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Variable protein homeostasis 
in housekeeping and non-
housekeeping pathways under 
mycotoxins stress
Yu sun  1,2, Jikai Wen  1,2, Ruohong Chen1,2 & Yiqun Deng  1,2

Transcript levels are the primary factor determining protein levels, but for the majority of genes, fold 
changes in transcript levels are larger than the corresponding changes in protein levels, a phenomenon 
that is termed “protein homeostasis”. However, this phenomenon is not well characterized in the 
context of environmental changes. In this study, we sequenced the entire transcriptome and proteome 
of chicken primary hepatocytes administered three mycotoxin treatments Aflatoxin B1 (AFB1), 
Ochoratoxin A (OTA) and Zearalenone (ZEN). Each mycotoxin induced unique set of differential 
expressed transcripts and proteins, suggesting variable cytotoxicity and biochemical action in cell. 
We found a weak positive correlation between transcript and protein changes, and the transcript 
changes were higher than the protein changes. Furthermore, we observed pathway-specific protein 
homeostasis pattern under mycotoxin stress. Specifically, the “Metabolism”, “Transcription” and 
“translation” pathways (housekeeping pathways) showed lower fold changes in protein/mRNA levels 
than non-housekeeping pathways such as “Cell growth and death” and “Immune system”. protein 
molecular weight had a weak negative effect on protein production, and this effect was stronger for 
non-housekeeping pathways. Overall, we hypothesize housekeeping pathways maintain stable protein 
production for baseline cellular function, whereas non-housekeeping pathways is associated with the 
fitness response to environmental stress.

The central dogma that the information flow in a biological system is generally from DNA to RNA to protein is 
the cornerstone of modern molecular biology. Although this flow appears to be straightforward, there is a very 
complicated relationship between mRNAs and its encoded proteins. Besides of the regulatory networks in co-/
post-transcription processes, protein quantity in cells is influenced by many aspects, including codon composi-
tion, ribosomal entry sites, translation rates, protein half-life, mRNA and protein degeneration rate, protein mod-
ulation, folding and transport rates1. With next-generation sequencing breakthroughs in recent years, increasing 
amounts of large-scale transcriptome and proteome data are now available, and researchers must disentangle the 
general rules governing protein production. Although the concept is still controversial2,3, several studies have 
characterized a significant positive correlation between mRNA and protein levels (rho > 0.5) in yeast, Drosophila, 
Caenorhabditis elegans, zebrafish, human and plants cells in the “steady” states4–7. Thus, mRNA levels are sug-
gested to be the primary factor determining protein levels. Based on these calculations, mRNA levels possibly 
accounts for 40% to 80% of protein abundance variance; other factors, such as translation rate, play a relatively 
minor role in protein production8,9. However, recent observations from fission yeast, human tumors and evo-
lutionary studies between humans and chimpanzees, revealed that fold changes in mRNA levels are generally 
larger than fold changes in protein levels10–12. This phenomenon is termed as protein homeostasis that protein 
production is maintained at a stable level in the cell despite fluctuations in mRNA1. Two concepts reveal the com-
plicated nature of the protein production process: the first stresses the importance of mRNA quantity in deter-
mining protein production, whereas the second indicates that other regulatory mechanisms are also important in 
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determining a stable protein concentration. Thus, further studies, especially in different species or under different 
cellular conditions such as environmental pressures, are needed to elucidate protein homeostasis.

Mycotoxins are a group of low-molecular-weight secondary metabolites produced by filamentous fungi13. 
Approximately 400 mycotoxins have been identified and a dozen have been recognized as important threats to 
humans and animals, including aflatoxin, citrinin, ergot alkaloids, fumonisin B1, ochoratoxin A (OTA), patulin, 
trichothecenes, zearalenone (ZEN) and so on14. Mycotoxin contamination in crops is widespread around the 
world, especially in developing countries due to poor preharvest practice and postharvest storage and trans-
portation15. It is estimated that 25% of world’s crop may be contaminated by mycotoxins. The US Council for 
Agricultural Science and Technology estimated that the cost of crop losses from aflatoxins, fumonisins and deox-
ynivalnol is $932 million USD per year and mitigation cost is $466 million per year16. Some mycotoxins have sta-
ble molecular properties which are difficult to be removed by common practices such as heating or filtering, and 
as the consequence, consumptions of mycotoxin-containing foods and feeds lead to various pathologic reactions 
and can even increase mortality rates13,17,18.

