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Improving the homogeneity 
of diffraction based colours by 
fabricating periodic patterns with 
gradient spatial period using Direct 
Laser Interference Patterning
Bogdan Voisiat1, Wei Wang1, Max Holzhey1 & Andrés Fabián Lasagni1,2

This study focuses on the development of a strategy to produce periodic structures with a variable 
spatial period for increasing the homogeneity of structural colours by means of direct laser interference 
patterning. Using a four-beam interference configuration, hole-like periodic arrays are produced 
on stainless steel with a 70 ps pulsed laser source operating at 532 nm laser wavelength. The laser 
processing parameters are optimised for obtaining patterns with the highest possible diffraction 
efficiency and thus showing the highest possible colour intensity. A model for calculating the required 
spatial period to obtain a defined colour under specific conditions of illumination and observation 
angles is presented. A very good agreement between the captured structural colour spectrum and 
the real visible spectrum of light was obtained. In addition, a strategy for mixing holographic colours, 
in particular for obtaining the white colour is developed. Finally, the developed model is successfully 
integrated into machine software, in order to automatically process images that exhibit required 
colours at certain viewing conditions. The produced patterns are characterised using confocal 
microscopy and the efficiency of the first diffraction order was measured by optical spectroscopy.

Laser surface texturing is an effective method to produce microstructures on different materials in a single-step 
process for a large range of applications1–3. In the last decades, different technologies such as laser induced peri-
odic surface structures (LIPSSs) and Direct Laser Interference Patterning (DLIP) have been utilised to produce 
repetitive patterns on the surfaces of various materials (including metals, semiconductors and dielectrics) in 
order to functionalise these surfaces4–8.

In particular, when repetitive periodic patterns are fabricated for instance on metallic surfaces, characteristic 
colour effects (e.g. rainbow colour) have been reported, making this principle very interesting for producing var-
iable information marking elements with high potential in marking industry9–11.

LIPSS are a universal phenomenon that occurs on different solids when they are irradiated with polarised 
laser radiation12. These structures are in general characterised by (quasi-) periodic lines, whose spatial period 
correlates with the wavelength of the used laser source and whose orientation depends on the polarisation of the 
radiation4. Furthermore, different mechanisms have been suggested for explaining the formation of these fea-
tures, such as interference effects of the incident laser with surface plasmon waves and self-reorganization of the 
irradiated material13,14. LIPSS have been observed on a large variety of materials (including metals, semiconduc-
tors and dielectrics)15 using a broad range of pulse durations, ranging from continuous wave irradiation16 down 
to a few femtoseconds (fs)17.

One of the most promising applications of LIPSS arises from the fact that they can act as diffractive gratings, 
and thus are capable to generate structural colours. Depending on the size of the LIPSS (spatial period) as well 
as their orientation, different shades of structural colours throughout the visible part of the spectrum are can be 
achieved. For instance, using a fs-laser, the optical properties of different metals, including aluminium, gold and 
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platinum, have been modified using this concept4,18. Other examples of LIPSS for inducing structural colour on 
steels, copper and semiconductors have been also reported19–23.

A very relevant research in this field has been reported by Dusser et al.20. This pioneer work showed the pos-
sibility of achieving well-defined structural colour by a precise control of size and orientation of LIPSS by chang-
ing different laser parameters such as pulse energy, polarization direction, spot size and overlapping of spots. A 
drawback of using LIPSS for the generation of structural colours is the imperfect final surface topography, which 
reduces the diffraction efficiency and thus the diffracted light intensity. In addition, since LIPSS present in gen-
eral a line-like geometry, the diffracted colours are visible mainly in the perpendicular direction of the periodic 
ripples.

