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Novel multimodel ensemble 
approach to evaluate the sole effect 
of elevated Co2 on winter wheat 
productivity
Mukhtar Ahmed  1,2,3, Claudio O. stöckle2, Roger Nelson2, Stewart Higgins2, Shakeel Ahmad4 
& Muhammad Ali Raza  5

elevated carbon-dioxide concentration [eCo2] is a key climate change factor affecting plant growth 
and yield. Conventionally, crop modeling work has evaluated the effect of climatic parameters on crop 
growth, without considering CO2. It is conjectured that a novel multimodal ensemble approach may 
improve the accuracy of modelled responses to eCo2. To demonstrate the applicability of a multimodel 
ensemble of crop models to simulation of eCo2, APSIM, CropSyst, DSSAT, EPIC and STICS were 
calibrated to observed data for crop phenology, biomass and yield. Significant variability in simulated 
biomass production was shown among the models particularly at dryland sites (44%) compared to 
the irrigated site (22%). Increased yield was observed for all models with the highest average yield at 
dryland site by EPIC (49%) and lowest under irrigated conditions (17%) by APSIM and CropSyst. For 
the ensemble, maximum yield was 45% for the dryland site and a minimum 22% at the irrigated site. 
We concluded from our study that process-based crop models have variability in the simulation of crop 
response to [eCo2] with greater difference under water-stressed conditions. We recommend the use of 
ensembles to improve accuracy in modeled responses to [eCo2].

Climate change and food security are two interlinked challenges faced by human beings in the 21st century1. 
World agriculture is under the influence of climate change and it is facing daunting challenges to meet the food, 
fuel and fiber demands. Climate trends across the globe reveal that crop production might be under stress in spite 
of technological advances. Concentration of [CO2] has increased from 280 ppm before the industrial revolution 
to 411.91 ppm now2. Projections of [CO2] at 2100 range from 500–1000 ppm3. The [CO2] may rise to 1000 ppm 
by 2100 with a 2–4 °C increase in temperature along with variable precipitation and more frequent, intense and 
longer extreme events4. Houghton et al.5 reported that [CO2] increased by 35% due to fossil fuel burning and 
land use change from 1990 to 2010. The BERN climate change model projected that [CO2] will change from 390 
ppm to 700–1000 ppm with climate change at the end of century6. Trenberth and Jones7 projected surface tem-
perature increase of 0.74 ± 0.18 °C due to elevated concentration [eCO2]. Global warming due to [eCO2] could 
change earth’s surface temperature from 0.4–2.6 °C in the 2046–2065 window and from 0.3–4.8 °C between 2081 
and 2100 in comparison to the 1986–2005 baseline8. The rise in [CO2] will likely result in increased photosyn-
thesis, reduced stomatal conductance and transpiration, and ultimately higher water- and light-use efficiency in 
plants9–12.

Carbon dioxide is an important substrate of photosynthesis and its elevated concentration results in meta-
bolic changes in crops directly through photosynthesis (A) and stomatal conductance (gs)13. Crops having the 
C3 photosynthetic pathway, currently have suboptimal [CO2], but under [eCO2], photosynthesis might be stim-
ulated. C3 crops have the potential to capitalize on [eCO2] by increasing photosynthetic rates and, thus, provide 
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better growth and yield14. Elevated CO2 (CO2 fertilization effect) will be beneficial for Ribulose 1,5-bisphosphate 
carboxylase/oxygenase (Rubisco) and may inhibit photorespiration and increase photosynthesis. Ainsworth and 
Rogers15 concluded that [eCO2] stimulated light-saturated photosynthesis by 31% and reduced stomatal conduct-
ance by 22% in free-air CO2 enrichment (FACE) experiments. Meanwhile, Kruijt et al.16 concluded that at [eCO2], 
stomatal activity is reduced. This change in stomatal activity resulted in a 50% increase in water use efficiency. 
Varga et al.10 reported increased water use efficiency in winter wheat under stress conditions due to [eCO2] (700–
1000 ppm). Photosynthesis increases with [eCO2] following a Michaelis-Menten curve. The Michaelis–Menten 
constant (Km) could be used to quantify the [eCO2] effects under different temperatures17. Almost 23% of the car-
bon fixed by photosynthesis is lost due to photorespiration and if it is stopped completely, the carboxylation reac-
tion could increase to 53%. It is suggested that with the future rise in [CO2] Rubisco will have higher Km (6.3 to 
15 µM) resulting in higher photosynthetic rate and efficiency15. Tausz et al.14 concluded that photosynthetic accli-
mation or photosynthetic downregulation could be inhibited by [eCO2]. Similarly, [eCO2] resulted in a decrease 
in evapotranspiration (ET)18. Transpiration efficiency could be improved by increased net photosynthesis and 
reduced stomatal conductance19. Radiation use efficiency (RUE) can be defined as biomass produced per unit of 
light energy used by crops. Different process-based crop models use RUE-based functions to moderate the effect 
of [eCO2] on biomass accumulation. Yin and Struik20 proposed a new framework to quantify the conversion effi-
ciency of incident solar radiation into phytoenergy by annual crops. They indicated that for C3 crops the overall 
efficiency of converting incident solar radiation into phytoenergy was 2.2% (RUE = 1.22 g MJ−1) under 400 μmol 
mol−1 [CO2] which could be increased to 3.6% (RUE = 1.75 g MJ−1).

Different approaches have been used to study the effect of [eCO2] on plants growth, development and yield. 
These include FACE experiments9,12,21, open top chamber (OTC)22–24, temperature gradient tunnel (TGT)25 and 
crop modeling. The FACE approach is considered more appropriate compared to other experimental approaches 
as it can provide data that better resemble field conditions. In general, C3 cereal crop response to [eCO2] under 
water stress is comparatively higher (22%) than under irrigated conditions (16%)26. Similarly, increased photo-
synthesis (10–45%) in C3 crops with increased canopy temperature, yield, biomass and water use efficiency and 
decreased stomatal conductance and evapotranspiration have been reported under FACE experiments9. Wheat, 
the main C3 cereal crop, showed reduced stomatal conductance and evapotranspiration with increased photo-
synthesis and canopy temperature under [eCO2]. This resulted in higher biomass and yield in wheat even under 
water stress conditions. Hocking and Meyer27 reported doubled drymatter production in wheat under [eCO2] 
treatments compared to control. Meanwhile, higher water use efficiency (19–23%) under the high N treatment 
was reported in wheat under FACE28. FACE experiments from Australia and China reported a 21–23% increase 
in biomass and 24.8% increase in wheat grain yield under [eCO2]29.

