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permutation statistics for 
Connectivity Analysis between 
Regions of Interest in eeG and  
MeG Data
Fahimeh Mamashli1,2,3, Matti Hämäläinen2,3, Jyrki Ahveninen2,3, Tal Kenet  1,2 & 
sheraz Khan2,3,4

Connectivity estimates based on electroencephalography (eeG) and magnetoencephalography 
(MeG) are unique in their ability to provide neurophysiologically meaningful spectral and temporal 
information non-invasively. this multi-dimensional aspect of the MeG/eeG based connectivity increases 
the challenges of the analysis and interpretation of the data. Many MeG/eeG studies address this 
complexity by using a hypothesis-driven approach, which focuses on particular regions of interest 
(ROI). However, if an effect is distributed unevenly over a large ROI and variable across subjects, it may 
not be detectable using conventional methods. Here, we propose a novel approach, which enhances 
the statistical power for weak and spatially discontinuous effects. This results in the ability to identify 
statistically significant connectivity patterns with spectral, temporal, and spatial specificity while 
correcting for multiple comparisons using nonparametric permutation methods. We call this new 
approach the Permutation Statistics for Connectivity Analysis between RoI (pesCAR). We demonstrate 
the processing steps with simulated and real human data. the open-source Matlab code implementing 
pesCAR are provided online.

EEG and MEG are ideal techniques to non-invasively measure brain activity with high temporal-spectral and 
reasonable spatial resolution1–6. Typically, neuroscience studies relate particular variation in the brain such as 
source activation, inter-regional functional connectivity, or oscillatory power to certain experimental paradigm 
or behavioral measures. However, within this multifaceted data, finding the modulation associated with a par-
ticular effect or contrast of interest in the brain can be challenging. This challenge is particularly pronounced in 
functional connectivity analysis. Depending on the hypothesis and the experiment, the functional connectivity is 
assessed either from a seed region to the rest of the brain7–9 or between all atlas-based (cortical) parcels10–13. In the 
former, cluster-based statistics is used to find differences between experimental conditions in time, frequency, and 
space9,14,15. However, this approach provides sufficient statistical power for detecting differences across the exper-
imental manipulations of interest only when the effect sizes are very large and the clusters are spatially continuous 
across the cerebral cortex. In all-to-all parcel comparisons, a simplified strategy is often taken by averaging the 
functional connectivity estimates within certain time and frequency bands such as alpha (8–12 Hz) or beta (13–
30 Hz), but this results in the loss of temporal and spectral specificity. In both of the aforementioned approaches, 
one has to correct for a massive number of comparisons in order to control the family-wise error rates (FWER). 
In addition, searching within the whole brain may, on the one hand, increase the risk of false positives and, on the 
other hand, reduce the sensitivity for weaker but functionally relevant connections.

An alternative approach is to focus on particular regions in the brain based on prior hypothesis. In functional 
connectivity analysis, such ROIs are either selected with help of source localization or manually delineated for 
each individual based on specific criteria, such as task dependent modulation in activity; e.g.16–24. In conven-
tional MEG or EEG studies, these ROIs also need to be anatomically small in order to reduce temporal signal 
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cancellations. This approach relies on a robust estimate of activity in the ROIs and may not be applicable when 
weak cognitive effects are investigated. In many situations the ROIs are selected using existing anatomically and 
functionally defined parcellations. However, these parcellations are agnostic to variations of the effects of interest 
within the ROI. That means that effect can be sometimes be missed when averaging across an entire ROI. For an 
extreme example, in a motor task, moving the hand and the foot does not activate the entire motor cortex but 
specific parts of it according to the motor homunculus. If one averages over the entire motor cortex, signal to 
noise ratio will be reduced and physiologically important spatial specificity is lost. Therefore, there is an advan-
tage of sub-dividing an ROI into smaller pieces, which we call sub-ROIs. If there is an effect within the ROI, the 
sub-ROIs should show the same effect. Particularly for discontinuous effects, sub-division of ROIs would increase 
the spatial specificity and statistical power. Notably, inherent discontinuities are also caused by electric/magnetic 
field cancellations when the activations span across the opposite banks of cortical gyri and sulci25. Examples of 
ROIs and sub-ROIs is in Fig. 1A.

