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Metabolic Characteristics of a Novel 
Ultrasound Quantitative Diagnostic 
Index for Nonalcoholic Fatty Liver 
Disease
Yin-Yin Liao1, Chih-Kuang Yeh2, Kuo-Chin Huang3,4,5, po-Hsiang tsui6,7,8 & Kuen-Cheh Yang3,5

Nonalcoholic fatty liver disease (NAFLD) is an emerging epidemic worldwide and is regarded as a 
hepatic manifestation of metabolic syndrome (Mets). only a few studies have discussed the biological 
features associated with quantitative assessment of ultrasound for characterizing NAFLD. our aim 
was to delineate relevant metabolic characteristics using a new quantitative tool, the ultrasound 
quantitative diagnostic index (QDI). A total of 394 ultrasound data were analyzed to extract texture-
feature parameters, the signal-to-noise ratio (sNR), and the slope of the center frequency downshift 
(CFDs) for determining the QDI. the texture index, sNR, and CFDs slope were all negatively 
correlated with high-density lipoprotein and positively correlated with other anthropometric indices 
and metabolic factors (all P < 0.05). The SNR had the greatest contribution to anthropometric and 
biochemical factors, followed by the texture index and CFDS slope. An increase in 1 unit of QDI score 
engendered a 9% higher risk of MetS, reflecting that the tool is feasible for use in identifying MetS (area 
under the receiver operating characteristic curve: 0.89). The QDI was correlated with metabolic factors 
and an independent predictor for Mets. thus, this QDI might be a feasible method for use in clinical 
surveillance, epidemiology research, and metabolic function evaluations in patients with NAFLD.

Nonalcoholic fatty liver disease (NAFLD), characterized by excess triglyceride (TG) accumulation within hepat-
ocytes, is considered to be the most common chronic liver disease. NAFLD encompasses a spectrum of diseases 
ranging from simple steatosis to steatohepatitis, advanced cirrhosis, and hepatocellular carcinoma1. Furthermore, 
NAFLD has been linked to metabolic abnormalities including abdominal obesity, diabetes mellitus, hypertension, 
and hyperlipidemia, and it is a hepatic manifestation of metabolic syndrome (MetS)2,3.

Although the histologic severity of NAFLD is associated with some components of MetS, the liver biopsy 
procedure is invasive and can cause sampling errors and severe complications4–6. Therefore, a liver biopsy is not 
appropriate for the evaluation or follow-up of NAFLD in usual clinical care. Increasing numbers of studies, such 
as large-scale screenings for NAFLD, have noted the need for a convenient and reliable surveillance tool7–10. 
Specifically, a noninvasive and accessible method of quantifying liver fat content would be useful in research 
and in the clinical field. Magnetic resonance spectroscopy (MRS) has emerged as a reliable means of identifying 
metabolic disorders11,12. Nevertheless, MRS is a relatively costly and time-consuming procedure. Ultrasound is 
accepted as a tool for initial NAFLD screening because of its widespread availability and safety. Several prediction 
models based on MetS features have been proposed for ultrasound diagnosis of NAFLD13–16. However, applica-
tions of ultrasound for NAFLD classification are limited by visual inspection and operator dependency, which 
result in only fair agreement with MetS components.
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Quantitative assessments of ultrasound findings have been investigated with the aim of producing an objective 
method for diagnosing NAFLD. Analyses of ultrasound B-mode image texture statistics and ultrasound radi-
ofrequency signals have been widely used to classify liver abnormalities17–20. Within the extensive literature on 
quantitative ultrasound diagnosis of NAFLD, little research has focused on the relationships between metabolic 
factors, liver function tests, and quantitative ultrasound parameters.

In our previous study, we developed a new ultrasound quantitative diagnostic index (QDI) for detecting small 
changes in the characteristics of liver fat and enhancing the means of grading NAFLD severity21. Because NAFLD 
and MetS exhibit common interactions and pathogenic mechanisms22,23, the current study was conducted to 
explore the correlations between the parameters of QDI and metabolic findings (Fig. 1). The quantitative ultra-
sound parameters representing biological manifestations could be used in clinical surveillance and epidemiology 
to reflect the nature of metabolic disarrangement in NAFLD.