Crop simulation models often used to study crop behavior under changing climate. Many researchers have 
used crop modeling under different climatic scenarios16,26,30–42. The Agricultural Model Intercomparison and 
Improvement Project (AgMIP) studied the impact of climate change on agricultural production and food security 
using process-based crop models43. Crop model comparison under the AgMIP framework revealed that uncer-
tainties in wheat yield simulation increased with increased temperature-by-CO2 interactions44. Similarly, Asseng 
et al.39 tested 30 different wheat crop models in response to elevated temperature and predicted that most of the 
models simulated yield well under baseline conditions, but with increasing spread at the higher future tempera-
tures. Furthermore, Rosenzweig et al.45 found strong negative effects of climate change particularly at higher tem-
perature. However, they recommended further research to minimize uncertainties related to the representation 
of carbon dioxide, nitrogen, and high temperature. Most of the earlier crop modeling work was focused more on 
studying and quantifying the impact of temperature on crop growth, development and yield46–50. They, in general, 
found a reduction in grain yield with some level of uncertainty under higher temperature. Similarly, earlier mod-
eling studies focused on the combined effect of climatic parameters i.e. [eCO2], temperature, nitrogen and drou
ght9,24,34,51,52. Some of the earlier work studied the interaction of increased temperature and CO2

53–55.
The interaction between increasing temperature and [eCO2] is difficult to isolate, and the interpretation of 

projections tend to focus on crop model performance under warming, with limited attempts to understand model 
performance solely in response to [eCO2]. For example56, evaluated the integrated effect of temperature and CO2 
on wheat phenology and yield using CERES and N-Wheat. Similarly, interactive effect of CO2 and temperature 
on soybean [Glycine max (L.) Merr.].

water use efficiency (WUE), foliage temperature, canopy resistance and evapotranspiration were studied 
earlier57. Root Zone Water Quality Model (RZWQM2) was used to model current and future climate change 
effects on winter wheat production but again they studied CO2 fertilization and warming effects in combination58. 
However, a systematic comparison of [eCO2] responses, independent of temperature, of crop models often used 
for climate change projections has not been attempted to our knowledge. The present study was designed to eval-
uate the performance of five process-based crop models (APSIM-Wheat, CropSyst, DSSAT-CERES-Wheat, EPIC 
and STICS) under different levels of [eCO2]. The objectives of the present study were to (i) quantify impact of 
[eCO2] on winter wheat biomass and yield and (ii) bring/suggest accuracy in the models’ response to [eCO2] and 
determine whether a multi-model ensemble approach would minimize uncertainty in climate change simulation.

Results
Biomass response to eCo2. The simulated biomass results at the high rainfall site (Pullman) depicted 
bias among models in response to [eCO2]. All models provided different standard errors (Table 1). Significant 
difference among models for simulated biomass at ambient carbon dioxide concentration was observed with 
highest value simulated by CropSyst and lowest by DSSAT. However, with carbon dioxide concentration at 700 
µmol mol−1 the simualted biomass started increasing with the largest response in STICS, followed by CropSyst 
and APSIM. A smaller response for biomass was simulated in EPIC followed by DSSAT at 700 µmol mol−1. 
Nevertheless, the overall response to [eCO2] was similar among models (Table 1). [eCO2] increased the simulated 
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biomass on average by 34% among all models. The percentage increase of simulated biomass from ambient CO2 
concentration (400 µmol mol−1) to 1000 ppm was 39, 37, 34, 33 and 25% for STICS, DSSAT, CropSyst, APSIM 
and EPIC, respectively.

Biomass accumulation at the low rainfall site (Lind) was more responsive to [eCO2] compared to the high 
rainfall site among all models (Table 1). Overall, biomass accumulation among models was similar but a higher 
biomass was simulated in the EPIC crop model. Table 1 showed that at [aCO2], STICS responded lowest for bio-
mass accumulation followed by DSSAT while on increasing [CO2] to 1000 ppm, biomass accumulation increased 
significantly. The standard error for biomass accumulation in response to [eCO2] remained highest in DSSAT 
followed by EPIC. The range of standard error for DSSAT was 541 to 884 while for EPIC it was 519 to 727. On 
average, all models simulated 44% increase in biomass. The highest biomass percentage change from [aCO2] (400 
µmol mol−1) to to [eCO2] (1000 µmol mol−1) was shown by EPIC (48%) followed by STICS (46%). However, 
overall order of increase was EPIC > STICS > CropSyst > APSIM > DSSAT.

The effect of [eCO2] on biomass accumulation at the irrigated site (Moses Lake) revealed that it did not 
increase significantly with increased [CO2] compared to the other two sites. The highest response to [eCO2] was 
observed for CropSyst which ranged from 23198 to 27860 kg ha−1. APSIM simulation for biomass accumulation 
in response to [eCO2] ranged from 19301–22947 kg ha−1 with standard error of 312–350. Similarly, DSSAT simu-
lated wheat crop biomass was 18216 kg ha−1 at [aCO2] (400 µmol mol−1) which increased to 26615 kg ha−1 at 1000 
ppm, [CO2]. The standard error for simulated biomass was highest for DSSAT (Table 1). Genearlly, all five crop 
models agreed with the assumptions that elevated atmsospheric CO2 concentrations increases crop biomass but 
the effect was more prominent at the low rainfall site (Lind) compared to the well watered site (Moses Lake). The 
average percentage change in response to [eCO2] by all models at the irrigated site was 22%. The highest percent-
age change in biomass from ambient to [eCO2] concentration was observed in DSSAT (32%) followed by STICS 
(27%). However, the lowest change was simulated in APSIM. The overall order of increase in biomass was DSSA
T > STICS > EPIC > CropSyst > APSIM.

The outcome of biomass ratio by APSIM against increased CO2 concentration showed an increasing trend 
with the highest response at the Lind compared to the irrigated one (Moses Lake). The biomass ratio remained 
similar between low and high rainfall sites at 500 µmol mol−1 but at higher concentrations it became significantly 
different (Fig. 1a). However, the trend was higher at the low rainfall site and lower at the high rainfall site after 900 
µmol mol−1. The biomass ratio increase at the irrigated site remained close to 1.2 while at the low and high rainfall 
sites it reaches to 1.5 and 1.8, respectively (Fig. 1a).