In this paper, we propose a novel approach to conduct ROI-based connectivity analysis. The ROI can be as 
large as existing functionally or anatomically defined parcellations, thus can be purely chosen by prior hypothesis. 
To correct for multiple comparisons across the sub-ROIs, we employed a non-parametric permutation method26, 
which has been successfully applied before15,27–36. We name this method PeSCAR, which stands for Permutation 
Statistics for Connectivity Analysis between ROI. The PeSCAR algorithm will automatically select the functionally 
relevant sub-ROIs, hence enhancing spatial specificity. In contrast to cluster statistics, this approach increases the 
statistical power for weak and spatially discontinuous effects while maximizing spectral and temporal specificity. 
The application of our approach is not limited to connectivity; it can be employed in simpler scenarios such as (A) 
comparing source activations within ROI, (B) inter-measure correlations, e.g. correlation between ROI activa-
tion and behavioral measurements and (C) comparing time-frequency maps within an ROI, see Supplementary 
Information (SI). We demonstrate PeSCAR in the case of functional connectivity, as this is the most complex 
analysis among the aforementioned ones. Using simulation and real data set we show the processing steps.

Results
the pesCAR method. In MEG-EEG studies, the statistical comparison is typically between conditions across 
a group of subjects or between groups of people conducting the same experiment. If the activation inside each ROI 
is distributed uniformly across the entire ROI, one could simply average the activity inside the ROI and conduct the 
functional connectivity analysis on the averaged time series. However, in the majority of MEG and EEG studies, 
this may not be the case due to the different spatial sensitivity of MEG and EEG to sulci and gyri. This problem 
becomes more challenging because of the poor signal-to-noise ratio typically encountered in conventional MEG and 
EEG studies. Therefore, the estimated activation inside an ROI can consist of discontinuous patches. In addition, in 
realistic data, there is variability across the subjects. Hence, traditional spatial averaging might result in removal or 
reduction of the information that is present at lower aggregation. Moreover, this type of activation is less likely to be 
found by cluster statistics, which prefers large anatomically continuous activations. To overcome these limitations, 
PeSCAR divides each ROI into sub-ROIs and computes connectivity between all possible sub-ROI pairs.

We have incorporated these ideas to the PeSCAR pipeline, illustrated in Fig. 1. Here, for simplicity, we illus-
trate a particular case and give a generalization in SI. Let us assume there is one group of participants in an exper-
iment with two conditions. The goal is to compare the functional connectivity between ROI1 and ROI2 between 
two conditions (C1 and C2) across all subjects. The functional connectivity is estimated in time and frequency: 
t0 < t <t1 and f0 < f <f1, respectively. The null hypothesis is that functional connectivity is not different between C1 
and C2. It has been shown that this is equivalent to the exchangeability hypothesis, i.e., C1 and C2 are exchangeable 
(see statistical proof in Maris, Oostenveld, 2007). The resulting analysis steps are:

 (i) Divide each ROI into sub-ROIs of approximately equal size. This leads to N and M sub-ROIs for ROI1 and 
ROI2, respectively (Fig. 1A).

 (ii) Estimate the functional connectivity between the sub-ROIs in time and frequency for both conditions and 
all subjects (Fig. 1A). This leads to an N × M matrix of connectivity values for each subject and condition.