This drawback can be overcome using Direct Laser Interference Patterning (DLIP), which is based on the 
formation of interference patterns by overlapping two or more coherent laser beams. The interference patterns 
consist on a periodic modulation of the laser intensity, which can be used to selectively modify the surface of a 
material24–28. Furthermore, numerical simulations have permitted to determine the most relevant variables that 
can be used to control the shape and size of the patterns, including laser light polarization, number of beams, 
relative intensity and incidence angle29,30. In contrast to LIPSS, the spatial period can be controlled independently 
of the target material by changing the angles of interception between the beams or by switching the laser wave-
length. However, since the laser wavelength in general cannot be easily modified, the spatial period is controlled 
by adjusting the interfering angle. For example using a two-beam setup, line-like geometries can be produced 
with a spatial period (Λ) defined by Eq. 1:

λ
θ

Λ =
2 sin( )

,
(1)

where λ is the laser wavelength and θ is the half angle between the two incident beams. As it can be observed from 
Eq. 1, the minimum achievable spatial period is half of the used laser wavelength.

Using this method, the fabrication of periodic patterns for obtaining structural colours has been reported as 
well31. The main idea behind this work is to produce spots (40–80 µm in diameter) containing the interference 
patterns, which are used to produce the periodic gratings locally on the surface of the material. By varying the 
spatial period of the produced holographic-spots, different colours can be obtained at different positions under 
identical illumination conditions. Furthermore, this technology has been already used for producing decorative 
elements on large size metallic sleeves (300 mm in diameter and 300 mm in length) for R2R-hot embossing appli-
cations32. For the largest decorative elements (117 mm × 68 mm) a total of 553 million of individual pixels (spots) 
were fabricated with 3 different spatial periods. In addition, DLIP optical modules have been also developed 
permitting a fully automatised variation of the spatial period and geometry33,34.

In recent years, various commercially available DLIP systems have been developed, such as DLIP-µFAB and 
DLIP-Cube, where the DLIP optics have been combined with galvanometer scanning systems allowing a signifi-
cant increase in throughput35.

As mentioned before, both methods (LIPSS and DLIP) have been employed to locally control the morphology 
of produced patterns and thus to obtain structural colours. However, due to the nature of the diffraction phenom-
ena and especially for large areas, periodic patterns under real illumination conditions exhibit rainbow colours 
(the whole spectrum of the incident light) making it difficult to produce decorative elements with a homogenous 
structural colour. In addition, white colour cannot be produced using this approach, since it results from a com-
bination of different wavelengths (corresponding to red, green and blue colours).

This study focuses on the development of a strategy to produce periodic structures with variable spatial period 
for increasing the homogeneity of structural colours using the DLIP method. By using a four-beam interference 
optics and a ps-pulsed laser source, symmetric hole-like periodic arrays are produced on stainless steel. Firstly, 
the laser processing parameters are optimised for obtaining patterns with the highest possible diffraction effi-
ciency (and thus with the highest colour intensity). A theoretical model to calculate the required spatial period 
for obtaining a defined colour under specific conditions of illumination and observation is presented. In addition, 
a strategy for producing white colour is introduced. Finally, as an example a stainless steel substrate is structured 
using the strategies presented in this work to reproduce an arbitrary image with different colours.

Materials and Methods
Sample preparation. Flat samples of stainless steel (304) were utilised for the DLIP laser process since this 
material can be used in a wide range of applications, in particular where decorative elements can be applied. The 
used samples had a thickness of 0.7 mm with an average surface roughness (Ra) of 52 nm. The substrates were 
used as received.

Picosecond direct laser interference patterning. The laser processing was performed using a 
self-developed DLIP system (DLIP-μFAB, from Fraunhofer IWS). Four laser beams were used to obtain hole-like 
interference patterns. The area of the interference ranged from 30 μm to 120 µm allowing the formation of dec-
orative motifs with a resolution between 200 and 850 DPI. The laser beam radius was measured at a level of 1/e2 
using a beam profiling camera. The compact DLIP system is equipped with a Nd:YAG laser source (Q-switched, 
from NeoLase), which operates at 532 nm laser wavelength, emitting the fundamental transverse mode (TEM00) 
with a M² (laser beam quality factor) below 1.2. The laser source provides 70 ps pulses with a repetition rate fixed 
to 1 kHz, yielding pulse energies up to 26 µJ. The main component of the DLIP system consists of a DLIP optical 
head in which the input laser beam is split into four sub-beams by a diffractive optical element (DOE). By using 
a fused silica prism, these sub-beams are parallelised and finally overlapped using a convex lens. Since small 
spatial periods are required for obtaining the decorative elements, a lens with a short focal distance (60 mm) 
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was used. This optical setup allows the automatic control of the spatial period from 1.75 µm to 4.59 µm, which is 
achieved by changing the angle of incidence of the beams at the samples’ surface (additional information about 
this setup has been already published elsewhere36). The samples were moved in the horizontal (X) and vertical (Y) 
directions using translational stages (Aerotech, USA) at a speed of 100 mm/s. These stages permit to treat areas 
up to 200 mm × 200 mm. All experiments were carried out in ambient environment and no post treatment was 
performed.