The response of CropSyst simulation to elevated CO2 for biomass ratio revealed that it remained highest at the 
dryland site compared to the irrigated and high rainfall sites. The overall trend among all locations was increasing 
but at the irrigated site the increase was not too high (Fig. 1b). Overall, CropSyst and APSIM depicted similar 
trends for biomass ratio at all three locations.

With the increased CO2 concentrations from baseline 400 µmol mol−1 to 1000 µmol mol−1, the DSSAT 
crop model depicted a linear increase in biomass ratio among all locations (Fig. 1c). However, like APSIM and 
CropSyst, the biomass ratio remained highest at dryland site followed by the high rainfall and irrigated sites. The 
difference among sites in response to [eCO2] was not too much as seen earlier in APSIM and CropSyst (Figs 1a 

aCO2 (µmol mol−1) eCO2 (µmol mol−1)

400 500 600 700 800 900 1000

Pullman WA

APSIM 14501 (416) 16928 (462) 17975 (344) 18929 (514) 20422 (526) 21490 (535) 21538 (543)

CropSyst 16661 (538) 19060 (574) 20987 (585) 22609 (583) 23899 (578) 24825 (568) 25332 (563)

DSSAT 14081 (600) 15601 (661) 17149 (722) 18599 (779) 19935 (831) 21171 (878) 22239 (917)

EPIC 14863 (194) 16352 (204) 17502 (211) 18399 (216) 19101 (221) 19649 (224) 20074 (227)

STICS 16305 (380) 19241 (471) 21574 (529) 23370 (562) 24839 (596) 25954 (621) 26865 (643)

Lind WA

APSIM 7230 (334) 9300 (341) 10119 (344) 11133 (369) 11725 (372) 12234 (378) 12627 (385)

CropSyst 7003 (403) 8173 (467) 9248 (519) 10285 (563) 11223 (599) 11971 (625) 12359 (644)

DSSAT 6395 (541) 7239 (601) 8112 (664) 8940 (723) 9703 (782) 10424 (836) 11057 (884)

EPIC 7622 (519) 8997 (565) 10348 (620) 11768 (682) 13016 (698) 14128 (707) 14629 (727)

STICS 5396 (318) 6515 (360) 7750 (486) 8814 (349) 9364 (424) 9801 (472) 10001 (457)

Moses Lake, WA

APSIM 19301 (312) 20518 (328) 21338 (339) 21921 (344) 22347 (346) 22677 (349) 22947 (350)

CropSyst 23198 (421) 25109 (448) 26186 (462) 26854 (471) 27302 (477) 27623 (482) 27860 (485)

DSSAT 18216 (600) 20094 (586) 21911 (571) 23444 (569) 24693 (587) 25776 (595) 26615 (602)

EPIC 19135 (343) 21233 (398) 22105 (562) 22757 (500) 23596 (502) 24566 (544) 24127 (553)

STICS 16242 (218) 17552 (226) 18723 (234) 19755 (240) 20640 (245) 21432 (251) 22138 (258)

Table 1. The simulated historical (1979–2010) mean performance of winter wheat biomass (kg ha−1) under 
ambient (aCO2) and elevated carbon dioxide (eCO2) at a high rainfall site near Pullman, WA, at a low rainfall 
site near Lind, WA and at an irrigated site near Moses Lake, WA. (Note: Standard errors (SE) of mean of the 
simulated data are in parentheses).
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and 2c). Similarly, in contrast to APSIM and CropSyst, the DSSAT response to [eCO2] increased linearly. To some 
extent, APSIM and CropSyst depicted sigmoid trends for simulated biomass ratio in response to [eCO2].

EPIC depicted an increasing trend for biomass ratio in response to [eCO2]. The trend was more prominent 
at the low rainfall site. The biomass ratio was similar at high rainfall and irrigated sites from 400 to 500 µmol 
mol−1 while at higher concentrations it increased at the high rainfall site compared to the irrigated site (Fig. 1d). 

Figure 1. Biomass (a–e) and yield (f–j) ratios of wheat under elevated carbon-dioxide concentration [eCO2] 
for APSIM, CropSyst, DSSAT, EPIC, and STICS at three Pacific Northwest sites. Three coloured lines represents 
sites at Pacific Northwest with ± standard errors and each box represents Model outputs for Biomass and Yield. 
Means are averaged over three replicates.
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However, the EPIC biomass ratio response for high rainfall and irrigated sites remained significantly different 
from the other models.

The STICS response to [eCO2] showed a similar increasing trend like other models for the dryland site fol-
lowed by the high rainfall site (Fig. 1e). However, the response remained similar among high and low rainfall site 
up to 500 µmol mol−1 while at higher concentrations it increased sharply at the low rainfall site. Biomass ratio at 
the irrigated site increased linearly but remained lower than the other two sites.

Yield response to eCo2. The impact of [eCO2] on grain yield showed increasing trends by all five crop 
models at the high rainfall site (Pullman). The highest yield at [aCO2] 400 µmol mol−1 was simulated by 
STICS (7101 kg ha−1) followed by APSIM (6368 kg ha−1). The lowest yield at [aCO2] was predicted by DSSAT 
(6214 kg ha−1). The range of standard errors at 400 µmol mol−1 was 209–239 with a highest standard error with 
EPIC. However, on moving from ambient CO2 concentration (400 µmol mol−1) to 700 µmol mol−1, the highest 
yield was simulated by STICS (10013 kg ha−1) followed by APSIM and CropSyst. The standard error range for 
grain yield at 700 µmol mol−1 was 255–323 with the highest standard error shown by STICS. The yield response 
at 1000 µmol mol−1 CO2 concentration showed that STICS simulated the highest yield (11353 kg ha−1) while 
the lowest was depicted by DSSAT (8835 kg ha−1). The standard error at 1000 µmol mol−1 CO2 ranged from 
274–343 (Table 2). Overall, the average percentage increase in grain yield by all models from 400 to 1000 was 34%. 
However, the highest increase was observed in CropSyst and STICS (38%) followed by APSIM where it remained 
37%. The lowest percentage change was observed for EPIC (26%) followed by DSSAT.