 (iii) Compute cluster statistics in time and frequency between C1 and C2 each sub-ROI pair33. Here, the appro-
priate test statistic is the paired t-test. It is important to note that the cluster statistics provide a p-value, 
cluster mass, cluster mask and the t-values of the time-frequency plane (see Fig. 1 for an illustration). The 
p-value shows whether the cluster is significant after correction for multiple comparisons in time and fre-
quency. The cluster mass is the sum of the t-values of every time-frequency pair inside the cluster. Positive 
and negative cluster masses indicate C1 > C2 and C2 > C1, respectively. The cluster mask is a binary matrix 
covering the time-frequency plane; it indicates whether a particular time-frequency pair belongs to the 
cluster (Fig. 1B).

 (iv) Generate two N × M matrices, one for the C1 > C2 and the second for C2 > C1. Each element is set to zero if 
p > α, where α is the chosen threshold, for that particular sub-ROI1-sub-ROI2 pair. If p < α, then the 
element of the matrix is set to the cluster mass. According to Maris and Oostenveld, 2007, “this threshold 
may or may not be based on the sampling distribution of the t -value under the null hypothesis, but this 
does not affect the validity of the nonparametric test”. In our simulations, the threshold α was the 97.5th 
percentile point of a T-distribution, which is used as a critical value in a parametric two-sided t -test at 
alpha-level 0.05. We call these thresholded cluster mass values, forming an N × M, original connectivity 
matrix (Fig. 1B) with each element as aij. We then sum the elements of each original connectivity matrix 
(aij) resulting in the original total connectivity: = ∑ ∑= =A a ,j

M
i
N

ij1 1 for the two comparisons C1 > C2 and 
C2 > C1, as A A,12 21 respectively. PeSCAR can be easily extended to employ a threshold-free version of 
cluster statistics to avoid the problem of threshold selection37.
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 (v) We then permute the two conditions np times (np > 1000) and repeat steps (iii) and (iv) for each permuta-
tion. After going through all permutations, we will end up with two np arrays of values, which we will use to 
derive the null distributions for C1 > C2 and C2 > C1 (Fig. 1C). Finally, we compare the A Aand12 21 from 
step (iv) to the empirical null distribution from step (v) to assign p-values for C1 > C2 and C2 > C1 

Figure 1. Schematic representation of PeSCAR: (A) ROIs in left STG and IFG based on freesurfer parcellation 
with 9 sub-ROIs within each. For both conditions (C1 and C2) the connectivity is estimated as a function of time 
and frequency for all sub-ROI pairs; an example for the sub-ROI pair (4, 15) is shown. (B) Cluster statistics is 
computed between C1 and C2 in time and frequency between all sub-ROI pairs. The example shows the cluster 
mask weighted by t-values for both C1 > C2 and C2 > C1. for the for sub-ROI pair (4, 15) pair. The sum over all 
frequencies and times of the weighted cluster mask is called the cluster mass. Original connectivity matrix is 
generated for each comparison in which each element will be either zero (p > 𝛼) or the cluster mass (p < 𝛼), 
where 𝛼 is the chosen threshold. Each element of original connectivity matrix is referred to as aij and the sum 
across all sub-region pairs is called “original total connectivity” A. (C) C1 and C2 are pooled and shuffled np 
times. Cluster statistics (B) are then recomputed for each shuffle and the null distribution is generated. (D) The 
p-value for each comparison (C1 > C2 and C2 > C1) is computed according to the formula shown, where k12 and 
k21 is the number of times that the null distribution is larger than the A12 or A21, respectively.
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respectively (Fig. 1D). The p-values will be computed as = + +p k n( 1)/( 1)p12 12  and 
= + +p k n( 1)/( 1)p21 21 , where k12 and k21 are the numbers of times the null distribution is larger than 

the A12 and A21 for C1 > C2 and C2 > C1, respectively. In order to correct for the two comparisons, we apply 
Bonferroni correction to both p12 and p21.

There are two approaches to visualize the time-frequency map of the difference between C1and C2, 
un-weighted and weighted. In the un-weighted case, the binary cluster masks for all significant detections from 
step (iv) are summed up. Thus, this quantity indicates how many significant connections are present for each 
time-frequency pair. In the weighted case, the binary cluster masks are weighted by the t-values from step (iii) 
before summation according to the significance.

