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An integration-to-bound model of 
decision-making that accounts for 
the spectral properties of neural 
data
Ramón Guevara erra1,2, Marco Arbotto3 & Aaron schurger  4,5,6,7

Integration-to-bound models are among the most widely used models of perceptual decision-making 
due to their simplicity and power in accounting for behavioral and neurophysiological data. they 
involve temporal integration over an input signal (“evidence”) plus Gaussian white noise. However, 
brain data shows that noise in the brain is long-term correlated, with a spectral density of the form 1/
fα (with typically 1 < α < 2), also known as pink noise or ‘1/f’ noise. Surprisingly, the adequacy of the 
spectral properties of drift-diffusion models to electrophysiological data has received little attention 
in the literature. Here we propose a model of accumulation of evidence for decision-making that takes 
into consideration the spectral properties of brain signals. We develop a generalization of the leaky 
stochastic accumulator model using a Langevin equation whose non-linear noise term allows for varying 
levels of autocorrelation in the time course of the decision variable. We derive this equation directly 
from magnetoencephalographic data recorded while subjects performed a spontaneous movement-
initiation task. We then propose a nonlinear model of accumulation of evidence that accounts for the 
‘1/f’ spectral properties of brain signals, and the observed variability in the power spectral properties of 
brain signals. Furthermore, our model outperforms the standard drift-diffusion model at approximating 
the empirical waiting time distribution.

Neurophysiological recordings and behavioral data support the view that decision-making in humans is 
intrinsically a noisy process. This is clearly demonstrated in the most popular model of decision-making, the 
drift-diffusion model (DDM). The DDM has, over three decades or so, accounted for a large amount of exper-
imental evidence - behavioral and more recently electrophysiological1–10. An internal random variable called 
‘evidence’ quantifies the amount of information in favor of a given decision. Accumulated evidence evolves in 
time during the decision process, until it reaches a threshold and a decision is made (integration to bound). 
Mathematically, the DDM is a stochastic differential equation for the accumulated evidence (z), with a drift 
(deterministic) term, quantifying the rate of accumulation of evidence, and a diffusion (stochastic) term. We con-
sider a more general version of the DDM currently used in the literature, by adding leakage to the drift term. This 
model is usually referred as a “leaky stochastic accumulator model”7 (LSA, also known as the Ornstein-Uhlenbeck 
process11). It is given by the stochastic differential equation,

Γ= + +
dz
dt

az b t( ), (1)

where a and b are constant coefficients, and Γ(t) is additive Gaussian white noise. The distribution of reaction 
times and other behavioral variables, as well as their neurophysiological correlates have been modeled using this 
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approach. The typical assumption in the literature is that there is a constant drift rate and (possibly also) leak in 
the deterministic part of the stochastic differential equation (SDE), and that the diffusion part is given by constant 
white noise. Equation (1) can be seen as a particular case of a more general SDE, the Langevin equation, widely 
used in physics, chemistry and biology to model stochastic processes11,12. The Langevin equation contains two 
additive terms, a deterministic g(z, t) and a stochastic h(z, t) term, which are functions of z and t (in the following, 
we will refer to them as deterministic and stochastic functions),

Γ Γ= + = +
dz
dt

g z t h z t t D z t D z t t( , ) ( , ) ( ) ( , ) ( , ) ( ), (2)
(1) (2)

where we have also expressed the equation in terms of D(1)(z, t) and D(2)(z, t), which are, respectively, the drift 
and diffusion coefficients of the corresponding Fokker-Planck equation12. The LSA (equation (1)) is a Langevin 
equation with g(z) = az + b and h(z) = 1.

Within the context of behavioral experiments, the LSA fits the data well. However, the possibility that a more 
general Langevin process (equation (2)) is taking place during decision making remains an open question: as 
recent work indicates, neurophysiological measures may also reflect the process of accumulation of evidence1,6,9 
and we hypothesize that the corresponding stochastic process may differ from the standard diffusion model. 
Therefore, in this study we set out to use neurophysiological data to check for possible generalizations of the 
standard diffusion model, by attempting to reconstruct the underlying stochastic process directly from the data.