The simulated grain yield increased significantly as a function of CO2 concentration at the low rainfall site 
(Table 2). The average yield increase among all models from [eCO2] to 1000 µmol mol−1 was 45%, comparatively 
higher than high rainfall site where it was 34%. The highest percentage increase was shown by EPIC (49%) and 
STICS (46%) followed by CropSyst (44%), APSIM (43%) and DSSAT (42%). The grain yield at [aCO2] was in 
the range of 2339–3159 kg ha−1 with the highest yield simulated by EPIC. Similarly, standard error ranged from 
134–249 with the highest error depicted by EPIC. On increasing CO2 concentration, yield increased linearly 
with the highest response shown by EPIC. The yield response trend at 700 µmol mol−1 CO2 revealed that EPIC 
(4937 kg ha−1) predicted highest wheat yield followed by CropSyst (4189 kg ha−1), STICS (4017 kg ha−1), DSSAT 
(3675 kg ha−1) and APSIM (3503 kg ha−1). The standard error at 700 µmol mol−1 CO2 concentration was in the 
range of 158–304 with highest standard error depicted by DSSAT. Similarly, at 1000 µmol mol−1 CO2 the yield 
remained highest (6162 kg ha−1) for EPIC followed by CropSyst (5058 kg ha−1). The standard error ranged from 
195–376 with the highest error depicted by DSSAT.

The models’ simulated results of grain yield for the irrigated site (Moses Lake) in response to elevated [eCO2] 
showed a linear relationship (Table 2). The highest response was with CropSyst at ambient as well as eCO2 com-
pared to other models. The highest yield at [aCO2] was 10559 kg ha−1 with a standard error of 184. However, the 
highest standard error (350) was observed for DSSAT with the grain yield of 8322 kg ha−1. Overall, the average 
grain yield at [aCO2] combind over all models was 8608 kg ha−1. The range of standard error at 400 µmol mol−1 
CO2 was 142–350. On increasing CO2 from 400 to 700 µmol mol−1, the yield increased among all models. The 
maximum yield was simulated by CropSyst (12213 kg ha−1) followed by DSSAT at 700 µmol mol−1 CO2. The range 
of standard error at 700 µmol mol−1 CO2 was 165–367 with highest standard error for DSSAT. A similar trend was 

Figure 2. Asymptotic DSSAT response to elevated CO2. Wheat uses an asymptotic look-up multiplier on RUE 
for the relative response to elevated CO2 to produce biomass. The asymptotic look-up multiplier for modeled 
effects of elevated CO2 on RUE is given in the WHCER045.spe file. Regression equation was fitted to show the 
response of CO2 factor, photosynthesis with CO2 reference and validated by coefficient of determination (R2).
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observed at 1000 µmol mol−1 CO2 with standard error in the range of 169–395. The average percentage increase 
in grain yield among all models from 400 to 1000 µmol mol−1 CO2 was 22% which was almost 50% less than the 
Lind. The highest percentage increase was with DSSAT (30%) followed by STICS (26%). However, the percentage 
change in yield from [aCO2] to [eCO2] concentration in EPIC was 12%. APSIM and CropSyt percentage response 
to [eCO2] in comparison to [aCO2] was similar (17%).

Water use efficiency response to eCO2. The effects of elevated [CO2] on WUE depicted positive trend 
by all five crop models with the highest WUE at [eCO2] compared to [aCO2] at all sites. WUE results at Pullman 
showed that crop model STICS simulated highest WUE at all level of [CO2] as compared to all other models. 
However, the lowest WUE was shown by crop model EPIC in response to [eCO2] (Table 3). Water use efficiency 
results at low rainfall site revealed that APSIM simulated the lowest value of WUE while EPIC depicted the high-
est value at all level of CO2. However, under irrigated conditions maximum WUE was simulated by CropSyst 
while it remained minimum for crop model STICS and APSIM. Generally, all model showed increasing trends 
for WUE in relationship with an increased concentration of CO2. On average among models [eCO2] resulted to 
the increased WUE as when we move from [aCO2] to [eCO2] at all sites and it was 12–19% for Pullman, 11–20% 
for Lind and 14–18% for Moses Lake respectively (Table 3).

The yield ratio for APSIM at three sites showed that the value of this ratio was a function of CO2 (Fig. 1f). 
However, this response was significantly different among the several climatic locations. The highest yield ratio was 
obtained for water stress conditions where it increased from 1 to 1.8 followed by the high rainfall site (Pullman) 
where the change was from 1 to 1.6. However, the lowest yield ratio was obtained at the irrigated site where it 
remained in the range of 1–1.2.

The yield ratio response to [eCO2] for CropSyst depicted higher increasing trend under water stress condi-
tions compared to irrigated (Fig. 1g). The yield ratio response between high and low rainfall was similar at 500 
µmol mol−1 CO2 but at higher concentrations, the increase was more prominent at the low rainfall site. The yield 
increase ratio at the water stress site was from 1 to 1.8 while under high rainfall conditions it was from 1 to 1.5. 
The response to [CO2] at the irrigated site remained in the range of 1 to 1.2. The yield ratio response of APSIM 
was similar to CropSyst (Fig. 2d–f).

The simulated yield ratio response of DSSAT revealed that it was more linear and directly related to [CO2] 
under water stress conditions than APSIM and CropSyst (Fig. 1h). However, the increased ratio (1–1.7) was a lit-
tle bit lower than DSSAT. The other difference in DSSAT simulated yield ratio response compared to APSIM and 
CropSyst was that it showed similar trends for high rainfall and irrigated conditions. The range was from 1–1.4.

The yield ratio trend simulated by EPIC was significantly different among locations (Fig. 1i). The highest yield 
ratio (1–2.0) was observed under water stress conditions. EPIC response to [eCO2] was similar to other crop 
models (APSIM, CropSyst and DSSAT) particularly under water stress conditions. However, under high rainfall 
and irrigated conditions, the yield ratio remained similar untill 500 µmol mol−1 above which it increased at the 
high rainfall site. The range of increase at the high rainfall site was 1–1.4. In contrast to other crop models, EPIC 
depicted a decreasing trend under irrigated conditions.

aCO2 (µmol mol−1) eCO2 (µmol mol−1)

400 500 600 700 800 900 1000

Pullman WA

APSIM 6368 (209) 7222 (235) 8040 (253) 8782 (264) 9417 (268) 9882 (271) 10132 (274)

CropSyst 6268 (225) 7223 (248) 8040 (264) 8782 (278) 9417 (289) 9882 (294) 10132 (294)

DSSAT 6214 (216) 6768 (232) 7298 (245) 7772 (255) 8184 (265) 8551 (272) 8835 (277)

EPIC 6148 (239) 6764 (243) 7239 (246) 7610 (248) 7900 (250) 8127 (251) 8302 (253)

STICS 7101 (226) 8340 (278) 9284 (303) 10013 (323) 10606 (345) 11044 (351) 11353 (343)