Using simulations, we demonstrate that when the SNR is low, PeSCAR offers more statistical power than 
alternative conventional averaging approach, in which time series is averaged over vertices across ROI and the 
connectivity is estimated on the averaged time series and the cluster statistics in time and frequency is used for 
contrast. To compare the two approaches, we estimated the statistical sensitivity or power by generating 100 data 
sets under the alternative hypothesis. In this simulation, we randomly draw different effect configurations and 
add a fraction of resting state noise. The resting state noise ratio was drawn from a uniform distribution. This 
means that both strong and weak effects are considered in this simulation. The proportion of data sets for which 
the null hypothesis is rejected, is the sensitivity or statistical power.

spatially continuous (non-scattered) sources: varying sNR. We considered two ROIs in left and 
right STG and each ROI were divided into 9 equal size sub-ROIs. Two conditions were simulated (C1 and C2). 
For all subjects and C1, 50 epochs were simulated in the time range of −250 to 750 ms and frequency range of 15 
to 20 Hz within the first three sub-ROIs in left and right STG. The signal was limited for the time between 200 
and 400 ms in time. As C2, 50 epochs were randomly selected from artifact free resting state data. The coherence 
between all sub-ROI pairs was estimated and PeSCAR was then calculated. We varied the SNR in C1, which would 
make detecting the difference between two conditions harder. As examples, we demonstrate the results for two 
different SNRs. The average time series across subjects in sensor space for each condition and the corresponding 
SNR is displayed in Fig. 2 (column 1). Using PeSCAR, the simulated difference between the conditions (C1 > C2) 
was revealed with P-values of 0.004 and 0.02 for SNR values of 2.8 and 2 dB, respectively (Fig. 2A,B – columns 
2–3). Using conventional averaging approach, results similar to PeSCAR were found for SNR of 2.8 dB. However, 
when the SNR was reduced to 2 dB, the alternative method failed in finding the simulated difference between the 
two conditions. In Fig. 3A, we show the statistical power as a function of SNR (Fig. 3A). At high SNR, both meth-
ods have 100% sensitivity, while at lower SNRs, PeSCAR detects the effect with higher sensitivity

spatially discontinuous (scattered) sources. To simulate spatially discontinuous sources, the activation 
was placed inside the sub-ROIs 1, 4, 7, marked with white borders in (Fig. 4-third column). We show two SNRs 
(3.4 and 3 dB) as examples. In the case of 3.4 dB, PeSCAR and conventional averaging approach found similar 
differences between the two conditions: PeSCAR with a P = 0.004 and the conventional averaging with a P = 0.04, 
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Figure 2. Left column: Average simulated time series across eight subjects in sensor space for three tested 
SNR (A,B). Middle columns: PeSCAR results comparing Left-right STG functional connectivity between 
two simulated conditions for three SNR of 2.8 and 2 (A,B). Matrix of sub-ROI pairs that reached significance 
(original total connectivity) and the un-weighted time frequency map of the difference between two conditions 
are demonstrated. Right column: Average time-frequency map of the coherence difference between the two 
conditions and the cluster statistics results in three SNR (A,B).
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see Fig. 4. At the lower SNR of 3 dB, shown in Fig. 4B, only PeSCAR could find the difference between two condi-
tions. In Fig. 3B, we show the statistical power for various SNR comparing both approaches. Note that in case of 
spatially discontinuous sources, we need a higher SNR to detect an effect to be significant than when the sources 
are spatially continuous. We marked SNR = 6 dB in panels A and B of Fig. 3 to show that when the sources are 
discontinuous, PeSCAR still offers 100% sensitivity while the conventional averaging sensitivity reduces to 78% 
(Fig. 3D).