Materials and Methods
participants. All voluntary participants were recruited from Hsinchu City, Taiwan, and asked to complete 
a standardized questionnaire that elicited information concerning the exclusion criteria of excessive alcohol use 
(>20 g/day for women and >30 g/day for men) and chronic liver disease (including chronic hepatitis carrier, 
autoimmune, drug-induced, vascular and inherited hemochromatosis, and Wilson disease). In total, 394 individ-
uals older than 20 years were enrolled in this study. Informed written consent was obtained from all participants. 
Physical examination, anthropometric measurements, biochemical blood analyses, and abdominal ultrasound 
were performed on the same day. The study was conducted in accordance with the Declaration of Helsinki, 
and the study protocol was approved by the Institutional Review Board of National Taiwan University Hospital 
(approval number, IRB#201210012RIC).

Anthropometric indices and biochemical analyses. Routine physical examinations were used to col-
lect anthropometric and metabolic data. Body mass index (BMI) was calculated as weight (kg) divided by height 
(m) squared. Waist circumference (WC) was measured midway between the costal margin and iliac crests. Values 
of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded (mmHg). Fasting plasma 
glucose (FPG), total cholesterol (TCHO), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein 
cholesterol (LDL-C), alanine aminotransferase (ALT), and TG were examined after participants had fasted for 
8 hours overnight. Body fat percentage (FATPER) and visceral fat (visceral fat rating, VFR, with range 1–59) were 
assessed using bioelectrical impedance analysis (Tanita MC980). Insulin resistance was measured using the home-
ostasis model assessment of insulin resistance (HOMA-IR) developed by the Diabetes Trials Unit at the Oxford 
Center for Diabetes, Endocrinology, and Metabolism (avail- able at http://www.dtu.ox.ac.uk/homacalculator).

Definition of MetS. MetS was defined according to the modified National Cholesterol Education Program 
Adult Treatment Panel III Criteria, which have been used in numerous published studies of the Taiwanese popula-
tion. Diagnosis required fulfillment of at least three of the following criteria: (1) WC ≥90 cm in men and ≥80 cm 
in women; (2) SBP ≥130 mmHg, DBP ≥85 mmHg, or use of medications for hypertension; (3) hyperglycemia 
(FPG ≥5.5 mmol/L) or use of medications for diabetes; (4) hypertriglyceridemia (TG ≥1.69 mmol/L) or use of 
medications for hyperlipidemia; and (5) low HDL-C (≤0.45 mmol/L in men and ≤0.56 mmol/L in women).

Abdominal ultrasound scanning. Three research physicians with more than 20 years of experience per-
formed the ultrasound sonography procedures in this study. All physicians determined and followed the ultra-
sound scanning protocol used to acquire images of the liver. A portable clinical ultrasound scanner (Model 3000, 
Terason, Burlington, MA, USA) equipped with a 3.5-MHz central frequency convex-array transducer (Model 
5C2A, Terason) was used as a system platform. The transducer contained 128 elements and had a pulse length of 
approximately 2.3 mm. The instrument settings were standardized for the imaging of all participants. For each 

Figure 1. Interrelationship between metabolic syndrome and ultrasound quantitative diagnostic index used 
for non-alcoholic fatty liver disease (NAFLD) detection. Abbreviations: BMI: body mass index; WC: waist 
circumference; SBP: systolic blood pressure; DBP: diastolic blood pressure; FATPER: fat percentage; VFR: 
visceral fat rating; FPG: fasting plasma glucose; TCHO: total cholesterol; TG: triglycerides; HDL-C: high-
density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; ALT: alanine aminotransferase; 
HOMA-IR: homeostasis model assessment of insulin resistance.
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patient, a standard abdominal ultrasound examination was performed. Additionally, the subcostal scanning 
approach was used to perform quantitative analysis because of avoiding any bowel or ribs shadowing over the 
liver. Then, the liver section was selected by the expert physician so as contain only liver parenchyma with no 
major blood vessels.