The reconstruction of dynamical systems has a long history within the framework of nonlinear dynamics13. 
Recently, data-based reconstruction has been extended to noisy systems, in particular, to a large class of dynam-
ical systems (the so-called Markovian systems, characterized by the lack of memory effects) that can be mod-
eled by the Langevin equation14,15. In a neurophysiological context, this method has been successfully applied to 
EEG data to derive the underlying brain dynamics during epileptic seizures16. Interestingly, the derived Langevin 
equation strongly differs from drift-diffusion models of decision-making. In particular, the diffusion coefficient 
has a nonlinear dependence on voltage for both within- and between-seizure periods. This is an important fact, 
that points towards the possible presence of nonlinearities in the Langevin coefficients both in abnormal brain 
dynamics and in normal subjects, and emphasizes the general importance of the specific nonlinear dependen-
cies of Langevin coefficients for discriminating physiological states. If these nonlinearities were present dur-
ing the accumulation of evidence, then an important revision of current accumulator models might be called 
for, especially in contexts where the drift term is quite small relative to the noise, as in the case of spontaneous 
self-initiated movement7,9,17.

A second important aspect of neurophysiological data is that its spectral properties seem to be connected 
to brain function. Recent investigations into the nature of background pink noise (or ‘1/f ’ noise, with spectral 
density given by a power law 1/fα) in the central nervous system have begun to reveal that the degree of autocor-
relation in resting-state brain activity may be crucial for brain function18. The spectral properties of this back-
ground noise change in different task contexts and with different states of vigilance (for example during sleep). 
The standard diffusion model, having a constant diffusion coefficient, cannot generate noise with variable 1/f 
exponent. Indeed, its output has fixed spectral density of 1/f  2 (Brownian noise), whereas pink noise has 1/fα with 
α in the approximate range 0 < α < 2. If the character of the noise itself matters to neuronal computation and 
ensuing behavior, then allowing flexible autocorrelation SDE models can lead to novel and powerful predictions 
that can be formally tested. With the surge of interest in so-called “resting-state” brain activity and 1/f noise in 
the brain, attention may begin to shift towards modeling the noise more faithfully (the diffusion process) and not 
just the drift coefficient.

Here we derive diffusion models of decision-making from the underlying neural activity. We also develop a 
generalization of the leaky stochastic accumulator model using a Langevin equation whose non-linear stochastic 
term allows for trajectories with varying levels of temporal autocorrelation, referred as ‘nonlinear model’, because 
it is nonlinear both in the deterministic and the stochastic part of the corresponding Langevin equation. Both the 
LSA and the nonlinear model are deduced using a data-driven approach, whereby we reconstruct the coefficients 
of the Langevin equation from experimental data. We applied this approach to magnetoencephalographic (MEG) 
data recorded while subjects performed a spontaneous movement task19. This kind of task has recently been 
modeled using a leaky stochastic accumulator, with the “evidence” (drift term) being very small7,9, representing 
an inclination to possibly initiate movement sometime in the near future. On the basis of the reconstructed SDE 
we built behavioral models through an optimization procedure, in such a way that the models’ output approach as 
much as possible the empirical waiting time distributions. The nonlinear model represents the simplest diffusion 
model that accounts for accumulation of evidence while staying true to the spectral properties of brain signals. 
In addition, this nonlinear model better approximates the empirical waiting time distribution, as compared to 
the LSA.

Results
Magnetoencephalographic data modeled with a Langevin equation. The magnetoencephalogra-
phy (MEG) data recorded while subjects performed spontaneous self-initiated movements (see Methods) reveal 
a characteristic accumulation process, typical of decision making paradigms (in the following we denote the 
MEG signals from magnetometers as x, measured in units of femto Tesla [f  T = 10−15 T]; since MEG is reference 
free and no specific baseline was applied, x represent relative values). This consisted of activity that slowly grows 
with time towards a saturation point, and then returns to baseline. This can be seen in Fig. 1, showing MEG 
magnetometer’s signals averaged over trials and presented as a topographic map over the surface of the head. The 
slowly developing averaged fields were mostly present over centro/parietal sensors, and can be associated with 
the late positive evoked potential, previously observed in electroencephalography (EEG) experiments on decision 
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making7. One important goal was to analyze not the averaged activity, but individual trial activity. We treated 
individual-trial MEG signals as outcomes of a stochastic processes, which, on average, give rise to slow-wave 
fields showing accumulation of evidence. In other words, we assume, as in a large part of the literature, that the 
process of accumulation of evidence correlates with slowly changing potentials. But we concentrate on individual 
trials to acquire information about the underlying stochastic process, considering that any averaging procedure 
might mask this relevant information.