Spatially discontinuous (scattered) sources: spatial variability across subjects. To simulate a 
more realistic scenario, we introduced spatial variability across subjects by activating different sub-ROI sets in 
different subjects. Three sub-ROIs in each ROI were randomly activated across subjects, with additional con-
straint that in the right STG the sources are spatially discontinuous, which is the most challenging scenario. For 
example, when PeSCAR found the difference between the two conditions with a P = 0.04, conventional averaging 
resulted in P = 0.09 (Fig. 5). The statistical power for PeSCAR and conventional averaging is shown Fig. 3C, which 
indicates that with variability across subjects, PeSCAR is more robust. We also see that a higher SNR is required 
in this scenario to find an effect between the two conditions. Interestingly, with SNR = 6 dB, PeSCAR still offers 
100% sensitivity, whereas with conventional averaging sensitivity reduces to 65% (Fig. 3D).

pesCAR application to human data: auditory mismatch paradigm. MEG data from an auditory 
mismatch paradigm consisting of standard and deviant tones were used20. STG and inferior frontal gyrus (IFG) 
have been consistently found to underlie auditory mismatch responses. Therefore, left STG and left IFG were 
considered as ROIs and the coherence between them estimated in time and frequency. In addition, to reduce 
the point spread effect we normalized the coherence of deviant vs standard following33. Using PeSCAR, stronger 
left temporal-frontal connection for deviant than standard were found around 200 ms and between 20–40 Hz 
with a p-value of 0.008 (Fig. 6). Original total connectivity matrix and un-weighted time-frequency map of the 
connectivity difference between standard and deviant is shown in (Fig. 6A,B). Those sub-ROIs in left STG and 
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of the coherence difference between two conditions with cluster statistics results demonstrated.
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left IFG that found to show condition dependent effect are marked in Fig. 6C. Our findings are consistent with 
a previous study, which showed 4–25 Hz left temporal frontal functional connectivity for deviant in contrast to 
standard tones using sensor space data analysis38. PeSCAR in contrast offers conducting statistics in the source 
space with higher spectro-temporal resolution. Lack of a standard method in the field to perform ROI based 
functional connectivity analysis has limited the studies to pursue source-based connectivity analysis in time and 
frequency. The conventional within-ROI averaging approach did not show any significant differences between 
the conditions (Fig. 6D).

Discussion
With increasing interest in the connectivity analysis in general and in the MEG/EEG domain in particular, there 
is a growing need to develop statistical approaches that identify functionally relevant connections with increased 
spatial, temporal, and spectral specificity. Unfortunately, a generally accepted method for ROI-based functional 
connectivity analysis of MEG/EEG data has so far been lacking, and previous studies have therefore been limited 
to using tailored heuristic approaches. Here, we present a novel approach to conduct statistics for ROI based func-
tional connectivity analysis in MEG/EEG data. This PeSCAR method could offer substantially greater power if the 
effect of interest is spatially distributed, particularly when the contrast to noise ratio could be low.

We assessed the performance of PeSCAR using both multiple simulations and a real data set from human 
recordings. The simulation results show that when the SNR is high, conducting functional connectivity analysis 
on the averaged time series across entire ROI offers enough statistical power to detect the effect between the 
conditions. However, our simulation results also demonstrated that in cases when the SNR is poor, the novel 
PeSCAR method offers more statistical power than the conventional averaging method. Our simulation results 
were, finally, verified by using connectivity analyses of a real data set, obtained from an auditory “mismatch 
negativity” experiment in humans. Whereas the conventional analysis of these real data showed only weak con-
nectivity effects at the low beta band, the PeSCAR analyses demonstrated robust connectivity differences between 
automatic auditory change detection vs. standard-sound processing conditions, which were spread into various 
time and frequency bands. In the cognitive neuroscience sense, this would mean that instead of a local auditory 
cortex process39,40, the detection of unexpected changes in the auditory stream involves a broader frontotempo-
ral network (i.e., “predictive coding”)41. This result provides a notable practical example how a high-resolution 
time-frequency map of the effect of interest provided by PeSCAR can have a major theoretical impact the inter-
pretation of the results.