The software kit provided by Terason was used to acquire the raw data comprised 128 scan lines of backscat-
tered signals at a sampling rate of 30 MHz. The backscattered signals were demodulated using the absolute value 
of the Hilbert transform to obtain the envelope image. A B-mode image at a dynamic range of 40 dB was formed 
by the log-compressed envelope image. MATLAB software (MATLAB, version R2015b; Mathworks, Natick, 
Mass) was used in image processing and quantitative analyses.

Ultrasound QDI. Texture-feature parameters, the signal-to-noise ratio (SNR), and the slope of the center 
frequency downshift (CFDS) were combined to produce the QDI. The texture-feature parameters were extracted 
based on a gray level co-occurrence matrix (GLCM) and represented the quantified homogeneity and hetero-
geneity of the B-mode image21. GLCM obtained three texture-feature parameters which uncorrelated and have 
typical characteristics of texture analysis, that is autocorrelation (AC), sum average (SA), and sum variance (SV). 
The AC was a measure of gray level linear dependencies in the B-mode image. The SA and SV quantified the 
mean and extent of the gray level sum histogram, respectively; the former indicated the homogeneous brightness 
of the B-mode image, and the latter described the dispersion (with regard to the mean) of the B-mode image. 
We incorporated linear discriminant analysis (LDA) algorithm to implement a linear combination of the three 
texture-feature parameters and generate the LDA-texture index. The LDA-texture index described the degree of 
coarse liver echotexture.

The SNR was defined as the root mean square of the ultrasound envelope divided by the root mean square of 
the noise21. The SNR quantified the degree of arrangement and concentration in scatterers; it increased as a liver 
echogenicity becomes brighter. The CFDS was determined as the ratio of the estimated center frequency and 
the center frequency of the transducer21. The estimated center frequency was the midpoint of the power spectral 
distribution, and it was calculated from the full width at half maximum in the power spectrum. The ultrasound 
CFDS image was formed by moving small windows around each pixel area to obtain local CFDS values until 
the entire envelope image has been scanned. Linear regression was applied to measure the CFDS slope in the 
ultrasound CFDS image, and the diffraction was neglected with assuming the constant slope of CFDS along the 
selected depth. The slope of CFDS was approximately proportional to the attenuation coefficient because of a 
linear correlation between the center frequency and attenuation coefficient. The CFDS slope represented poste-
rior attenuation of the deep liver parenchyma. The tertiles of the LDA-texture index, SNR, and CFDS slope were 
scored as 0, 1, and 2, respectively. Their scores were then summed to determine the total QDI, which ranged from 
0 to 6. For additional details, see the description of our recent study21.

statistical analysis. Categorical data are presented as percentages, and continuous variables are presented 
as mean ± standard deviation. Trend analysis and the Cochran–Armitage trend test were used to test for trends 
in the continuous and categorical variables among the tertiles of the LDA-texture index, SNR, and CFDS slope. 
The correlation between each ultrasound quantitative parameter and the anthropometric and metabolic fac-
tors was assessed using the Pearson correlation coefficient (r). To assess the individual contribution of the three 
parameters for the metabolic factors, we established a multiple regression model with the LDA-texture index, 
SNR, and CFDS slope as independent covariates and the metabolic factors as dependent variables. The regression 
coefficient (β) of each quantitative parameter represented its contribution to the metabolic factors. Moreover, the 
association between MetS and the QDI was measured using a multiple logistic regression model with adjustments 
for age, sex, smoking, alcohol consumption, betel nut chewing, exercise time per week, menopause (women only), 
and HOMA-IR. Ability to distinguish MetS was assessed by the areas under the receiver operating characteristic 
curves (AUCs). A probability value (P) of <0.05 was considered statistically significant. SAS software (SAS Inc., 
version 9.3, Cary, NC, USA) was utilized for statistical analyses.