Aflatoxin B1 (AFB1), OTA and ZEN are some of the most widely spread mycotoxins in the world. Previous 
studies reported these mycotoxins have similar toxic actions in cells including prohibiting RNA and protein syn-
thesize, DNA damage and ROS13,18,19, but none of them quantified the expression profile at the omics level. In this 
study, we sequenced the entire transcriptome and proteome of chicken (Gallus gallus) primary hepatocytes under 
AFB1, OTA and ZEN treatments. As in steady-state cells, the protein homeostasis pattern was preserved under 
mycotoxin pressure. However, genes from different pathways showed differing levels of protein homeostasis, 
indicating protein homeostasis was primarily maintained by housekeeping pathways in the cell.

Results
Mycotoxins treatment of chicken primary hepatocytes. Chicken primary hepatocytes were admin-
istrated by three mycotoxins AFB1, OTA and ZEN. We used an MTT assay to assess cell viability under mycotoxin 
administration. The mycotoxin concentration was lower than 0.5 μg/mL, 5 μg/mL and 20 μg/mL (AFB1, OTA and 
ZEN) to maintain cell viability >90% (Fig. 1). Then, a gradient test was conducted to quantify CYP1A, CYP2D 
and CYP3A gene expression under different mycotoxin concentration and duration (Fig. 1). We used the lowest 
and shortest toxin treatment that induced the expression of all three CYP450s, which were 0.1 μg/mL 24 h for 
AFB1, 5 μg/mL 24 h for OTA and 10 μg/mL 12 h for ZEN, to administrate the chicken primary hepatocytes.

High-throughput sequencing. Three biological replicates were collected for transcriptome and proteome 
sequencing from both untreated hepatocytes as the control, and mycotoxin-treated hepatocytes. To analyze the 
transcriptome, ~50 million reads (150-bp paired-end reads generated by Illumina, 6.34 to 7.52 Gb in total) were 
obtained for each replicate. High-quality scores (Q20 > 95%), low error rates (0.02%) and stable GC content indi-
cated a high-quality transcript dataset (Table S1). To verify the data consistency among biological replicates, we 
applied Pearson’s correlation analysis between all samples (Fig. S1). The correlations were all >0.98, higher than 
the best practice guideline by ENCODE Consortium (0.92–0.98).

For the proteome analysis, we used iTRAQ (isobaric tag for relative and absolute quantification) technol-
ogy to quantify relative protein levels between three mycotoxin-treated and control samples. Spectra from tan-
dem mass spectrometry were searched using MASCOT engine 2.2 (Matrix Science, London UK) against the 
UniProt chicken database for peptide identification (https://www.ebi.ac.uk/GOA/chicken_release, Uniprot_
Chicken_24083_20150713.fasta). Peptides were quantified by Proteome Discoverer 2.0 (Thermo Fisher Scientific, 
San Jose, CA) and the false discovery rate (FDR) was calculated based on a Decoy database search with a cutoff 
of 0.01. The majority of peptide lengths ranged from 5 to 25 amino acids (Fig. S2), similar to the range reported 
previously20. Protein ratios were calculated based on the combined median ratio of unique peptides, and experi-
mental bias was controlled by normalizing the median protein ratio to 1. The final protein ratio was the mean of 
the three biological replicates (Table S2).

Differential expressed transcripts and proteins. The set of differentially expressed transcripts 
(DETs) were first characterized. We got quantitative expression level for 19,948 transcripts in total, and the 
DETs were identified based on negative binomial distribution with Benjamini and Hochberg procedure 
adjusted p value < 0.0521. Compared to the control treatment, mycotoxin treatment led to intensive transcrip-
tomic changes (Figs 2 and S3). For AFB1, we found 6,994 DETs (35.1% of total transcripts), including 3,583 
up-regulated and 3,411 down-regulated transcripts. For OTA, there were 8,657 DETs (43.4% of total transcripts), 
including 4,496 up-regulated and 4,161 down-regulated genes. For ZEN, there were 3,548 DETs (17.8% of 
total transcripts), including 1,692 up-regulated and 1,856 down-regulated genes (Table S3; Fig. 3). The num-
ber of shared up-regulated and down-regulated transcripts among all three mycotoxins was much lower than 
the mycotoxin-specific DETs, especially for up-regulated transcripts (Fig. 2A,B). We further grouped the 
up-regulated and down-regulated transcripts based on the KEGG pathway definition (Tables 1 and 2). For AFB1 
treated samples, the up-regulated transcripts were mainly enriched in the “Environmental information process-
ing” pathway, including “Cytokine-cytokine receptor interaction”, “ECM-receptor interaction”, “Jak-STAT sign-
aling” and “Cell adhesion molecules (CAMs)” pathways. For ZEN treated samples, the up-regulated transcripts 
were mainly enriched in “Genetic information processing” pathway, including “DNA replication”, “Spliceosome”, 
“RNA transport”, “Mismatch repair”, “Homologous recombination”, “Base excision repair” and “RNA polymerase” 
pathways. The down-regulated transcripts were enriched in “Metabolism” and “Cellular processes” pathways for 
AFB1, “Ribosome” and “Focal adhesion” pathways for OTA and “Valine, leucine and isoleucine degradation” and 
“PPAR signaling” pathways for ZEN.