Surface characterization. The treated surfaces were characterised using Confocal Microscopy (LeicaSCAN 
DCM3D) with a 150X magnification objective providing lateral and vertical resolutions of 140 nm and 1 nm, 
respectively. Using this objective, a total area of 351 µm × 264 µm could be recorded in each measurement. 
Optical photographs were acquired with a high-resolution camera (Nikon D5100) equipped with zoom objective 
(AF-S DX NIKKOR 18–105 mm 1:3.5–5.6 G ED VR) and fixed under controlled position and inclination with 
respect to the treated samples using a standard tripod.

Results and Discussion
Theoretical calculations. It is well known that when light interacts with a periodic structure, it is diffracted 
with a certain diffraction angle, which depends on the wavelength as well as on the spatial period of the repetitive 
structure. This angle can be calculated for the first diffraction order, using Eq. 2 (for light reaching the surface 
perpendicularly):

θ λ= Λarcsin( / ), (2)storder1

where Λ is the spatial period of the periodic structure and λ the wavelength of light diffracted at the angle θ1st order.
However, a characteristic “rainbow” colour will be perceived especially for large areas, since the light reaching 

the observer (from the first diffraction orders) has different viewing angles (e.g. θobs1, θobs2) and thus different 
wavelengths (λ1, λ2 see Fig. 1a).

Differently, if a variable structure is produced, which means that the spatial period changes depending on the 
position at the substrate, it is possible to calculate the needed “local” spatial period in order to see only a specific 
colour depending on the angle of incidence of the light source and the position of the observer. This situation can 
be obtained by applying Eqs 3 to 5 and is illustrated in Fig. 1b:
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
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where L and h describe a lateral and vertical position of the observer, respectively, m corresponds to a difraction 
order, d is a relative position of the spatial period, θi is an angle of incident of the light source (in Fig. 1b, θi = 0) 
and Λ (d) is the required spatial period as a function of the position d.

Figure 1. Schematic representation of diffraction of white light by a surface containing (a) a periodic structure 
with a constant spatial period Λ and (b) a gradient periodic surface structure with a variable period following 
Eqs 3 to 5.
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Due to the characteristic of the DLIP method, a precise control of the spatial period as a function of the 
position d is possible, which might be very difficult to achieve using other laser based methods (e.g. LIPSS). This 
strategy was applied in the next subsections for increasing the homogeneity of structural colours using the DLIP 
method.

Improving the efficiency of 1st diffraction orders. In a first approach, the influence of the structure 
depth of the produced hole-like patterns on the efficiency of the diffracted light was evaluated for different spa-
tial periods. An example of a treated stainless steel sample, using the four-beam interference setup is shown in 
Fig. 2a. In this case, the spatial period was 1.8 µm and the patterns were obtained with different spot sizes (50, 80, 
95 and 120 µm) and laser pulse energies (9, 15, 19 and 26 µJ) that correspond to the fluence ranging between 0.7 
and 11.4 J/cm². Also the number of laser pulses applied per spot was varied between 1 and 5 pulses. As it can be 
seen in Fig. 2c, the material was selectively ablated at the interference maxima positions obtaining a characteristic 
hole-like geometry. The total treated area for an individual pixel can be also seen in Fig. 2b, corresponding to a 
diameter of approximately 50 µm.