Results
In total, 394 participants comprising 151 men and 243 women aged 40.5 ± 11.3 years (mean ± standard devia-
tion) were recruited. They were middle adult (40.5 ± 11.3 yrs) with overweight (BMI = 24.1 ± 4.6). Supplementary 
Table 1 showed the details of anthropometric and metabolic values of all participants. The characteristics of the 
participants were classified into tertiles according to the LDA-texture, SNR, and CFDS slope (Table 1). The partic-
ipants’ age was not significantly associated with the LDA-texture index or CFDS slope but was significantly asso-
ciated with the SNR (P = 0.0028). The observed BMI, WC, SBP, DBP, FATPER, VFR, FPG, TCHO, TG, LDL-C, 
HOMA-IR, and ALT increased with the LDA-texture, SNR, and CFDS slope, whereas the HDL-C decreased (all 
P for trend < 0.05).

The Pearson correlation coefficients determined for the correlation of the ultrasound quantitative parame-
ters with the metabolic factors are presented in Table 2. The LDA-texture, SNR, and CFDS slope were all nega-
tively correlated with HDL-C and positively correlated with BMI, WC, SBP, DBP, FATPER, VFR, FPG, TCHO, 
TG, LDL-C, HOMA-IR, and ALT (all P < 0.05). The LDA-texture index exhibited good correlation with BMI 
(r = 0.42), WC (r = 0.41), SBP (r = 0.40), VFR (r = 0.40), and ALT (r = 0.41). Additionally, the SNR was strongly 
correlated with BMI (r = 0.45), WC (r = 0.48), SBP (r = 0.41), VFR (r = 0.49), and TG (r = 0.41). The CFDS slope 
exhibited a stronger correlation with TG (r = 0.27) than with the other metabolic factors.

The contributions of the combined LDA-texture, SNR, and CFDS slope to each metabolic factor were deter-
mined according to the regression coefficient (β) in the multiple regression model (Table 3). The SNR significantly 
contributed to all metabolic factors (all P < 0.01). The LDA-texture index had significant effects on all metabolic 
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factors except for FATPER, FPG, TCHO, and LDL-C. The CFDS slope exhibited no significant contributions to 
most of the metabolic factors (except for TCHO, TG, LDL-C, and HOMA-IR).

The associations between the QDI and the risk of MetS determined using the multiple logistic regression mod-
els are presented in Table 4. In model 1, a higher QDI was correlated with a higher risk of MetS after adjustment 
for age and sex [odds ratio (OR): 1.75, 95% confidence interval (CI): 1.46–2.09, P < 0.0001]. In model 2, after fur-
ther adjustment for smoking, alcohol consumption, betel nut chewing, exercise time per week, and menopause, 

Variables

LDA-texture index

P

SNR

P

CFDS slope

PT1 T2 T3 T1 T2 T3 T1 T2 T3

N 131 133 130 130 133 131 130 133 131

Men 25% 34% 56% <0.0001 21% 42% 52% <0.0001 25% 35% 54% <0.0001

Age (yrs) 40.6 40.8 40.1 0.5627 38.3 40.9 42.4 0.0028 41.2 40.7 39.7 0.246

BMI (kg/m2) 22.1 23.8 26.5 <0.0001 21.4 24.4 26.5 <0.0001 22.7 23.4 26.3 <0.0001

WC (cm) 76.8 81.6 87.4 <0.0001 75.1 82.1 88.3 <0.0001 77.8 80.3 87.5 <0.0001

SBP (mmHg) 115.0 122.3 130.2 <0.0001 115.4 120.8 131.3 <0.0001 118.6 120.2 128.7 <0.0001