We identified much less number of differentially expressed proteins (DEPs): only 656 (10.3%), 548 (8.6%) and 
216 (3.4%) DEPs were between AFB1-, OTA- and ZEN- treated and control samples (Table S3; Figs 2 and S4). 
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Similar to the transcript dataset, the number of shared DEPs was much lower than the mycotoxin-specific DEPs 
(Fig. 2). For AFB1 treated samples, the up-regulated proteins were enriched in “Metabolism” pathway, including 
“Fructose and mannose metabolism”, “Retinol metabolism” and “Biosynthesis of amino acids” pathways, and can-
cer related “Chemical carcinogenesis” pathway. For ZEN, the up-regulated proteins were enriched in “Biosysthesis 
of amino acids” pathway, and for OTA in “Complement and coagulation cascades” pathway (Table 1). For AFB1 
treated samples, the down-regulated proteins were enriched in “Environmental information processing” pathway, 
including “ECM-receptor interaction”, “Cell adhesion molecules” and “Cytokine-cytokine receptor interaction”, 
and pathways from cellular community and cancer. For OTA treated samples, the down-regulated proteins were 
enriched in “ECM-receptor interaction” pathway, and for ZEN in “Insulin signaling pathway”.

Figure 1. Chicken hepatocytes cell viability from MTT assay under (A) AFB1, (C) OTA and (E) ZEN 
administration. Each bar represents mean cell viability from five independent experiments with standard 
deviation. The gradient test for CYP1A4, CYP2D20 and CYP3A37 genes expression under different (B) 
AFB1, (D) OTA and (F) ZEN concentration and duration. Each bar represents mean fold changes from three 
independent experiments with standard deviation.
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Although we found some similarities between different mycotoxin administrations, such as “ECM-receptor 
interaction” pathways were enriched with down-regulated proteins for both AFB1 and OTA, the overall distri-
bution of DETs and DEPs was quite different for the three mycotoxins. Furthermore, the set of DETs were not 
consistent with the set of DEPs (Tables 1 and 2). For AFB1, seven pathways were enriched with up-regulated 
transcripts but none of them was enriched with up-regulated proteins. Similarly, four pathways were enriched 
with up-regulated proteins but none of them was enriched with up-regulated transcripts. This pattern suggests 
that each pathway may assume a specific mRNA and protein production dynamics under mycotoxin pressure.

protein homeostasis under mycotoxin stress. We extracted 4,110 genes with quantitative transcript 
(FPKM > 1) and protein expression values for all three mycotoxins, and visualized the expression fold changes 
(Fig. 3). We found a weak significant positive correlation between the transcript and protein changes for all 
mycotoxins (p < 2.2e-16), and the correlations for AFB1 (0.29) and ZEN (0.23) were lower compared to previous 
reports for cells in the “steady” states (rho > 0.5). The transcript level changes were much higher than protein 
level changes for most genes, thus the protein homeostasis pattern was preserved under mycotoxin stress (Fig. 2).

We further plotted transcript and protein changes for each KEGG pathway for AFB1, OTA and ZEN (Figs S5–
S7). We found certain pathways, such as “Carbohydrate metabolism” and “Nucleotide metabolism” under OTA, 
showed lower protein /mRNA changes than the “Signal transduction” and “Cell growth and death” pathways 
(Fig. 4). More specifically, we used slope (the fitted line for linear regression) to represent the overall protein/
mRNA fold changes. A higher slope indicated higher protein-to-mRNA changes and relaxed constraint on pro-
tein homeostasis. We listed the complete results in Table S4 and summarized the results in Table 3. To be con-
servative, we only showed pathways with correlations >0.3 and p values < 0.01. As most housekeeping genes 
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Figure 2. Ven diagram plot for the (A) up-regulated and (B) down-regulated transcripts and (C) up-regulated 
and (D) down-regulated proteins among three mycotoxins.
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are associated with the “Metabolism”, “Transcription” and “Translation” pathways (KEGG 1.1 to 2.2) and most 
genes in other pathways (KEGG 2.3 to 5.3) are non-housekeeping genes22, we classified the two sets of path-
ways as housekeeping pathways and non-housekeeping pathways. In OTA-treated samples, housekeeping path-
ways showed lower protein/mRNA changes than non-housekeeping pathways (p = 0.001, two-tailed t-test). In 
AFB1-treated samples, the overall pattern was the same (p = 0.044). In ZEN-treated samples, we did not observe 
higher changes in non-housekeeping than housekeeping pathways. The slopes for non-housekeeping pathways 
were still higher than the slopes of most housekeeping pathways, but the pattern was distorted by the relatively 
high slope for “Energy metabolism” (0.293). Combining the results obtained with all three mycotoxins, we iden-
tified several pathways with high protein changes, including “Cell growth and death” (>0.2 for all three myco-
toxin), “Folding, sorting and degradation”, “Replication and repair”, “Membrane transport”, and “Immune system” 
(>0.2 for two mycotoxin).