To control the structure depth of the produced hole-like patterns, both the number of laser pulses and the laser 
fluence were changed. The influence of the above mentioned parameters on the structure depth is shown in Fig. 3 
for three different spatial periods: 1.8 µm, 2.6 µm, 5.7 µm.

As it can be seen, byincreasing the number of used pulses or the laser fluence, the structure depth could 
be increased as well up to 0.40 µm, 0.52 µm and 0.79 µm, for the spatial periods 1.8 µm, 2.6 µm and 5.7 µm, 
respectively.

In order to determine the relation between the structural colour intensity and the fabricated periodic struc-
ture depth, quantitative measurements of the diffraction efficiency for the first diffraction orders were performed 
using the setup shown in Fig. 4a. The measured diffraction intensities for the evaluated spatial periods (1.8 µm, 
2.6 µm and 5.7 µm) are shown in Fig. 4b. As it can be seen, the maximum efficiency was obtained for a struc-
ture depth of approximately 0.3 µm for all spatial periods. For structure depths over and below this value, lower 
diffraction efficiencies were measured for all the studied periods. In consequence, for the next experiments we 
targeted a structure depth of ~0.3 µm for all utilised spatial periods in order to obtain the highest colour intensity.

The intensity of the diffraction orders is directly related to the gratings’ diffraction efficiency, which according 
to scalar diffraction theory depends on the arbitrary groove shape within the gratings’ period37. For example, the 
highest first order efficiency of the most popular rectangular shaped grating in reflection mode is reached when 
the groove depth is equal to one quarter of the incident wavelength. The grooves of the laser fabricated gratings 
are not square-shaped, therefore the optimum depth is different but still related to the incident wavelength. In this 
case, the peak represents the average optimum depth for all wavelengths within the analysed visible spectrum.

In a second set of experiments, the stainless steel surfaces were processed with different spatial periods rang-
ing from 1.75 µm to 4.59 µm. Then structured areas were photographed at the same conditions using the photo 
camera fixed at a permanent position on a tripod as shown in Fig. 5a. The camera was positioned at a lateral posi-
tion distance L of 205 mm and at height h of 500 mm, resulting in an observation angle υobs of 22.3°. The results 
show that for this condition, the visible spectrum of light could be seen for spatial periods ranging from 1.74 µm 
to 2.59 µm (the 5 bottom rows in Fig. 5b, which are plotted in respect to the structure period in Fig. 5d), corre-
sponding to wavelengths between 467 nm and 694 nm (calculated using Eq. (2)). It is known that the visible spec-
trum ranges from 380 nm (violet colour) to 750 nm (red colour) (see Fig. 5c) corresponding to grating periods 
from 1.35 µm to 2.78 µm, when the observation conditions of the 1st diffraction order are the same as in Fig. 5a. 
It means that the spectrum that was captured with the camera is not covering the violet part of the 1st diffraction 
order’s spectrum. Instead, this part of the spectrum was visible on the right side of the captured colour spectrum 
(between 2.4 µm and 2.6 µm periods), which corresponds to the blue side of the 2nd order diffraction spectrum 
that in turn starts straight after the 1st order (see Fig. 5c).

After that, different periods obtained from the last experiment were selected for reaching a specific colour at 
the position d = 0 (see Fig. 1) in order to validate the hypothesis of this work. The same periods were used for 
processing a reference sample, in which the spatial periods were not changed as a function of the position d. The 
selected Λ values are reported in Table 1.

Figure 2. (a) Photograph of the stainless steel surface treated with different number of pulses (from 1 to 5) and 
laser fluences (from 0.7 to 11.4 J/cm²); (b) confocal image of DLIP holographic pixels on the steel surface with 
a diameter of approximately 50 µm; (c) typical hole-like pattern with a spatial period of 1.8 µm and a structure 
depth of 0.3 µm (the used laser fluence was 1.9 J/cm² and 3 pulses were applied).

https://doi.org/10.1038/s41598-019-44212-4


5Scientific RepoRts |  (2019) 9:7801 | https://doi.org/10.1038/s41598-019-44212-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

A photograph of the treated reference stainless steel sample with constant spatial periods across the structured 
area is shown in Fig. 6a. As it can be seen, at the position d = 0 (upper part of the structured area), the target 
colours are in good agreement with the previous experimental results. However, due to the used constant spatial 
period to treat the sample, the characteristic rainbow colours could be observed across the processed areas (as 
explained before, see Fig. 1a).