DBP (mmHg) 73.2 77.4 83.1 <0.0001 73.4 77.2 83.1 <0.0001 75.2 76.7 81.8 0.0003

FATPER (%) 27.5 29.0 30.3 0.0083 26.4 29.3 31.2 <0.0001 28.4 28.3 30.2 0.1967

VFR 5.8 7.5 10.2 <0.0001 4.8 8.4 10.3 <0.0001 6.3 7.1 10.0 <0.0001

FPG (mmol/L) 4.70 4.74 5.16 0.0002 4.59 4.84 5.16 <0.0001 4.68 4.72 5.20 <0.0001

TCHO (mmol/L) 4.90 4.94 5.15 0.0602 4.66 5.20 5.12 0.0009 4.83 4.97 5.18 0.0185

TG (mmol/L) 0.92 1.27 1.61 <0.0001 0.86 1.36 1.59 <0.0001 0.90 1.09 1.82 <0.0001

HDL-C (mmol/L) 1.61 1.52 1.31 <0.0001 1.62 1.50 1.32 <0.0001 1.61 1.52 1.32 <0.0001

LDL-C (mmol/L) 3.01 3.02 3.35 0.0035 2.79 3.27 3.31 <0.0001 2.92 3.13 3.33 0.0018

HOMA_IR 0.88 1.16 1.42 0.0002 0.92 1.11 1.41 0.0002 0.88 1.13 1.46 <0.0001

ALT (µkat/L) 0.32 0.38 0.63 <0.0001 0.30 0.44 0.60 <0.0001 0.32 0.41 0.60 <0.0001

MetS 7% 17% 31% <0.0001 6% 14% 52% <0.0001 9% 8% 38% <0.0001

Table 1. Characteristics of participants in different tertiles of ultrasound quantitative parameters. 
aAbbreviations: ALT: alanine aminotransferase; BMI: body mass index; CFDS: center frequency downshift; 
DBP: diastolic blood pressure; FATPER: fat percentage; FPG: fasting plasma glucose; HDL-C: high-density 
lipoprotein cholesterol; HOMA-IR: homeostasis model assessment of insulin resistance; LDA-texture: linear 
discriminant analysis was applied to combine the texture features; LDL-C: low-density lipoprotein cholesterol; 
MetS: metabolic syndrome; SBP: systolic blood pressure; SNR: signal-to-noise ratio; TCHO: total cholesterol; 
TG: triglycerides; VFR: visceral fat rating; WC: waist circumference. bT1: tertile 1; T2: tertile 2; T3: tertile 3.

Variables

LDA-texture 
index SNR CFDS slope

r r r

BMI (kg/m2) 0.42*** 0.45*** 0.21***

WC (cm) 0.41*** 0.48*** 0.22***

SBP (mmHg) 0.40*** 0.41*** 0.24***

DBP (mmHg) 0.37*** 0.35*** 0.18***

FATPER (%) 0.16** 0.23*** 0.10*

VFR 0.40*** 0.49*** 0.20***

FPG (mmol/L) 0.21*** 0.25*** 0.14**

TCHO (mmol/L) 0.14** 0.21*** 0.19***

TG# (mmol/L) 0.37*** 0.41*** 0.27***

HDL-C# (mmol/L) −0.33*** −0.28*** −0.15**

LDL-C (mmol/L) 0.20*** 0.25*** 0.20***

HOMA-IR# 0.31*** 0.32*** 0.24***

ALT (µkat/L) 0.41*** 0.34*** 0.24***

Table 2. Pearson correlation coefficient (𝛾) between metabolic factors and ultrasound quantitative parameters. 
a#Variable was managed by logarithmic transformation. br: Pearson correlation coefficient. c*P < 0.05; **P < 0.01; 
***P < 0.001. dAbbreviations: ALT: alanine aminotransferase; BMI: body mass index; CFDS: center frequency 
downshift; DBP: diastolic blood pressure; FATPER: fat percentage; FPG: fasting plasma glucose; HDL-C: high-
density lipoprotein cholesterol; HOMA-IR: homeostasis model assessment of insulin resistance; LDA-texture: 
linear discriminant analysis was applied to combine the texture features; LDL-C: low-density lipoprotein 
cholesterol; SBP: systolic blood pressure; SNR: signal-to-noise ratio; TCHO: total cholesterol; TG: triglycerides; 
VFR: visceral fat rating; WC: waist circumference.
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the OR determined using the QDI for MetS was 1.12 (95% CI: 1.09–1.16, P < 0.0001). In model 3, after further 
adjustment for HOMA-IR, the OR determined using the QDI for MetS was 1.09 (95% CI: 1.06–1.13, P < 0.001). 
The corresponding values of the AUCs used to distinguish MetS were 0.79 (95% CI: 0.73–0.85), 0.88 (95% CI: 
0.83–0.92), and 0.89 (95% CI: 0.84–0.93).