Overall, we found variable protein homeostasis pattern under mycotoxin administration. It is tempting to 
hypothesize a fitness optimization process in cell that the strong constraint on housekeeping pathways is a base-
line requirement for the maintenance of cellular function, and the relaxed constraint on non-housekeeping path-
ways is primarily related to the functional response to specific mycotoxin pressures.

other factors associated with protein homeostasis. Molecular weight may be involved in protein 
homeostasis. It has been hypothesized that protein production cost is primarily determined by protein molecular 

Figure 3. Pearson’s correlation between transcript and protein level changes for AFB1, OTA and ZEN. 
Transcript and protein changes are calculated by comparing mycotoxin treated samples and control samples.

https://doi.org/10.1038/s41598-019-44305-0
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weight, and thus, the overproduction of a low-cost protein should have a small fitness effect, whereas the pro-
duction of a high-cost protein is more tightly controlled23. Thus, the homeostasis of proteins with high molecular 
weights should be stronger than the homeostasis of low-molecular-weight proteins. To test this assumption, we 
calculated the correlation between molecular weight and protein level changes in the three mycotoxin-treated 
samples, and we found very weak but significant negative correlations for all three samples (rho −0.029, −0.054 
and −0.23, p < 0.05; Table 4, Fig. 5). This result suggests that molecular weight may only play a minor role or be 
relevant for a subset of proteins. We further conducted the analyses on housekeeping and non-housekeeping 
pathways separately, and found a negative correlation for each analysis (Table 4). The correlation was higher for 
non-housekeeping pathways than for housekeeping pathways under AFB1 and OTA treatment. For ZEN treat-
ment, the correlations and p values were similar between the two sets. This result suggests that molecular weight 
affects both gene sets, but the effect is stronger for non-housekeeping pathways, consistent with the hypothesis of 
a relaxed protein homeostasis constraint on these gene sets.

Protein location may also be involved with protein homeostasis. We used MetazSecKB24 to predict chicken 
protein locations and evaluate the impact of cellular location on protein changes (Tables S5 and S6; Figs S8–
S10). In general, we found that proteins associated with organelle membranes showed higher protein changes 
than secreted, cell plasma membrane-associated and in-lumen proteins (p = 0.02, two-tailed t-test). In par-
ticular, “Golgi apparatus membrane” and “Nuclear membrane” genes had high slopes (>0.2), and genes in the 
“Cytoplasm” location had low slope values. The data suggests that subcellular location is also associated with pro-
tein homeostasis under mycotoxin stress. However, gene function and location are closely confounding factors. 
For example, membrane proteins primarily function as signal transduction receptors, substrate transporters and 
enzymes25, and the majority of metabolism and information processing genes are located in the cytoplasm. Thus, 
it is necessary to take into account of the two features together and interpret the results with caution.

Long non-coding transcript isoform is not the mechanism for protein homeostasis. Previous 
studies reported that the length of 5′ UTRs influenced mRNA translation efficiency; the isoform of long unde-
coded transcript had poor translational rate compared to the canonical transcripts26. We analyzed the expres-
sion of long UTRs and normal UTRs in the mycotoxin-treated and control samples. The long UTRs were 
defined as UTRmycotoxin – UTRcontrol > 500 bp, and normal UTRs were defined as −5 < UTRmycotoxin – 
UTRcontrol < 5. Only UTRcontrol < 600 bp were included in the analysis27. We did not find association between 
the UTR lengths and protein expression levels in our dataset (Fig. S11). Thus, UTR length variation is not the 
mechanism for protein homeostasis in chicken hepatocytes.