Lind WA

APSIM 2339 (134) 2757 (136) 3112 (146) 3503 (158) 3795 (171) 3963 (183) 4129 (195)

CropSyst 2842 (167) 3320 (194) 3759 (217) 4189 (237) 4584 (253) 4897 (266) 5058 (275)

DSSAT 2643 (226) 2988 (251) 3339 (277) 3675 (304) 3980 (329) 4269 (354) 4524 (376)

EPIC 3159 (249) 3748 (264) 4329 (265) 4937 (267) 5472 (311) 5948 (351) 6162 (370)

STICS 2369 (150) 2892 (135) 3480 (236) 4017 (165) 4217 (206) 4314 (236) 4381 (267)

Moses Lake, WA

APSIM 7853 (166) 8609 (168) 9109 (179) 9209 (185) 9311 (193) 9413 (197) 9429 (203)

CropSyst 10559 (184) 11424 (195) 11911 (202) 12213 (206) 12416 (208) 12561 (210) 12668 (212)

DSSAT 8322 (350) 9125 (352) 9888 (357) 10541 (367) 11107 (377) 11594 (387) 11970 (395)

EPIC 7995 (142) 8866 (164) 9224 (230) 9510 (293) 9877 (305) 10297 (345) 10120 (367)

STICS 7353 (155) 7989 (158) 8529 (161) 9020 (165) 9466 (168) 9768 (192) 9915 (227)

Table 2. The simulated historical (1979–2010) mean performance of winter wheat yield (kg ha−1) under 
ambient (aCO2) and elevated carbon dioxide (eCO2) at a high rainfall site near Pullman, at a low rainfall site 
near Lind and at an irrigated site near Moses Lake, WA. (Note: Standard errors (SE) of mean of the simulated 
data are in parentheses).
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With the increase in CO2 from baseline 400 µmol mol−1 to 1000 µmol mol−1, the STICS model depicted yield 
increase as a function of CO2 concentration at all locations (Fig. 1j). The dominant trend was observed at the 
dryland site similar to previous model results followed by yield ratio outcomes at the high rainfall site. The lowest 
ratio was obtained under non-stressed conditions (Fig. 1j). The range of yield ratio increase for the dryland site 
was 1–1.8 while for high rainfall site it was 1–1.6. The increased yield ratio at the irrigated site was in the range 
of 1–1.3.

Discussion
Crop models can be used to see the impact of various climatic variables on crop biomass and yield under chang-
ing climate. These models have been continuously refined to give a realistic picture of different climatic var-
iables impacts on crop production. However, models have limitations in the prediction of crop responses to 
global change factors59. Challinor et al.60 and Soussana et al.33 emphasized the need to improve crop models for 
assessments of climate change. Since most of the models need improvements in climate impact assessment, we 
evaluated five different process-based models under eCO2. The models we tested simulated increased biomass 
on average by 34% but this trend was greatest under dryland conditions as compared to irrigated. This difference 
could be because of lower stomatal conductance and reduced transpiration which might result in higher water 
use efficiency. Earlier work concluded that [eCO2] alone will increase biomass and yield in C3 crops as photo-
synthesis of C3 plants are not CO2‐saturated and photosynthesis rates increases under [eCO2]. The two major 
plant responses e[CO2] are (i) increased net photosynthesis with a consequent increase in crop growth and yield, 
and (ii) decreased stomatal conductance and increase crop water use efficiency12,61. Similar to our work some 
studies suggest that these responses become very important under water-limited conditions and they reported 
greater e[CO2] response by plants under drier conditions because of greater water use efficiency61. Furthermore, 
buffering action of e[CO2] has been reported against heat waves which resulted in the increased crop production 
under semi‐arid environments. Specific genotypic adaptation strategies have been suggested to capture the pos-
itive effects of elevated [CO2] under drier conditions62. Thus, under dryland conditions, small amounts of water 
could contribute to enhanced photosynthate production and its translocation to the grain63. Manderscheid et al.64 
reported increased biomass under [eCO2] by 17% with significant CO2 × N interaction and this can be increased 
further up to 30% by +200 ppm of CO2. Hence, similar to our modeling outcomes it has been suggested that 
under eCO2 crop water use of well-fertilized wheat will improve due to reduction in seasonal evapotranspiration. 
Fitzgerald et al.65 reported a large response to e[CO2] and suggested field level research to provide a detailed 
mechanistic understanding for adapting crops to climate change. O’Leary et al.29 reported that elevated CO2 (700 
μmol mol−1) increased leaf area index (21%), photosynthetic area index (25%) and biomass (23%). However, our 
biomass response to eCO2 was slightly higher than reported by Ainsworth and Long66 and was consistent with 
Kimball9. e[CO2] experiments in Nanjing China who reported a 13.6% increase in biomass, but their maximum 
CO2 was 550 μmol mol−1. The relatively small increase in their experiment was because of a decrease in bio-
mass between heading and maturity while positive effects were found during pre-anthesis growth phases which 
resulted in higher grain yield67. Carboxylation and oxidation of ribulose 1,5-bisphosphate (RuBP) are going on 
in C3 plants due to enzyme Rubisco. Under e[CO2] inhibition of Rubisco oxygenation/photorespiration occurs 

aCO2 (µmol mol−1) eCO2 (µmol mol−1)

400 500 600 700 800 900 1000

Pullman WA

APSIM 12.29 ± 0.31 13.94 ± 0.27 15.52 ± 0.31 16.95 ± 0.36 18.18 ± 0.37 19.07 ± 0.39 19.56 ± 0.40

CropSyst 12.01 ± 0.30 13.94 ± 0.27 15.52 ± 0.31 16.95 ± 0.35 18.18 ± 0.38 19.07 ± 0.40 19.56 ± 0.41

DSSAT 12.00 ± 0.32 13.06 ± 0.35 14.09 ± 0.39 15.00 ± 0.37 15.80 ± 0.38 16.51 ± 0.39 17.06 ± 0.41

EPIC 11.87 ± 0.29 13.06 ± 0.33 13.97 ± 0.37 14.69 ± 0.33 15.25 ± 0.36 15.68 ± 0.39 16.03 ± 0.42

STICS 13.71 ± 0.33 16.10 ± 0.40 17.92 ± 0.38 19.33 ± 0.35 20.47 ± 0.39 21.32 ± 0.39 21.92 ± 0.43

Lind WA

APSIM 9.67 ± 0.35 11.39 ± 0.43 12.86 ± 0.43 14.48 ± 0.43 15.68 ± 0.45 16.38 ± 0.46 17.06 ± 0.47

CropSyst 11.74 ± 0.37 13.71 ± 0.42 15.53 ± 0.45 17.30 ± 0.48 18.94 ± 0.49 20.23 ± 0.51 20.90 ± 0.52