As explained in detail in the Methods section, we followed a fitting procedure assuming that the underlying 
stochastic process can be described by a Langevin equation. It is possible to fit the Langevin equation (by fitting 
we mean calculating its deterministic and stochastic parts), to the first and second moments of the input data. 
This data-driven approach was applied to two types of data sets: Case 1: data sets consisting of concatenated trial 
traces (the input data in the algorithm is a vector that contains all of the available trials, see Methods section for 
the definition of a trial). Case 2: the traces from individual trials themselves (the input for the algorithm is the 
vector of all data samples of a single trial, see Methods section). The logic behind this two-tiered approach was 
that the algorithm performs better for a larger amount of data (Case 1, with an input vector consisting of all the 
data samples available, that is, all the available trials), whereas individual trial traces should better reflect the 
underlying stochastic process (there are changes in the underlying dynamics from trial to trial, so Case 2 should 
better represent the dynamics of individual trials). The results were the following.

Case 1: concatenated trials (input data: all trials). In Fig. 2 we show a typical example of the output of the fitting 
algorithm for case 1. The left-side graph depicts the deterministic part of the Langevin equation (function g(x) in 
the Langevin equation, equal to the drift coefficient in the corresponding Fokker-Planck equation12) and as can 
be seen, it is possible to fit it to a straight line, g(x, t) = mx + n.Here, the X axis is x, the magnetic flux through indi-
vidual SQUIDs, measured in the standard units (T = Tesla, and amplitude of magnetic flux have values typically 
in the fT range [fT = 10−15 T]) used in MEG experiments and the Y-axis is the function g(x) as in equation (2), cal-
culated using equations (6) and (7) (Methods section). The right-side graph is the stochastic part of the Langevin 
equation (function h(x)), the square root of the diffusion coefficient in the corresponding Fokker-Planck equation 
that was best fit by a parabola, h(x, t) = px2 + qx + r.

This result can be summarized in the following equation,

Γ= + + + +
dx
dt

mx n px qx r t( ) ( ), (3)
2

There is variation of the coefficients m, n, p, q, r across channels. This can be observed in the topographic maps 
of magnetometer signals shown in Figs 3 and 4 for g(x) and h(x) respectively.

Figure 1. Evoked responses and topography. Evoked responses (event-related fields or ERFs) at magnetometers 
from a representative subject (subject 5). Magnetic fields are measured in Tesla (T) and typically in the f  T (10−15 
T) range, and time is measured in seconds. (A) Multiple plot, (B) Topography at a latency of 0.1 seconds before 
the button press (subject response) and (C) Evoked response at a representative channel: MEG0441.
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Case 2: individual traces (input data: one trial). The Langevin functions of single trials do not follow the same 
functional dependency on x as in the case above. Indeed, the best fit for the deterministic part of individual trial 
traces is not linear but cubic (Fig. 5), in equations,

Γ= + + + + + +
dx
dt

ax bx cx d Ax Bx C t( ) ( ) ( ), (4)
3 2 2

whereas the stochastic function is still quadratic. It is useful to compare the functional form of the deterministic 
parts of the Langevin equation in both (3) and (4). It is observed that individual trials are well fitted to cubic 
functions, and the coefficients of the fit are different for every trial. We conclude that this is the best fit to the 
underlying dynamics represented by MEG signals observed in centro/parietal regions.

The coefficients a, b, c, d and A, B, C in equation (4) vary across trials and channel location. This is illustrated in 
Fig. 6, where trial-averages of the coefficients were represented topographically on scalp maps. The trial-averaged 
topographies were calculated as follows: the coefficients (a, b, etc) were calculated for each trial at each channel. 
Subsequently, trial averages of the coefficients were taken at each channel. Note that, in contrast to Case 1, here the 
trial average was taken over the fitted coefficients (each coefficient fitted on a single trial, whereas in Case 1 each 
coefficient was fitted by using all trials). Variability across channels can easily be observed from those topographic 
maps (Fig. 6). In Fig. 6, only the leading coefficients in the polynomial (a for g(x) and A for h(x)) are presented.

Figure 2. Single channel reconstructed Langevin functions using all available trials (Case 1). Underlying dynamics 
fitted to a Langevin equation: = + Γg x h x t( ) ( ) ( )dx

dt
, where x is the amplitude of the magnetic field measured by 

the magnetometers, as in Fig. 1. g(x) and h(x) (Langevin functions) are the deterministic and stochastic parts of the 
Langevin equation, respectively. Γ(t) is Gaussian white noise. The input data was a vector of all available trials 
taken together (Case 1 in the Results section). (A) g(x) and (B) h(x) for a representative subject at a representative 
channel (subject 5, channel MEG0441). The best fit is: g(x) = mx + n and h(x) = px2 + qx + r. Blue: data. Red: best 
fit. Similar figures for all subjects and channels are available in the Supplementary Material.