Toxin KEGG pathway (transcriptome) P value KEGG pathway (proteome) P value

AFB1 Cytokine-cytokine receptor interaction 0.02 Fructose and mannose metabolism 0.00013

Intestinal immune network for IgA production 0.001739 Retinol metabolism 0.000283

Jak-STAT signaling pathway 0.003656 Chemical carcinogenesis 0.002798

Glycosaminoglycan biosynthesis - chondroitin 
sulfate/dermatan sulfate 0.003893 Biosynthesis of amino acids 0.004614

ECM-receptor interaction 0.007142

Phagosome 0.007149

Cell adhesion molecules (CAMs) 0.008871

OTA Complement and coagulation cascades 0.000614

ZEN Cell cycle 2.72E-12 Biosynthesis of amino acids 0.001971

DNA replication 6.67E-11

Fanconi anemia pathway 5.08E-09

Ribosome biogenesis in eukaryotes 4.35E-08

Pyrimidine metabolism 9.56E-08

Spliceosome 6.70E-07

RNA transport 1.06E-06

Mismatch repair 8.52E-06

Homologous recombination 9.64E-06

Nucleotide excision repair 0.00104

Base excision repair 0.001211

RNA polymerase 0.001602

mRNA surveillance pathway 0.002268

Purine metabolism 0.005707

p53 signaling pathway 0.008001

Table 1. KEGG pathways with significant enriched up-regulated transcripts and proteins. P value is calculated 
by Fisher’s exact test with FDR correction.

https://doi.org/10.1038/s41598-019-44305-0
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Discussion
In this study, we used widespread mycotoxins AFB1, OTA and ZEN to administrate chicken embryo hepatocytes 
and characterize the transcriptomic and proteomic changes. The high-throughput data indicated that the three 
mycotoxins induced variable sets of differential expressed transcripts and proteins, but the overall pattern of pro-
tein homeostasis was still preserved. This study systematically evaluated the association between protein home-
ostasis and molecular factors, including gene function, protein location and molecular weight, and hypothesis a 
fitness optimization process in cell.

AFB1 is one the most studied and characterized mycotoxin to date due to the outbreak of turkey X disease in 
the early 1960s28. It is well established that active metabolites of AFB1 can bind to the N7 position of guanines, 
and the AFB1-DNA adducts result in GC to TA transversions13. Other biochemical actions include decreasing 
RNA content and RNA polymerase, suppressing protein synthesis, interrupting carbohydrate metabolism by 
decreasing glycogen level and inhibiting electron transport in mitochondria29. Similarly, OTA also has multiple 
biochemical actions in cell, including oxidative stress, protein synthesis inhibition and activation or deactivation 
of specific cell signaling pathways30. ZEN and its derivatives can competitively bind to the estrogen receptor, 
leading to various estrogenic syndromes13. Study on cultured Vero cells reveals that ZEN and its derivatives also 
inhibit protein and DNA synthesis, cell viability, oxidative damages and over-expression of stress proteins31. Thus, 
all three mycotoxins have multiple biochemical and molecular actions in cell, but it is unclear whether they affect 
the same set of genes/pathways or not. In this study, we found that each mycotoxin had quite specific impact on 
functional pathways, led to different molecular action and cellular responses in chicken hepatocytes. The phe-
nomenon are unlikely due to different stress levels posed by these mycotoxins. We controlled the mycotoxin stress 
on the minimum level to maintain >90% cell viability throughout the study. The lowest level of mycotoxin con-
centration and shortest duration time that induced the expression of CYP450s have been chosen to administrate 
the chicken cells. Thus, stress levels should not be a major factor leading different cellular responses.

Previous studies reported that the iTRAQ technique underestimated the fold change signals by compressing 
the isotopic intensity ratios and the underestimation became more obvious for proteins with high changes32,33. 
Another study estimated the iTRAQ measurement had ~40–50% compression to the true value34. In our study, 
the changes of protein expression was several fold lower than the transcript expression, thus the technique com-
pression can contribute to the fold differences, but should not be a major explanation for the protein homeostasis 
pattern we observed. Another potential problem is that protein production is slower than mRNA production, 
and thus, the protein homeostasis we observed may be attributable to a production delay rather than a true stasis 
effect. However, previous studies showed that protein production was generally only delayed for 5 or 6 h after the 
mRNA oscillations9,35. In this study, we applied AFB1 and OTA treatment for 24 h and ZEN for 12 h, which are 
much longer times than the reported delay in protein production. Thus, the effects of “production delay” should 
be minimal in our study.

Protein production is much more expensive than mRNA production. Warner et al. estimated that cells divert 
50% of their energy to protein production, whereas only 5% of energy is spent on mRNA production36. It costs 