Discussion
Our previous study demonstrated that the QDI increases significantly with the severity of NAFLD21. In the pres-
ent study, liver fat amount quantified using the QDI was significantly associated with MetS. The risk of MetS was 
1.09 (OR:1.09, 95% CI: 1.06–1.13) times greater in individuals with high QDI values than it was in those with 
low QDI values after adjustment for age, sex, smoking, alcohol consumption, betel nut chewing, exercise time per 
week, menopause, and HOMA-IR. These findings are consistent with those reported regarding the relationship 
between ultrasound-diagnosed NAFLD and metabolic derangements in previous studies13–16. However, most of 
these studies have only discriminated between pathological and normal livers based on the presence of a bright 
liver echo pattern and have not graded NAFLD severity. A few studies have used an ultrasound scoring system 
to diagnose NAFLD severity24–26. The semiquantitative liver ultrasound scoring system presented by Hamaguchi 
et al. was significantly correlated with MetS (OR: 1.37, 95% CI: 1.26–1.49), but the analysis was not adjusted for 
lifestyle factors or insulin resistance24. Yang et al. showed an association between increasing NAFLD severity, as 
assessed using the semiquantitative ultrasonographic fatty liver indicator score, and a greater risk of MetS (OR: 
1.4, 95% CI: 1.2–1.6) after adjustment for BMI and insulin resistance26. However, the inclusion of subjective 
determinations is a disadvantage of the aforementioned semiquantitative scoring system. The QDI is a relatively 
objective measure and reflects useful information regarding various acoustic characteristics of liver tissue.

Quantitative ultrasound techniques represent a reliable adjunct approach for NAFLD diagnoses, offering a 
valuable secondary assessment for physicians. Badawi et al. presented a computerized tissue characterization 
employing eight quantitative features of ultrasound images to differentiate diffuse liver disease and achieve sen-
sitivity of 96%27. Acharya et al. combined ultrasound image texture, higher order spectra, and discrete wave-
let transform to distinguish between normal and fatty livers, obtaining an accuracy of 93.3%28. Lin et al. used 

Variables

LDA-texture 
index SNR

CFDS 
slope

β1 β2 β3

BMI (kg/m2) 5.38*** 7.22*** 0.34

WC (cm) 11.67*** 19.67*** 1.80

SBP (mmHg) 18.09*** 21.81*** 5.48

DBP (mmHg) 14.37*** 12.99*** 0.82

FATPER (%) 2.02 7.28*** 1.17

VFR 4.76*** 8.70*** −0.01

FPG (mmol/L) 0.46 0.89*** 0.25

TCHO (mmol/L) −0.05 0.80** 0.72**

TG# (mmol/L) 0.53*** 0.86*** 0.37*

HDL-C# (mmol/L) −0.32*** −0.21** 0.01

LDL-C (mmol/L) 0.22 0.78*** 0.56*

HOMA-IR# 0.45* 0.71*** 0.47*

ALT (µkat/L) 0.48*** 0.32*** 0.13

Table 3. Contributions of combined multiple ultrasound quantitative parameters for various metabolic factors. 
a#Variable was managed by logarithmic transformation. b*P < 0.05; **P < 0.01; ***P < 0.001. cAbbreviations: ALT: 
alanine aminotransferase; BMI: body mass index; CFDS: center frequency downshift; DBP: diastolic blood 
pressure; FATPER: fat percentage; FPG: fasting plasma glucose; HDL-C: high-density lipoprotein cholesterol; 
HOMA-IR: homeostasis model assessment of insulin resistance; LDA-texture: linear discriminant analysis 
was applied to combine the texture features; LDL-C: low-density lipoprotein cholesterol; SBP: systolic blood 
pressure; SNR: signal-to-noise ratio; TCHO: total cholesterol; TG: triglycerides; VFR: visceral fat rating; WC: 
waist circumference.