We should note that PeSCAR might face computational limitations when multiple statistical contrasts are 
compared such as ANOVA. However, with the advent of graphics processing units (GPU), this problem can be 
addressed. It is also worth noting that similarly to other permutation or randomized simulation statistics methods 
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statistics results demonstrated.
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Figure 6. Left temporal-frontal functional connectivity comparison between deviant and standard conditions 
from a real human dataset. (A) The original total connectivity matrix of sub-ROI pairs that reached significance. 
(B) Un-weighted time-frequency (TF) map of the difference between standard and deviant. (C) Sub-ROIs 
on the cortex. (D) Average time-frequency map of the coherence difference between two conditions with 
conventional cluster statistics results is demonstrated.
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to address FWE, PeSCAR can only be used only when the assumption of exchangeability holds. These notions 
need to be considered before conducting connectivity analyses using PeSCAR.

In summary, there are now four approaches to conduct functional connectivity analysis for MEG/EEG data: 
(1) from a seed region to the rest of the brain (2) between ‘all-to-all’ atlas-based parcellations (3) conventional 
averaging, and 4) PeSCAR. Each has its own advantages and disadvantages, which have been discussed in this 
paper. If the SNR is high and the activations are genuinely continuous across the cortex, generic procedures that 
operate on the all-to-all ROI connectivity comparisons or cluster-based statistics in the whole cortex can presum-
ably provide enough power to declare the effect of interest significant. However, we believe that PeSCAR will play 
an important role in neuroscience studies by offering a novel way to detect functionally relevant patterns, hidden 
in the multifaceted MEG/EEG data.

Methods
All experimental protocols were approved by the Massachusetts General Hospital institutional review board. 
Participants were consented in accordance with the approved protocol and all methods were carried out in 
accordance with relevant guidelines and regulations.

simulations. All simulations were undertaken using a whole-head VectorView MEG system 
(Elekta-Neuromag), comprised of 306 sensors arranged in 102 triplets of two orthogonal planar gradiometers and 
one magnetometer. Eight healthy subjects’ data were used who has previously participated in a resting state exper-
iment. The location of the brain anatomy with respect to the sensors was taken for each subject. The sampling 
frequency of the data was 600 Hz. MEG resting state data were spatially filtered using the signal space separa-
tion method (Elekta-Neuromag Maxfilter software) to suppress noise generated by sources outside the brain42,43. 
Cardiac and ocular artifacts were removed by signal space projection1. The data were filtered between 0.1 and 
140 Hz. Resting state data of each subject was used as the biological noise that was added to the simulated data 
in a later stage. In contrast to the empty room recording, resting state noise data is a more realistic noise because 
it takes into account the specific covariance structure between brain regions. The MEG forward solution was 
computed using a single-compartment boundary-element model (BEM) assuming the shape of the intracranial 
space44. The current distribution was estimated using the regularized L2 minimum-norm estimate (MNE) with 
the regularization parameter set to 0.1. The source orientations were fixed to be perpendicular to the cortex. The 
noise covariance matrix that was used to calculate the inverse operator was estimated from data acquired before 
each session in the absence of a subject. The activity inside each ROI was simulated for two conditions and eight 
subjects in order to allow us to do the permutation statistics. We assess the validity of the method using several 
simulations and comparing with conventional existing methods as following.