Toxin KEGG pathway (transcriptome) P value KEGG pathway (proteome) P value

AFB1 Metabolic pathways 0.000886 ECM-receptor interaction 8.14E-07

Peroxisome 0.004771 Cell adhesion molecules (CAMs) 4.79E-05

Fatty acid metabolism 0.00858 Focal adhesion 8.65E-05

Cell cycle 0.009167 Axon guidance 1.01E-04

Ribosome 1.36E-04

Ribosome biogenesis in eukaryotes 3.28E-04

Complement and coagulation cascades 7.82E-04

Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 1.45E-03

Cytokine-cytokine receptor interaction 2.25E-03

Small cell lung cancer 2.89E-03

Hippo signaling pathway 4.02E-03

Fatty acid biosynthesis 4.09E-03

Adherens junction 8.27E-03

Pathways in cancer 8.63E-03

Proteoglycans in cancer 9.43E-03

OTA Ribosome 1.41E-06 ECM-receptor interaction 1.04E-06

Focal adhesion 0.00217 Focal adhesion 4.83E-05

Amoebiasis 8.06E-04

Small cell lung cancer 4.59E-03

PI3K-Akt signaling pathway 7.94E-03

ZEN Valine, leucine and isoleucine degradation 0.003184 Insulin signaling pathway 0.008517

PPAR signaling pathway 0.003962

Table 2. KEGG pathways with significant enriched down-regulated transcripts and proteins. P value is 
calculated by Fisher’s exact test and cutoff set to 0.01.

https://doi.org/10.1038/s41598-019-44305-0
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2 GTP and 1 ATP for each peptide bond formed, whereas only 1 NTP is required for nucleotide elongation. 
Researchers estimated that the total number of proteins is ~1,850- to ~10,000- fold higher than mRNA copy num-
bers in fission yeast and mammals10,37,38. Thus, protein production is very costly in term of cellular energy and 
resources but is crucial for maintaining cellular function. According to evolutionary theory, protein production 
should be maximized or constrained according to the fitness of a cell or organism, which is termed as an optimi-
zation process39,40. This theory has been tested for a few phenotypes and genes, such as the production of Lac pro-
tein in Escherichia coli, but has never been tested at the whole-transcriptome/proteome level. The pathway-specific 
protein homeostasis observed in this study fit this evolutionary optimization process and demonstrated selective 
advantages for cell survival under mycotoxin pressure. Genes involved in specific functions such as “Cell growth 
and death” or “Immune system” had relaxed constraints on protein production, demonstrating clear advantages 
for active responses to the changing environment. However, the housekeeping pathways experienced a stronger 
constraint to maintain much more stable protein concentrations for baseline cellular functions. By maintaining 
stable concentrations, disruptive signals from toxic molecules do not interfere with core gene production, which 
in turn reduces toxic cellular effects in response to relatively minor damage.

Homeostasis theories can be soundly described and explained by this cost-benefit optimization theory, but 
the molecular mechanism underlying buffering remains elusive. Researchers have tried to explain the pattern 
from the perspective of translational rates but have found conflicting results. Some evidence suggests that trans-
lation rates contribute significantly to protein buffering41,42, whereas others studies have indicated that translation 
rates are not important43,44. Dephoure et al. reported that translation rate variation was not important for the 
large-scale regulation of protein production; however, the protein degradation rate may be a major factor shaping 
protein homeostasis patterns45. A recent proteomic study in mouse cardiac cells also supported this hypothesis by 

Figure 4. Pearson’s correlation between transcript and protein level changes for four representative KEGG 
pathways in OTA treated samples. (A) Carbohydrate metabolism; (B) Nucleotide metabolism; (C) Cell growth 
and death; and (D) Immune system. Transcript and protein changes are calculated by comparing mycotoxin 
treated samples and control samples.

https://doi.org/10.1038/s41598-019-44305-0
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revealing that functionally associated protein were co-regulated in degradation process46. Others studies alterna-
tively proposed that the microRNAs may contribute significantly to mRNA and protein correlations47,48. A new 
hypothesis suggested that variation of mRNA length altered the meiotic protein expressions levels26. We meas-
ured the expression profile for transcripts with long and normal UTRs and failed to find any association in the 
chicken model (Fig. S7). But as only a small portion of long non-coding RNAs were identified in our study due to 
the sequencing depth limitation, we cannot totally rule out this possibility. Overall, it is unclear what is the main 
mechanism to buffer the protein variation and whether different organisms have same mechanism or not, thus 
more studies are needed in the future to address these issues.

Methods
experimental design and statistical rationale. In this study, we performed transcriptome and pro-
teome sequencing for three mycotoxin-treated samples (AFB1, OTA and ZEN) and one control sample. For each 
sample, we collected and sequenced three biological replicates. To detect differentially expressed genes, Benjamini 
and Hochberg’s approach was used to control the FDR. Pearson’s correlation was used for correlation analysis 
because the dataset has a normal distribution. We included all data points in the statistical analyses.