OR (95% CI) AUCs (95% CI)

Model 1 1.75 (1.46–2.09)* 0.79 (0.73–0.85)

Model 2 1.12 (1.09–1.16)* 0.88 (0.83–0.92)

Model 3 1.09 (1.06–1.13)* 0.89 (0.84–0.93)

Table 4. Risk of metabolic syndrome according to the quantitative diagnostic index level. aModel 1: adjusted 
for age and sex. bModel 2: model 1 plus further adjustment for smoking, alcohol consumption, betel nut 
chewing, exercise time per week and menopause (women only). cModel 3: model 2 plus further adjustment for 
HOMA-IR; OR for HOMA-IR: 2.07 (95% CI: 1.35–3.17, P = 0.0008). d*P < 0.001. eAbbreviations: AUCs: areas 
under the receiver operating characteristic curves; CI: confidence interval; OR: odds ratio.
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ultrasound backscatter coefficient values to identify patients with NAFLD in training and testing groups, achiev-
ing 94% and 88% accuracy rates, respectively29. Many published studies have focused on improving diagnostic 
accuracy for NAFLD using quantitative ultrasound techniques. Nevertheless, additional studies are required to 
determine the correlation between quantitative ultrasound parameters and metabolic, anthropometric, and bio-
chemical factors in order to emphasize the potential applications of functional ultrasound. The present study 
attempted to supplement the literature.

For the separate predictions of BMI, WC, SBP, FATPER, VFR, FPG, TCHO, TG, LDL-C, and HOMA-IR, 
the SNR had a higher β coefficient than did the LDA-texture index and CFDS slope. In brief, the SNR exhibited 
the greatest influence on these biochemical factors. Among the three variables, the LDA-texture index had the 
highest β coefficients in predicting DBP, HDL-C, and ALT. However, the CFDS slope had higher β coefficients in 
predicting TCHO, LDL-C, and HOMA-IR than did the LDA-texture index. These results indicate that the SNR 
exhibited the greatest contribution to the prediction of biochemical factors, followed by the LDA-texture index 
and CFDS slope.

The SNR can depict the arrangement and distribution of scatters caused by the concentration of fatty drop-
lets in liver tissue21,30. The findings of the present study reveal that the SNR exhibited the strongest association 
with BMI, WC, SBP, FATPER, VFR, FPG, TCHO, TG, LDL-C, and HOMA-IR. BMI, WC, FATPER, and VFR 
are associated with body fat or visceral fat31,32. TCHO, TG, and LDL-C are nonpolar lipid substances that are 
escorted through the blood vessels by lipoproteins33–35. Finally, HOMA-IR is used to quantify insulin resistance, 
and insulin is a critical regulator of virtually all aspects of adipocyte biology36,37. In other words, the SNR is closely 
correlated not only with the distribution of liver fat deposits but also with body fat, visceral fat, and blood lipid 
levels. The LDA-texture index can be used to describe microstructural and macrostructural changes within the 
liver parenchyma for quantification of liver tissue heterogeneity17,21,38. The results of the present study indicate 
that the LDA-texture index had strong predictive power in DBP, HDL-C, and ALT. HDL-C is often referred to as 
good cholesterol, because HDL particles help remove fats and cholesterol from cells and deliver them to the liver 
for excretion, thereby playing a paramount role in the reverse cholesterol transport mechanism39–41. ALT is usu-
ally measured clinically in diagnostic evaluations of hepatocellular injury42,43. Several studies have reported that 
low HDL-C is associated with abnormal ALT levels44,45. Therefore, the LDA-texture index may be associated with 
hepatocellular function (e.g., hepatic inflammation). The CFDS slope mirrors the composition and biochemical 
environment of the liver19,21,46. In the present study, the CFDS slope was a significant variable for predicting the 
observed TCHO, TG, LDL-C, and HOMA-IR. TCHO, TG, LDL-C, are associated with lipid levels, signifying that 
hepatocyte lipid accumulation could be a predominant influence in the CFDS slope.