Figure 3. Topographies of the reconstructed Langevin function g(x) using all available trials (Case 1). The 
Langevin functions are defined as in Fig. 2. Topographies of coefficients m and n in g(x) = mx + n (obtained 
from the reconstructed Langevin function g(x) using all trials (Case 1) for a representative subject (subject 5)). 
Similar figures for all subjects and channels are available in the Supplementary Material.
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Models of accumulation of evidence derived from magnetoencephalographic data. In this sec-
tion we build models of accumulation of evidence derived from magnetoencephalographic (MEG) data on the 
basis of the results obtained in the previous section.

Figure 4. Topographies of the reconstructed Langevin function h(x) using all available trials (Case 1). 
Topographies of coefficients p, q and r in h(x) = px2 + qx + r (all trials subject 5, as in Fig. 3). Similar figures for 
all subjects and channels are available in the Supplementary Material.

Figure 5. Single channel reconstructed Langevin functions for one trial (Case 2). Single trial (Case 
2) reconstructed Langevin functions g(x) and h(x) (defined as in Fig. 2) for a representative subject, 
at a representative channel (subject 5, channel MEG0441). (A) Deterministic part, with best fit 
g(x) = ax3 + bx2 + cx + d. (B) Stochastic part, with best fit h(x) = Ax2 + Bx + C. Blue: data. Red: best fit. For 
numerical reasons (see Methods section) and for visualization purposes, x, g(x) and h(x) where scaled by a 
factor of 109. Similar figures for all subjects (at all channels) are available in the Supplementary Material.
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Our approach is the following: we construct the models in such a way that they approach, as much as possible, 
the waiting time distribution observed in the experiment (Fig. 7). The waiting time (WT) is defined as the time 
from the beginning of a given trial to the button press (see Methods). Each model consists of a stochastic differ-
ential equation (Langevin equation) and a threshold. The magnitude of the threshold is given by the parameter β. 
Once the Langevin equation is derived from MEG data and the threshold is chosen, a numerical simulation of the 
model gives a distribution of waiting times. For the numerical simulations, waiting times are defined as the time 
elapsed from the beginning of the simulation until the threshold is crossed. Two types of models were considered: 
a linear model (LSA) given by Langevin equation (3) and a nonlinear model given by Langevin equation (4). This 
can be written in compact form as,

Γ= +
dz
dt

P z P z t( ) ( ) ( ), (5)G H

where PG(z) and PH(z) are polynomials of degrees G and H, respectively, defining the deterministic and stochastic 
parts of the Langevin equation in terms of the accumulated evidence z. The degree of the polynomials are G = 1 
and H = 0 for the LSA and G = 3 and H = 2 for the nonlinear model.

The parameters of the Langevin equation are derived from MEG data, in a similar fashion as in the previous 
section (Case 2), but with some differences, as explained in the Methods. In particular, the Langevin coefficients 

Figure 6. Topographies of the trial - averaged reconstructed Langevin functions (Case 2). The coefficients 
in the Langevin equation (a, A, etc) were calculated on each single trial, as in Fig. 5. The average was taken 
across trials, to obtain trial-averaged coefficients (note that this procedure is different to the one used in 
Figs 2, 3 and 4, where the coefficients are obtained by using all trials taken together). Topographies of the 
trial-averaged Langevin coefficients a and A for a representative subject (subject 5). For simplicity, only the 
leading terms (a and A) in the equations for g(x) and h(x) are depicted, since the other terms are much smaller 
(see Supplementary Materialfor the other coefficients topographies). (A) Topography of coefficient a in 
g(x) = ax3 + bx2 + cx + d, (B) Topography of coefficient A in h(x) = Ax2 + Bx + C. Similar figures for all subjects 
are available in the Supplementary Material.