DSSAT 10.92 ± 0.33 12.35 ± 0.39 13.80 ± 0.41 15.19 ± 0.42 16.45 ± 0.43 17.64 ± 0.45 18.69 ± 0.47

EPIC 13.05 ± 0.36 15.49 ± 0.44 17.89 ± 0.47 20.40 ± 0.50 22.61 ± 0.52 24.58 ± 0.55 25.46 ± 0.59

STICS 9.79 ± 0.32 11.95 ± 0.43 14.38 ± 0.43 16.60 ± 0.45 17.43 ± 0.46 17.83 ± 0.43 18.10 ± 0.47

Moses Lake, WA

APSIM 13.09 ± 0.35 14.35 ± 0.40 15.18 ± 0.41 15.35 ± 0.42 15.52 ± 0.43 15.69 ± 0.44 15.72 ± 0.45

CropSyst 17.60 ± 0.37 19.04 ± 0.41 19.85 ± 0.43 20.36 ± 0.44 20.69 ± 0.45 20.94 ± 0.47 21.11 ± 0.48

DSSAT 13.87 ± 0.35 15.21 ± 0.39 16.48 ± 0.41 17.57 ± 0.43 18.51 ± 0.44 19.32 ± 0.45 19.95 ± 0.43

EPIC 13.33 ± 0.36 14.77 ± 0.41 15.37 ± 0.43 15.85 ± 0.44 16.46 ± 0.45 17.16 ± 0.46 16.87 ± 0.48

STICS 12.26 ± 0.37 13.32 ± 0.42 14.22 ± 0.43 15.03 ± 0.45 15.78 ± 0.47 16.28 ± 0.42 16.56 ± 0.45

Table 3. Water use efficiency (WUE) of winter wheat (kg ha−1 mm−1) under ambient (aCO2) and elevated 
carbon dioxide (eCO2) at a high rainfall site near Pullman, at a low rainfall site near Lind and at an irrigated site 
near Moses Lake, WA. (Note: Standard errors (SE) of mean of the simulated data are represented as ±).
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which results in higher photosynthesis and biomass production. According to Long et al.68 a 200 ppm rise in CO2 
could theoretically result in a 40% increase in photosynthesis per unit of leaf area which is considerably higher 
than experimental results69. Fitzgerald et al.70 tested the hypothesis that biomass and yield response to e[CO2] is 
greater in semi‐arid agroecosystems or not and they measured biomass and yield increase up to 79% well above 
the measured highest response (34%) by Liu et al.71. Shimono et al.72 suggested different prescreening techniques 
which could be used for identification of elevated CO2-responsive genotypes. However, among these techniques, 
we suggest process-based crop models as a good option to test CO2-responsive genotypes among different plant 
species. Kumagai et al.73 proposed that the Finlay–Wilkinson relationship could be used as a pre-screening cri-
terion for e[CO2] responsiveness, which is regression based, while crop models provide a detailed mechanistic 
approach.

Variable yield responses were simulated by models under e[CO2], however, the largest response was observed 
at Lind compared to Moses Lake, where it was lowest (Table 2). This magnitude of yield response was higher than 
the findings of O’Leary et al.29 and Yang et al.74 who reported an average increase of 26% and 24.8% respectively. 
Deryng et al.75 reported increased crop yield under rising CO2 which might be because of enhanced photosyn-
thesis and reduced water use. Simulation modeling is a complex process as it involves interactions of multiple 
factors thus simulation by individual crop model might contain uncertainties. Quantifying the impact of climate 
change (e.g. elevated CO2, rising temperature and variability in rainfall) on crop yield by single crop model is 
problematic as suggested by different researchers44,76,77. Therefore, ensemble multi-models for simulation of cli-
mate change impacts could be a good option as proposed in the present study and in earlier work. Transpiration 
efficiency (TE) needs to be considered as an important mechanism in models for explaining response of increased 
crop yield under dryland conditions and elevated CO2

78. Similar to our findings yield stimulation due to e[CO2] 
was reported by Fitzgerald et al.70 but it was in the higher range of 24% to 70% depending upon environment 
(Fig. 1). Similarly, they reported that heat wave effects could be ameliorated under e[CO2]. Long et al.68 reported 
that [CO2] of 200 ppm above ambient could result in a 10–20% increase in crop yield. However, Ziska et al.79 
studied the impact of [CO2] on quantitative and qualitative traits of wheat varieties and concluded that elevated 
CO2 resulted in increased seed yield while grain and flour protein declined. Similarly, lower nutritional quality in 
grains of non-legume crops was reported by Jin et al.80 due to e[CO2]. C-N-P stoichiometry of terrestrial plants to 
the rising CO2 concentration showed that concentrations of N, P and N:P will decrease by −9.73%, −3.23% and 
−7.23% while C and C:N will increase by +2.19 and +13.29% respectively81.

Water use efficiency is the amount of grain produced per unit of water used by the crop. Elevated CO2 con-
centration improved the water use efficiency with more positive effect under stress condition compared to the 
well-watered plants. This could be due to the fact that under water-limiting and [eCO2] conditions photosynthetic 
CO2 uptake response increases resulting in the higher CO2 fixation. In present studies, the highest WUE was 
simulated by the crop model EPIC at low rainfall site while for all other models increasing trend was observed. 
Different studies10,19,29,82 discussed the positive effect of [eCO2] on WUE which could be due to reduced sto-
matal conductance resulting to lower canopy transpiration and crop water use12,83,84. However, negative WUE 
were reported by earlier researchers and they suggested upgradation in the code of models to have a sufficiently 
strong effect of CO2 on stomatal conductance and on transpiration85. Similarly, stomatal resistance also regulates 
photosynthesis and transpiration and it affected by CO2 and vapor pressure deficit (VPD)86. Thus, leaf level CO2 
exchange rate and stomatal closure have association with VPD which increases with temperature and have a 
strong relationship with radiation use efficiency (RUE)87–90. Our study suggests integrating the effects of all these 
crucial factors in the models so that they can simulate results in a biologically realistic manner. Since most of the 
models are unable to accommodate these factors particularly under [eCO2] thus we recommend using model 
ensemble or adapt physiological mechanisms in the model. Therefore, it is necessary to consider these findings 
in process-based models to have better response under eCO2. The response to e[CO2] in our studies suggested 
further evaluation/improvement of models, particularly under stressed conditions. Models could be improved by 
local calibration with consideration of radiation use efficiency (RUE) and transpiration efficiency(TE) methods 
of biomass accumulation. Similarly, temperature and light intensity interactions with eCO2 should be considered, 
which will render models more effective for future climate change studies.