Both the SNR and CFDS slope were relevant to lipid profiles (e.g., TCHO, TG, and LDL-C), and the SNR had 
a higher contribution to blood lipids than did the CFDS slope. However, the CFDS slope remains indispensable 
in grading NAFLD severity, because the SNR and CFDS slope may provide information on different ultrasound 
physical characteristics to describe liver fat distribution. Although increased blood lipid abnormality could reflect 
altered liver function, this metric may not be sufficiently sensitive to accurately reflect liver fat accumulation. 
Based on the widely recognized relationship between liver fat and MetS23,26, we demonstrated that the QDI score 
was significantly correlated with and could be used to identify MetS. This finding demonstrates that quantitative 
ultrasound imaging methods are critical in diagnosing NAFLD.

The QDI remains limited by some factors. The choice of tertile cutoff points for the LDA-texture index, SNR, 
and CFDS slope was based on the distribution of the sample. The values of the LDA-texture index, SNR, and 
CFDS slope may change with different ultrasound systems, but these estimates obtained from different ultra-
sound systems still show the same trends. The values of the CFDS slope were probably affected by estimation 
errors related to the analytical methods and the influence of diffraction effect, resulting in relatively poor correla-
tion with anthropometric and biochemical findings. The histologic analysis was not usable as a diagnostic refer-
ence for assessing liver fat. Furthermore, ultrasound scanning is operator-dependent. Thus, additional large-scale 
clinical trials should be performed to establish the QDI and facilitate its acceptance in the medical community.

Several studies have demonstrated that NAFLD is an independent risk factor for MetS. In most of these stud-
ies, NAFLD was diagnosed through simple dichotomous (yes vs. no) diagnosis using ultrasound. Our research 
revealed that our proposed quantitative parameters correlated with metabolic factors in NAFLD. Isolated hepatic 
steatosis is not entirely benign47. For example, the amount of liver fat is strongly associated with cardiovascu-
lar disease, cancer, and many extrahepatic diseases48. Simple steatosis may directly evolve into hepatocellular 
carcinoma49. Additionally, the essentiality of liver biopsy is disputed4–6. Therefore, critical demand remains for 
an accessible and simple quantification tool in clinical and epidemiology fields. Several clinical trials regarding 
pharmacotherapy for NAFLD are in progress50. Although liver biopsy procedures are necessary in these clinical 
trials, a reliable quantitative surveillance tool should be available for practical applications. In sum, the proposed 
tool can be used for quantitative measurements that may not only assist clinicians in monitoring disease status but 
also help patients understand and follow their treatment course.

The primary findings of this study reveal that the QDI parameters predict MetS and significantly correlate 
with anthropometric and biochemical factors. The QDI may be a promising modality for use in clinical surveil-
lance, epidemiology research, and metabolic function evaluation in patients with NAFLD. Some quantitative 
analysis approaches have also been used for the diagnosis of hepatic steatosis and demonstrated to correlate with 
several MetS components, such as controlled attenuation parameter, acoustic structure quantification, Kurtosis 
coefficient, and entropy51–54. These approaches reflect different physical properties of the liver to characterize 
liver tissue microstructure55. With the development of inflammation and fibrosis biomarkers, combining the 
QDI parameters with other ultrasound features would become a functional evaluation parameter for NAFLD 
and MetS. Ultrasound contrast agents have been used to not only improve ultrasound imaging quality but also 
for differentiating none or mild from severe fibrosis in NAFLD patients56–58. Compared with NAFLD patients, 
contrast enhancement is decreased in patients with non-alcoholic steatohepatitis59. Therefore, the QDI would be 
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a valuable measurement in contrast-enhanced ultrasound for evaluating the diagnosis of hepatic manifestation of 
MetS. Future studies could examine the use of multiple QDI parameters in a larger cohort of participants and in 
longitudinal follow-up of patients with NAFLD.
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