Chicken primary hepatocytes isolation and mycotoxin preparation. Eighteen-day embryonated 
specific-pathogen-free (SPF) Arbor Acres Broiler chicken eggs were purchased from the Institute of Animal 
Science, Guangdong Academy of Agricultural Sciences (Guangzhou, China). All related experiments and meth-
ods were performed in accordance with the recommended guidelines and regulations by the Administration 
of Affairs Concerning Experimental Animals of Guangdong Province, China. This research was approved 
(approval number 2015-D010) by Laboratory Animal Ethics Committee of South China Agricultural University. 
Hepatocytes were prepared using a collagenase digestion method49. Chicken embryo primary hepatocytes were 
re-suspended in Williams E medium (Sigma-Aldrich, Shanghai) containing 10% FBS, 100 U/mL penicillin/

KEGG pathways

AFB1 OTA ZEN Datasize 
No.generho slope rho slope rho slope

Carbohydrate metabolism 0.332 0.104 0.51 0.155 69

Energy metabolism 0.44 0.147 0.672 0.293 37

Lipid metabolism 0.486 0.171 0.45 0.152 0.359 0.114 77

Nucleotide metabolism 0.391 0.119 0.66 0.174 51

Amino acid metabolism 0.407 0.13 0.63 0.181 0.478 0.144 60

Glycan biosynthesis and metabolism 0.395 0.122 0.41 0.12 0.495 0.178 57

Metabolism of cofactors and vitamins 0.52 0.152 35

Transcription 0.51 0.149 48

Translation 0.48 0.131 0.339 0.149 100

Folding, sorting and degradation 0.66 0.209 0.526 0.222 111

Replication and repair 0.474 0.176 0.73 0.29 0.464 0.222 25

Membrane transport 0.926 0.221 0.9 0.468 11

Signal transduction 0.325 0.141 0.7 0.259 0.412 0.185 186

Signaling molecules and interaction 0.57 0.203 0.462 0.177 137

Transport and catabolism 0.388 0.134 0.65 0.241 126

Cell growth and death 0.497 0.221 0.81 0.326 0.602 0.238 65

Cellular community - eukaryotes 0.42 0.12 0.49 0.169 108

Cell motility 0.66 0.307 42

Immune system 0.412 0.144 0.76 0.272 0.515 0.271 60

Endocrine system 0.7 0.211 0.276 0.109 103

Circulatory system 0.572 0.226 0.57 0.148 44

Table 3. Correlation and linear regression slopes between protein and transcript level changes for KEGG 
pathways for AFB1-, OTA- and ZEN-treated samples. We only present pathways with data sizes (number of 
genes) larger than 10, correlation values above 0.3 and p value less than 0.01. Slopes greater than 0.2 are defined 
as high protein/mRNA changes and formatted with bold font.

Toxin

All data Housekeeping gene Non-housekeeping gene

rho p value rho p value rho p value

AFB1 −0.23 0 −0.24 6.83E-08 −0.27 1.47E-12

OTA −0.029 0.034 −0.046 0.16 −0.11 0.0034

ZEN −0.054 0.00032 −0.069 0.064 −0.064 0.051

Table 4. Correlation between molecular weight and protein level changes.
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streptomycin, 10 nM insulin, and 10 nM dexamethasone (Sigma-Aldrich). We added the medium to each culture 
plate and cultured cells at 37 °C in a humidified incubator with 5.0% CO2. After 5 h, the medium was removed 
from adherent cells, and the cells were maintained in Medium 199 (Life Technologies, Shanghai) supplemented 
with 10% FBS, 100 U/mL penicillin/streptomycin, 10 μg/mL insulin, 1 μg/mL dexamethasone, and 2 mM 
L-glutamate (Invitrogen). AFB1, ZEN and OTA were purchased from Pribolab (Qindao, China). All mycotoxins 
were dissolved in Dimethyl sulfoxide (DMSO). Williams E medium, Medium 199 and FBS were purchased from 
Invitrogen (Carlsbad, CA, USA).

Figure 5. Pearson’s correlation between protein molecular weight and protein level changes under (A) AFB1, 
(B) OTA and (C) ZEN treatment.
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MTT cell viability assay and quantitative RT-PCR. Cell viability was assessed according to a previously 
described method50. Chicken embryo primary hepatocytes were seeded at a density of 10000 cells/well in 96-well 
plates and cultured overnight. The hepatocytes were treated with different concentrations of AFB1 (0–10 μg/mL), 
ZEN (0–120 μg/mL), or OTA(0–10 μg/mL). After 48 h, 0.5 mg/mL MTT (Sigma-Aldrich, Shanghai) was added to 
each well. We extracted the total RNA from mycotoxin-treated or untreated chicken primary hepatocytes using 
Trizol reagent (Invitrogen, Carlsbad, CA, USA). Total RNA (2 μg) was reverse transcribed using M-MLV reverse 
transcriptase (Promega, Madison, WI, USA) with oligo d(T) and random primers (Takara Biotechnology, Dalian, 
China). The obtained cDNA products were used as templates for CYP1A4, CYP2D20 and CYP3A37 transcript 
quantification by RT-PCR. GAPDH was used as an internal reference to normalize gene expression. The expres-
sion levels were calculated using the 2−ΔΔCt method51.