Spatially continuous sources: Varying signal to noise ratio. Two ROIs in left and right superior temporal gyrus 
(STG) were selected according to Freesurfer parcellation45. Each ROI was divided into 9 sub-ROIs using an auto-
matic routine offered in the Freesurfer suite. All sub-ROIs in both ROIs were of approximately the same size. 
For all subjects and condition one, 50 epochs were simulated in the time range of −250 to 750 ms and frequency 
range of 15 to 20 Hz. The activity was generated in the first three sub-ROIs of left STG and right STG using the 
following equation:

∑ π= ∗
Ω∈

X v e t q
F

w t ft( , , ) 1 ( ( ) sin(2 ))
(1)f

0

X represents a three-dimensional matrix [Vertices (v) × Epochs (e) × Time (t)]. In this equation, w(t) is the Hann 
window = − πw t( ( ) (1 cos( ))t

T
1
2

2 , t is the time, f is the frequency in the set Ω = …{15, , 20} Hz, and F = 6 is the 
number of frequencies in Ω. The signal was confined to t = 200 and 400 ms and the rest of the data were set to 
zero. This would allow us to expect a particular activation in time and frequency. The overall amplitude of the 
currents was set to q0 = 10 nAm/mm2 as suggested by a previous study46. The corresponding sensor-space signals 
Y were obtained by multiplying the source space signals by the forward operator. We used a scale α to signal Y to 
reduce the SNR and make it more comparable to real data (Fig. 7). The value of α was randomly selected between 
0.04 to 0.1. The resting-state data of each subject was added to this signal by selecting a 1000 ms segment R2 

Forward Operator Inverse Operator

Source Space

Sensor Data (Y)

Figure 7. A schematic that illustrates the steps to generate the simulated signal in one sub-ROI. Amplitude of Y 
is reduced using α, which is selected between 0.04 and 0.1. β is a number drawn from uniform distribution and 
R1 and R2 represent two separate segments of resting state data.
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randomly from 7 minutes of resting-state data recorded in each subject, see Fig. 7. Segments of the resting state 
data which had a peak-to-peak amplitude larger than 1000 fT/cm and 3000 fT in any of gradiometers and mag-
netometers, respectively, were not considered. To perform power analysis and generate 100 data sets, we addition-
ally added a fraction of another segment of resting state noise to vary the SNR, represented with R1 in Fig. 7. The 
amplitude of R1 was varied with β value drawn from a uniform distribution between 0 and 1. The SNR of Y′ was 
computed as follows:

×
S
N

20 log (2)10

here, S is the average of the absolute value of the signal across all sensors within the time interval of 200–400 ms of 
condition 1. N is the average of the absolute value of the resting state noise (condition 2) within all time intervals 
across all sensors. As condition two, only resting state data were used for each subject. Fifty epochs were randomly 
selected from 7 minute of each subject that had no overlaps with those in condition one. Both conditions data 
in the sensor space was projected to the source space using the inverse operator. All sub-ROIs time series were 
extracted (see SI) and the coherence between all sub-ROI pairs were estimated (see SI). PeSCAR was then applied 
to this simulated data.

Spatially discontinuous sources. To simulate spatially discontinuous sources, the signal from previous section 
was placed within those sub-ROIs that had spatial distance of two sub-ROIs. Thus, signal was generated within 
sub-ROI number 1, 4, 7 in both left and right STG. In Fig. 4, the location of sub-ROIs in left and right STG are 
marked with white color borders. All the other steps remain like previous section.

Spatially discontinuous sources: Spatial variability across subjects. In realistic data, source activity or localization 
may be spatially discontinuous and also vary across subjects. To test this effect, we repeated our simulation, with 
the exception that those 3 sub-ROIs that have signal were randomly selected among 9 sub-ROIs across all subjects 
in left STG. In right STG, for each subject, those 3 sub-ROIs with the signal were randomized across subjects and 
were spatially discontinuous also. For example, in subject 1, in right STG, sub-ROI of 1, 3, and 5 had activation, 
in subject 2, sub-ROI of 2, 4, 6 had activation and etc. This introduces variability across all subjects. In addition, 
SNR was reduced using the scaling factor of 0.06.

Simulation scripts. All of the simulation scripts in Matlab are available online via our github repository (https://
github.com/FahimehMamashli/PeSCAR). In future, Python implementation will be available as well.

Data Availability
All data will be made available upon request.
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