRNA 
libraries, quality control via Applied Biosystems Fragment Analyzer and Nanodrop, concentration measurement 
via Qubit fluorometer. The libraries were sequenced on Illumina HiSeq2500 (2 × 151 cycles, paired end run, 8 bp 
dual indices) with >29 million reads per sample and deposited at ENA (PRJEB30312). Reads were trimmed via 
fastq-mcf (ea-utils 1.04.807). Reads were quality controlled via FastQC (www.bioinformatics.babraham.ac.uk/
projects/fastqc). Reads were aligned by STAR (2.5.3a)61 to the Gencode Homo sapiens genome (v26) and con-
verted/sorted via samtools (0.1.19)62. Counting the reads to each gene was done via HTSeq-count python script 
(0.8.0)63. Data was processed and analyzed in the R/Bioconductor environment (3.3.2/3.3, www.bioconductor.
org). Normalization, estimation of dispersions, and testing for differentially expressed genes based on a test 
assuming negative binomial data distribution was computed via DESeq264.

Differential isoforms between given cell line groups were detected by JunctionSeq (JunctionSeq_1.4.0)65.

Whole exome sequencing analysis.  DNA was isolated with the High Pure PCR Template Preparation Kit 
(Roche Diagnostics, Mannheim, Germany). Library preparation (Agilent SureSelect Human All Exon V6, 60 MB) 
and sequencing steps (2 × 151 bp + 8 bp barcoding, HiSeqX) were commissioned to Genewiz (Leipzig, Germany) 
and deposited at ENA (PRJEB30297). Insert lengths were aimed to be higher than 250 bp in order to increase 
coverage and uniformity in coding regions66.

Reads were aligned by STAR (2.5.3a)61 to the human gencode genome (v26). Subsequently, alignment files 
were processed (samtools 0.1.19), duplicates removed (picard 2.9.2, www.broadinstitute.github.io/picard/), and 
variants called via GATK tools (3.7, Haplotypecaller)67 and overlapping VarScan (v2.4.3)68 results. Mutation 
effects were annotated via Ensembl VEP (release-84, GRCh38)69. Data were processed and analyzed in the R/
Bioconductor environment (3.3.2/3.3). Overlapping single nucleotide variations via Haplotypecaller and VarScan 
were filtered for >=20 quality, >=10 depth, >=0.2 allele frequency, <0.01 MAF, missense/frameshift/stop 
gained mutations.

For identifying copy number alterations (CNA) in DLBCL cell lines control-FREEC70 (v11.0) was applied on 
the duplicate-clean alignment files with NC-NC as normal cell control. Neighboring regions with identical CN in 
the disperse whole exome data were fused to one region and CN regions below 10 kb were omitted and visualized 
via circos71 (0.67–7). Individual regions and genes of interest were plotted with the R/bioconductor packages 
ggplot2 (3.1.0) and Gviz (1.22.3).

Expression array analysis.  Profiling of gene expression was commissioned to the Genome Analytics 
Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany. 500 ng total RNA were used 
for biotin labelling according to the 3′ IVT Express Kit (Affymetrix, Santa Clara, CA, USA). 7.5 µg of biotinylated 
cDNA were fragmented and placed in a hybridization cocktail containing four biotinylated hybridization con-
trols (BioB, BioC, BioD, and Cre). Samples were hybridized to an identical lot of Affymetrix GeneChip HG-U133 
Plus 2.0 for 16 h at 45 °C. Steps for washing and SA-PE staining were processed on the fluidics station 450 using 
the recommended FS450 protocol (Affymetrix). Image analysis was performed on GCS3000 Scanner and 
GCOS1.2 Software Suite (Affymetrix). For data analysis spot intensities were RMA-background corrected and 
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quantile normalized. Data processing was done via R/Bioconductor (3.2.2) using limma and affy packages72,73. 
Differentially expressed genes between PEL and Non-PEL cell lines were identified via moderated t-statistics (R, 
limma) setting p < 0.05 and log fold changes >1. For hierarchical cluster analysis (average linkage) 30% of the 
most varying probe sets served as basis for the distance matrix (1-correlation) and visualised via the R package 
hdust.