Library preparation and transcriptome sequencing. Total RNA purity, concentration and integrity 
were assessed using NanoPhotometer® spectrophotometry (IMPLEN, CA, USA), Qubit® RNA Assay Kit in a 
Qubit® 2.0 Fluorometer (Life Technologies, CA, USA), and RNA Nano 6000 Assay Kit on a Bioanalyzer 2100 
system (Agilent Technologies, CA, USA). A total of 3 μg of RNA was extracted per sample. Sequencing libraries 
were constructed using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA), then sequenced on 
an Illumina Hiseq X Ten platform, with paired-end reads length of 150 bp.

transcriptome data analysis. Raw data were processed through Perl scripts by removing reads that con-
tained adapter, ploy-N and low quality reads. The Q20, Q30 and GC contents for each sample were calculated. 
All downstream analyses were based on the processed clean data. The reference chicken genome and annotation 
files were downloaded from NCBI with the GenBank Assembly ID GCA_000002315.3. The index of the reference 
genome was built using Bowtie v2.2.352, and paired-end clean reads were aligned to the reference genome using 
TopHat v2.0.1253. The read numbers mapping to each gene were calculated by HTSeq v0.6.154, and the FPKM of 
each gene was calculated based on the length of the gene and the reads count mapped to that gene. Differential 
expression analysis was performed using the DESeq R package (1.18.0)21, and the statistical enrichment of the 
differential expression genes in KEGG (http://www.genome.jp/kegg/) pathways was calculated by KOBAS55,56.

Sample preparation, iTRAQ labeling and mass spectrometry. SDT buffer was used for the sample 
preparation as in the universal proteomic sample preparation protocol20. For SDS-PAGE separation, 20 µg of pro-
teins was mixed with 5X loading buffer and boiled for 5 min. The proteins were separated on a 12.5% SDS-PAGE 
gel (constant current 14 mA, 90 min) and visualized using Coomassie Blue R-250 staining. The peptide mixture 
of each sample (100 μg) was labeled with iTRAQ reagent according to the manufacturer’s instructions (Applied 
Biosystems, Shanghai). The labeled peptides were fractionated by SCX chromatography (GE Healthcare). LC-MS/
MS analysis was performed with a Q Exactive mass spectrometer (Thermo Scientific, Shanghai) and Easy nLC 
(Proxeon Biosystems, Danmark). MS data was collected based on the most abundant precursor ions from the 
survey scan (300–1800 m/z).

proteome data analysis. MS/MS spectra were analyzed using MASCOT engine (Matrix Science, London, 
UK; version 2.2) with following parameter settings. The search was MS/MS ion search. The protease used to gen-
erate peptides was trypsin. Two missed cleavages were permitted. The mass values were monoisotopic. The list of 
all fixed modifications considered included carbamidomethyl (C), and iTRAQ4PLEX (N-terminal), iTRAQ4plex 
(K). The list of all variable modifications included oxidation (M) and iTRAQ4plex (Y). The peptide mass toler-
ance for precursor ions was ±20 ppm. The mass tolerance for fragment ions was 0.1 Da. We used the Decoy data-
base embedded in Proteome Discoverer 2.0 (Thermo Fisher Scientific) to calculate the FDR and set the cutoff to 
<0.01 for a peptide. The retrieved sequences were locally searched against the UniProt GOA database (chicken) 
(https://www.ebi.ac.uk/GOA/chicken_release, Uniprot_Chicken_24083_20150713.fasta) using NCBI BLAST+ 
client software (ncbi-blast-2.2.28 + -win32.exe)57 for annotation. Protein ratios were calculated as the median of 
only the unique peptides for a protein. To exclude experimental bias, we normalized all peptide ratios using the 
median protein ratio. Protein quantification was calculated using the normalized spectral index (SIN)58. Technical 
repeats were accessed by performing a multivariate Pearson correlation analysis with R. To categorize genes into 
specific KEGG pathways, we blasted the annotated proteins against the online KEGG database55. Mapping and 
ID conversion were facilitated using R package ‘org.Gg.eg.db’ in Bioconductor. Downstream analysis and graphic 
plotting for transcriptomic and proteomic data were primarily performed using the Rstudio platform59.

Data Availability
The proteomic raw data were deposited in the ProteomeXchange Consortium via the PRIDE partner repository 
under the dataset identifier PXD008961. The sequenced RNAseq raw data, processed read counts and FPKM file 
were deposited in GEO database of NCBI (Accession Number GES112862).
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