Conclusion
Model response to [eCO2] showed significant increases in biomass and yield of wheat. Overall models were able 
to capture [eCO2] response but with differences in response to environmental conditions. The response was 
higher under dryland conditions compared to irrigated which could be because of lower stomatal conductance 
and transpiration resulting in higher water use efficiency. However, to have more accurate simulation results from 
models it is important to calibrate the model under local dryland conditions and consider the interactive effect 
of light intensity with [eCO2]. In the future models could be used to pre-screen large numbers of germplasms for 
[eCO2] responsiveness at relatively low cost. Process-based crop models have variability in the simulation of crop 
response to elevated CO2 with a greater difference under water-stressed conditions. An ensemble approach will 
increase the accuracy of model response to elevated CO2.

Materials and Methods
Five process-based crop models were evaluated in the present study: APSIM-Wheat91,92, CropSyst93,94, 
DSSAT-CERES-Wheat95, EPIC96 and STICS97,98. These models were chosen because of their wide use in climate 
change studies and their ready availability. The focus of this evaluation was on biomass and yield responses to 
[eCO2], with attention to changes in crop transpiration, biomass and grain yield. The relevant details of the 
approaches used in these models to simulate the response to [eCO2] are described below.
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APSIM. APSIM (Agricultural Production system SIMulator) is a dynamic daily time step model that can 
simulate crop growth, development and yield using different management and biophysical modules. It is capable 
of simulating soil C, N, P and water dynamics in interactions with different management/crops systems driven 
by daily meteorological data (Solar radiation, maximum and minimum temperatures, rainfall). Radiation-use 
efficiency (RUE) approach is used to calculate daily potential production of crops which is then limited to actual 
above ground biomass production on a daily time step basis by N, P and soil water availability92. Soil water 
balance is simulated by cascading bucket approach of CERES99 through SOILWAT and SWIM3 modules100. 
APSIM wheat includes potential response to [eCO2] of RUE and transpiration efficiency (TE). The dynamic RUE 
response with varying [eCO2] is a non-linear relationship while TE is linearly related to [eCO2]. A multiplier 
(plant_rue_co2_modifier) increases RUE with [eCO2] as shown in Eq. 1, where [CO2ref] is the reference atmos-
pheric CO2 concentration at which the multiplier’s value is one. An increase in [eCO2] from 350 to 700 ppm at a 
mean temperature of 20 °C will bring a 21% increase in RUE101. RUE is scaled by the ratio of light limited photo-
synthetic response at the elevated CO2 compared with CO2 at 350 ppm.

=
− Γ + ⋅ Γ
+ ⋅ Γ − Γ

C co rue modifier eCO
eCO

3_ 2_ _ ([ ] ) ([CO2ref] 2 )
([ ] 2 )([CO2ref] ) (1)

2

2

where [eCO2] is the elevated target CO2 concentration (ppm), [CO2ref] refers to the reference CO2 concentration 
and Γ is the CO2 compensation point with Γ = −

− . ⋅
T

T
163

5 0 1
av

av
 where Tav is the mean temperature (°C). TE increases 

by 37% with an increase in [eCO2] from 350 to 700 ppm. These values are based on glasshouse experiments with 
wheat102 supported and validated by FACE field experiments103 as reported by Reyenga et al.104.

CropSyst. CropSyst is multi-year, multi-crop, daily time-step cropping system model. It can simulate the 
effect of management, soil and climate on crop growth, development and yield. Detail of CropSyst model is avail-
able on the website (http://modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/index.html). The [eCO2] effect on crop 
biomass can be simulated by CropSyst which relies on biomass accumulation under experimental elevated CO2 
(Ca). Ca in CropSyst is expressed as the ratio of growth under elevated Ca (Ceo) to growth under control baseline 
Ca (Cbo). The subscript, “o”, represents experimental conditions. A Michaelis-Menten-type equation models rela-
tive biomass growth (Gr) in response to Ca (Eq. 2).

=
+

G C G
C s (2)r

a x

a

Gr (relative biomass growth similar to leaf photosynthesis response to intercellular CO2 concentration) will be 
less than 1.0 if Ca < Cbo and vice versa. Gx (maximum growth increases relative to baseline conditions) and s can 
be obtained after considering Gr = 1.0 (Ca = Cbo) and equal to Gro when Ca = Ceo (Eqs 3–4).
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The value of e for a given elevated Ca (ee) is calculated by considering ee = eGr. Stomatal resistance (u) is also 
considered in CropSyst under elevated Ca as it reduced transpiration ratio F (elevated to baseline Ca crop tran-
spiration per unit leaf area). Thus, u under elevated Ca (ue) is given by ue = uGr/F. Both e and u are parameters 
specified for baseline Ca conditions. Stockle et al.86, presented calculation of stomatal resistance as a function of 
Ca. Meanwhile, F could be calculated as the ratio of elevated to baseline Ca considering aerodynamic and canopy 
resistance94.

CERES-Wheat. CERES-Wheat embedded in Decision Support Systems for Agrotechnology Transfer 
(DSSAT, v 4.7) uses daily time step from planting to maturity to simulate the growth and development of crops105. 
Potential growth (Gp) is a function of photosynthetically active solar radiation (PASr) and its interception (Si) 
by crops but limited by suboptimal temperature, soil water, N and P deficits. Cardinal temperature approach has 
been used in CERES-Wheat to simulate temperature effects on crop growth and grain filling with an optimum 
temperature of 34 °C106,107. CERES-Wheat uses an asymptotic look-up multiplier on RUE for the relative response 
to elevated CO2 to produce biomass. The asymptotic look-up multiplier for modeled effects of elevated CO2 on 
RUE is given in the WHCER045.spe file (Fig. 2). The CERES-Wheat model simulates the effect of elevated CO2 
on actual transpiration by increasing stomatal resistance as a function of CO2 concentration.