Taking into consideration the length d of the treated area (d = 40 mm), we proceeded to calculate the needed 
spatial periods in order to obtain the homogeneous structural colours using Eqs 3 to 5. The calculated values are 
reported in Table 1. The results of the developed strategy are shown in Fig. 6b. As it can be seen in this case, the 
obtained colours are homogeneous and almost do not differ as a function of the position d.

Important to mention is the limitation in size of the images that can be produced, since larger images require 
larger variations of the spatial period. As it can be seen from Table 1, the red colour requires the largest spatial 

Figure 3. Depth of the produced hole-like patterns as a function of the applied number of laser pulses and laser 
fluence for (a) 5.7 µm, (b) 2.6 µm and (c) 1.8 µm spatial periods.

Figure 4. (a) Setup of the spectroscopic device used to measure the intensity of the first order diffraction 
efficiency and (b) measured first diffraction order intensity for the hole-like periodic patterns with 1.8 µm, 
2.6 µm and 5.7 µm spatial periods. The maximal measured intensity was obtained for a structure depth of 
approximately 0.3 µm for all periods.
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periods. Thus, taking into consideration that the largest period that can be produced with our optical setup is 
Λ = 4.59 µm, the largest size d of decorative elements that can be produced with this strategy can be calculated to 
d = 105 mm (for a viewing angle of 22° and height of 50 cm).

Colour

Spatial period (µm)

Non-homogenous 
strategy

Homogenous 
strategy

Blue 1.74 1.74–2.11

Light blue 1.83 1.83–2.21

Green 1.98 1.98–2.34

Yellow 2.16 2.16–2.62

Orange-yellow 2.20 2.20–2.66

Orange 2.23 2.23–2.70

Red 2.37 2.23–2.86

Table 1. Utilised spatial periods for obtaining different structural colours when a constant (non-homogeneous 
strategy) and variable (homogenous strategy for increasing the homogeneity of structural colours) spatial 
periods over the sample surface are used (at a viewing angle of 22° and height of 50 cm, for d values ranging 
from 0 to 40 mm).

Figure 6. Stainless steel samples treated with (a) constant spatial periods; (b) variable spatial periods to 
increase the homogeneity of the structural colours and (c) with multiple variable spatial periods for mixing 
colours (following the strategy of Fig. 7).

Figure 5. (a) Schematic representation of the used sample and observer (camera) positions; (b) photograph 
of a treated stainless steel sample with spatial periods ranging from 1.75 µm to 4.59 µm (size of each square is 
1.5 mm); (c) schematic representation of diffracted withe light for the first and second diffraction orders; (d) 
optical micrograph of the observed structural colours depending on the spatial period for an observation angle 
of 22°.
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A disadvantage of the structural colours based on diffraction patterns, is the impossibility to obtain the white 
colour. The reason is due to the fact that the periodic structures decompose the white light as discussed before 
(see Eq. 1). However, it is known that white colour (or any other colour) can be obtained by mixing for instance 
red, green and blue light at certain intensities38. Thus, we also proceed to develop a strategy to produce homoge-
nous white structural colour using DLIP.