Public expression profiling datasets used in this study were generated by U133 Plus 2.0 gene chips from 
Affymetrix and obtained from Gene Expression Omnibus (GEO, www.ncbi.nlm.nih.gov). This type of profiling 
gene chip contains 37 probes of the 48 known human NKL homeobox genes, excluding HMX3. We analyzed 
datasets GSE26713 and GSE79533 for T-ALL and BCP-ALL patients, respectively. Expression values were given 
as boxplots using R-packages. Outliers were interpreted as samples showing aberrant overexpression.

Analysis of TF activities.  Relative TF activities were computed from RNA-seq data with DoRothEA v2 
via VIPER74 for CTFRs with a TF-target score of high confidence (A), likely confidence (B), and medium confi-
dence (C)29. For this, gene expression data were prepared similarly as described28: (i) lowly expressed genes were 
discarded, defined as those with an average CPM < 1 (counts per million) and prior count of 3; (ii) data were 
TMM (trimmed mean of M-values) normalized using calcNormFactors function described in limma; (iii) fitted 
log2 CPM were extracted and finally tested for transcriptional activity via VIPER in R/Bioconductor (3.4.4/3.6). 
Transcriptional activity and gene expression heatmaps were vizualised via gplots (R-package).

Quantitative real-time PCR analysis and detection of splice variants.  RNA was prepared using 
the RNeasy Mini kit (Qiagen). For mRNA quantification, reverse transcription was performed using the 
SuperScript II reverse transcriptase kit (Invitrogen, Karlsruhe, Germany). PCR was performed on a 7500 Applied 
Biosystems (Darmstadt, Germany). TaqMan probes (Applied Biosystems) were used to quantify human CCND2 
(Hs00153380_m1) CD20/MS4A1 (Hs00544819_m1), CD96 (Hs00175524_m1), CD138 (Hs00896424_g1), 
HMX2 (Hs01394375_m1), HMX3 (Hs01392772_m1), IL-10 (Hs00961622_m1), NKX2-1 (Hs00163037_m1), 
PRDM1 (Hs00153357_m1), S100A2 (Hs00195582_m1), S100A4 (Hs00243202_m1), S100A6 (Hs00170953_m1) 
and SLAMF7 (Hs00900280_m1) using TBP as endogenous control. Relative expression levels were calculated 
using the ΔΔCt method.

Primers and RT-PCR conditions for detection of splice variants of LIMS1, RABGAP1L and TFEC are shown 
in Table S4.

Cell surface marker analysis.  For immunophenotyping, cells were washed and incubated for 30 min at 4 °C 
with antibodies (Ab) against CD319/SLAMF7 (#331802, BioLegend, Koblenz, Germany), CD138 Ab (#551902, 
Becton Dickinson, Heidelberg, Germany) and appropriate isotype controls (BD Biosciences). Subsequently, 
cells were treated with FITC conjugated anti-mouse secondary Ab (Biozol, Eching, Germany) and propidium 
iodide (PI) (Sigma-Aldrich). Labeled cells were analyzed on a FACSCalibur (BD Biosciences) using CellQuest 
Pro software.

Western blot analysis.  Samples were prepared as described previously75. Anti BLIMP1 (#9115), CCND2 
(#3741S), S100A4 (#13018S), S100A6 (#13162S) Abs were purchased from Cell Signaling (New England Biolabs, 
Frankfurt, Germany). Anti GAPDH (ab8245) and anti S100A2 (ab 109494) Abs were from Abcam (Cambridge, 
UK). Specific bands on nitrocellulose membranes were visualized with the biotin/streptavidin-horseradish 
peroxidase system (GE Healthcare, Little Chalfont, UK) in combination with the “Renaissance Western Blot 
Chemoluminescence Reagent” protocol (Perkin Elmer, Waltham, MA, USA).

Data Availability
Sequencing data have been deposited at ENA under the accession number PRJEB30297 for WES and PRJEB30312 
for RNA-seq, respectively. The ArrayExpress accession IDs are E-MTAB-7722 (WES) and E-MTAB-7721 (RNA-seq).
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