An approach for reducing transpiration as a function of rising CO2 was developed for the DSSAT models 
in the early 1990s by J.W. Jones and L.H. Allen (personal communication, see TRANS routine of DSSAT code). 
The computations include equations for leaf stomatal resistance (Rs) response to 330 ppm or current CO2, whole 
canopy stomatal resistance (Rc) to reference or current CO2 (dividing Rs by total LAI), and canopy boundary layer 
resistance (Ra) as a function of LAI. Finally, a ratio effect (Tratio) of CO2 (current CO2 versus 330 ppm reference 
CO2) to reduce daily transpiration is computed in the following equation, considering the psychrometric constant 
(δ), gamma (γ), canopy resistances (Rc), and boundary resistance (Ra) (Eq. 5).

δ γ δ γ= + × . + + × . +T R R R R( (1 0 / ))/( (1 0 // )) (5)c a c aratio
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EPIC. Environmental Policy Integrated Climate (EPIC) model is a cropping systems model which can simulate 
crop growth, development and yield in response to climatic variables, crop and soil management. The phenolog-
ical development of plant is function of temperature and it is based on daily heat unit accumulation. Potential 
growth is linked with interception of solar radiation and estimated by Beers law96. EPIC uses logistic equation to 
simulate the effect of [eCO2] on RUE (Eq. 6).

=
⋅

+ −
RUE CO

CO b b CO
100

[ exp( )] (6)
2

2 1 2 2

where RUE is radiation-use efficiency and CO2 is the [eCO2]. The parameters b1 and b2 can be calculated by solv-
ing the equation for two known points (RUE and CO2) on the response curve86.

STICS. STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) is a generic soil-crop model that 
can simulate crop growth, soil water and N balance on a daily time step108,109. Crop growth is determined through 
plant carbon accumulation, solar radiation interception by the foliage and transformation into different plant 
parts. Growing degree days are used to simulate crop phenology and it is a function of temperature, water and 
N stress. The water budget calculates water in soil and crop and water stress indices reduces leaf growth and net 
photosynthesis of crop. Radiation use efficiency (RUE) concept is used to calculate shoot biomass while overall 
biomass accumulation is function of phenology, temperature, water and N stress. STICS uses a RUE approach 
to simulate the effect of [eCO2] on biomass production as proposed by Stӧckle et al.86. The effect of [eCO2] on 
stomatal resistance is applied on a model adapted from Shuttleworth and Wallace110. STICS directly calculates 
daily above ground biomass which is the net result of photosynthesis, respiration and root/shoot partitioning. 
This daily accumulation is a function of intercepted radiation according to a parabolic law involving maximum 
RUE109. Maximal RUE values are given as input parameters in STICS which depend on species and phenological 
stages. For example, RUE values are low during the juvenile phase, and RUE for oil seed crops diminishes during 
the filling phase.

Study sites. This study was conducted for three variable climatic sites in US Pacific Northwest (PNW) using 
the above five crop models. The sites include Pullman, Moses Lake and Lind. The altitude of Pullman is 756 m at 
latitude 46°44′N and longitude of 117°10′W and it comes under high rainfall. The average historical (1979–2010) 
annual rainfall in Pullman is 474.70 mm with crop seasonal rainfall of 518 mm while actual evapotranspiration 
at pullman was 474.66 mm with maximum, minimum and average temperature of 12.51, 1.92 and 7.21 °C. Moses 
Lake is an irrigated site with altitude of 326 m and longitude 47°32′N and latitude of 119°54′W. The average histor-
ical temperature during the winter wheat crop season at Moses Lake was 8.68 °C with minimum and maximum 
tempearure of 3.03 and 14.32 °C, respectively. Seasonal rainfall received during historical simulation time period 
at Moses lake was 200 mm while 400 mm of irrigation was also applied during wheat growing season. Lind is a 
low rainfall site with average annual rainfall of 216.15 mm and seasonal rainfall of 242 mm. The altitude of Lind 
is 505.35 m at latitude 47°00′N and longitude of 118°56′W. Historical average temperature at Lind was 7.1 °C with 
minimum and maximum temperatures of 1.14 and 13.05 °C respectively. The historical actual evapotranspiration 
at Lind was 251.2 mm.

Soil data. The soil of the Pullman site was silty clay loam with bulk density of 1.35 g cm−3. Soil texture at 
Lind was coarse silt loam with bulk density of 1.31 g cm−3. Field capacity in the specific root zone at Pullman 
was 0.30 mm mm−1 while wilting point water in specific root zone was 0.12 mm mm−1. The soil series of Pullman 
was Palouse which is a deep well drained soil. The textue of Lind was coarse silt loam having sand, silt and clay 
percentages of 21.7, 70.8 and 7.5, respectively. The bulk density at Lind was 1.31 g cm−3 with field capcity of 
0.33 mm mm−1 and wilting point of 0.007 mm mm−1.The soil series at Lind was Lind which is a deep poorly 
drained soil. The irrigated site, Moses Lake, was in the Ephrata soil series, and had sandy loam soil texture with 
drain upper limit of 0.40 mm mm−1 while the lower limit was 0.27 mm mm−1. Bulk density of soil at Moses Lake 
was 1.41 g cm−3.

Models calibration. APSIM v. 7.7, CropSyst v.4.19.06, DSSAT v. 4.7, EPIC v. 0810 and STICS v.8.4 were 
calibrated to observed data for crop phenology, LAI, biomass and yield. Biomass and yield were calculated at 
maturity of crop. The input data used to calibrate the models and set initial soil water conditions are presented in 
Table 4. After calibration all models were used to simulate winter wheat phenology, biomass and yield for all three 
sites for the baseline years 1979–2010.

[eCo2]. After calibration, biomass and grain yield of winter wheat was simulated for [eCO2] of 400, 500, 600, 
700, 800, 900 and 1000 µmol mol−1. Water use efficiency (WUE) in kg ha−1 mm−1 were calculated by using fol-
lowing equations:

=WUE at Pullman and Lind Grain Yield
Seasonal Rainfall (7)

=
+

WUE at Moses Lake Grain Yield
Seasonal Rainfall Irrigation (8)

Statistical analysis. Simulation outcome for winter wheat biomass and grain yield in response to [eCO2] 
during 1979–2010 was used to calculate average. Standard error was calculated for biomass and yield. The average 
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biomass and yield at 400 ppm were considered as baseline. The ratio in biomass and yield change were calculated 
for all other concentrations of CO2 using 400 ppm as baseline. The ratio was plotted against CO2 concentration 
to see models’ response to [eCO2] and uncertainty among the models. Average with standard error for WUE was 
calculated in response to [eCO2].
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Parameters

High Rainfall Low rainfall Irrigated

Pullman Lind Moses Lake

Input Data
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