This strategy consisted on mixing periodic structures in order to obtain homogenous red, green and blue 
colours (also following the before reported strategy as well as the values reported in Table 1). Therefore, dif-
ferent rows for producing the above-mentioned colours were consecutively placed over the steel substrates as 
schematically shown in Fig. 7. After performing the calculations, an area of 5 mm by 40 mm was processed on 
the electro-polished stainless steel surface. The result can be observed in the photograph shown in Fig. 6c taken 
also at a viewing angle of 22° and height of 50 cm. As it can be seen in the image, the colour of the fabricated area 
is not completely white. This is because the intensity of each RGB component that is captured by the camera is 
different. As mentioned before, each colour component corresponds to a different wavelength, which requires 
a certain structure depth to reach the same diffraction efficiency (same colour intensity). However, as shown in 
Fig. 4, slight variations of the structure depth lead to significant changes in the diffraction intensity. Therefore, in 
order to improve the appearance of the white colour in the future, further calibrations are required, which consist 
of varying the structure depth for each individual colour and measuring the RGB intensity in the recorded picture 
so that the required ratio between the intensity of each colour components can be reached.

Finally, we proceeded to produce a decorative image on stainless steel following the developed strategy. The 
target image (rainbow on a grass field, see Fig. 8a) has all 7 selected colours and additional white colour (clouds), 
which requires clusters of holographic pixels of green, red and blue colour. The sun in the image was left black, to 
show the possibility of producing this colour. In the last case, the area was not modified by the laser process. The 
size of the produced image was 40 mm by 30 mm and the spatial periods to fabricate each colour were calculated 
also with Eqs 3 to 5. The photographs of the fabricated image in Fig. 8b–f are rotated by 90°, which means that 
the top position (d = 0) is located at the left side of the image. As it can be observed in Fig. 8b, the obtained image 

Figure 7. Developed strategy to obtain homogenous white structural colour, by mixing the diffracted blue, red 
and green wavelengths.

Figure 8. (a) Target “Rainbow” picture and observed structural colours under different viewing angles of (b) 22° 
(target angle) and (c) 25°; (d) at a viewing angle of 22°, but with the sample rotated by 180°, (d) 90° and (e) 45°.
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is very similar to the target image at an observation angle of 22° and a height of 50 cm. Furthermore, the gradual 
vertical variation of the colours could be satisfactory eliminated for the target viewing angle. However, it has to 
be mentioned that these colours can be observed only for the selected viewing conditions. This means that under 
other observation positions, the colours will vary, but still their vertical variation can be avoided (see Fig. 8c).

In case when the sample is rotated around the surface normal, other effects arise. For example, when the sam-
ple is rotated by 180°, under the same observation angle (22°) and height (50 cm) the rainbow colour (gradual 
variation of the colour) will be observed in horizontal direction, since now the largest spatial periods are located 
at the position d = 0 mm (see Fig. 8d). A similar effect is also observed after rotating the sample 90°, but in this 
case, the rainbow affect is visible along the image diagonal (see Fig. 8e). When the sample is rotated by 45°, a 
significant drop in the intensity of the colours is observed, because the diffraction plane is misaligned with the 
observation angle (see Fig. 8f).

The manufacturing time for processing such image (40 mm × 30 mm) highly depends on both the used laser 
source and the beam positioning system. The used stages in this work permit a maximal speed of 200 mm/s. 
However, the dynamic properties of the particular stages are highly inertial which limited the fabrication speed 
down to 100 mm/s, resulting in a fabrication time of roughly 10 min. Nevertheless, the fabrication time can be 
highly reduced to few seconds when utilizing most powerful commercially available lasers (i.e. 100 W laser with 
2 MHz frequency), as well as utilizing DLIP optics which have been already combined with galvanometer scan-
ners, demonstrating processing speeds of 60 cm²/min39.

Conclusions
In this work, a strategy to produce decorative elements with target structural colours was developed. This strategy 
consisted on producing periodic surface patterns with variable spatial period depending on the position at the 
substrate. Furthermore, using a mathematical model the needed spatial periods were calculated as a function of 
the target colour as well as the sample and viewer position.

The variable period patterns were fabricated on stainless substrates using DLIP and characterised by confocal 
microscopy and reflective spectrometry. A very good agreement between the observed and calculated structural 
colours for the defined observation conditions was achieved. In addition, a strategy for mixing colours and thus, 
for obtaining white colour (which cannot be produced directly using structural colours with periodic surface pat-
terns), was developed. Finally, the developed model was successfully integrated into machine software, in order 
to automatically process images.

Data Availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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