Figure 7. Waiting time distribution of the Libet experiment. Waiting time distribution (histogram) from the 
empirical data across all the data set (15 subjects).
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were unique for a single channel, in contrast with Case 2 above, where the parameters of the Langevin equation 
were different from trial to trial. In other words, for a given subject and channel, we found a single Langevin 
equation. For each value of the threshold, a different WT distribution was obtained, so an optimization was done 
in order to find the value of threshold crossing at which the waiting time distribution was as close as possible to 
the WT distribution of the whole behavioral data set (that is, to the WT distribution for all trials and subjects, see 
Fig. 7). Quantitatively, this was achieved by calculating the Euclidean distance E(β) between distributions (see 
Methods). The minimum of this function determined the optimal value of the threshold (βo). Finally, a single best 
model is found for which E(β) is minimal across subjects and channels, both for LSA and the nonlinear Langevin 
equation.

The results are shown in Fig. 8. Both the LSA and the nonlinear model produce long tail WT distributions with 
averages and standard deviations close to the experimental WT distribution. However, the performance of the 
nonlinear model is better than the LSA in approximating the empirical WT distribution (Fig. 8). Indeed, the dis-
tance between the optimal nonlinear model and the empirical WT distributions was Dnon ≡ D(ρnon, ρemp) = 0.07, 
whereas the distance between the optimal LSA and the empirical WT distributions was DLSA ≡ D(ρLSA, ρemp) = 0.15 
(for the definition of distance between distributions see Methods).

Discussion
Our main result is the derivation of diffusion models of decision making on the basis of neural data. Specifically, 
we have derived stochastic differential equations that describe the neural dynamics of human subjects, as 
recorded by magnetoencephalography (MEG) during a self-initiated movement task7. We have found that these 
equations determine a drift-diffusion process, if the analysis is concentrated on areas where the readiness poten-
tial is observed. Using that restricted data set we have derived models of accumulation of evidence whose out-
put approximates the empirical waiting time distribution, suggesting that the corresponding brain areas may be 
involved, or at least correlate with the process of decision making.

In doing so, we have proposed a generalization of the classical diffusion model of decision-making. This gen-
eralized model differs from the classical model (LSA) in that it is nonlinear both in the deterministic and in 
the stochastic part. The output of this generalized model has spectral properties that coincide with those of the 
electrophysiological signals (by construction), so in this respect differs from the LSA, which only allows for a 
Brownian process and does not follow the variability of the spectral properties of the underlying signals (the 
variability in α, the exponent in the spectral density 1/fα). In Fig. 9 a topographic map of the coefficient α of the 
spectral density power law 1/fα for one subject shows that α is closer to 1 (‘1/f ’ power law) in a region where the 
readiness potential is typically observed. Furthermore, the nonlinear model outperforms the LSA in terms of WT 
distributions: Dnon < DLSA(Fig. 8). However, none of the models fit the empirical WT distribution very well, due 
to the fact that the variability of the waiting time data for individual participants is too great for appropriate data 
fitting. For several participants, it is not even possible to achieve any fit (the expected inverse Gaussian or other). 
The reason is that the number of trials is relatively small for each participant. We would have needed more trials 
per participant to achieve a good fit. Instead, we had use the whole data set. By contrast, we chose not to concat-
enate the MEG data across several participants, as the parameters of the models vary considerably across partic-
ipants. Pooling data across participants would have erased important information about the nonlinearity of the 
subjacent MEG signals, and as a result would have made comparisons between models impossible. We speculate 
that fitting group-level behavioral data with subject-level data-driven-models reflected on the empirical waiting 
time distributions not being perfectly fit by the models.

Figure 8. Models of accumulation of evidence: LSA and nonlinear model. Waiting time density function of the 
LSA, nonlinear model and behavioral data. The waiting times (WT) distributions are fit to an inverse Gaussian 
function with parameters μ (mean) and λ (shape parameter). Red: empirical normalized WT distribution (see 
also Fig. 7) with μ = 5.95 and λ = 21.96. Blue: optimal LSA across subjects and channels, with equation 

= + + ΓA t(az b) ( )dz
dt

, where z is accumulated evidence and t time. The parameters of the model are: 
a = −0.29, b = 1.43, A = 1.78 and threshold crossing β = 6.7. The parameters of the LSA WT distribution are 
μ = 9.16 and λ = 22.46. Black: optimal nonlinear model across subjects and channels, with equation 

= + + + + + + Γ .t(az bz cz d) (Az Bz C) ( )dz
dt

3 2 2  The parameters of the model are: a = −0.03, b = 0.17, 
c = 0, d = 0.81, A = 0.01, B = −0.01, C = 1.72 and β = 6.8. The parameters of the nonlinear model WT 
distribution are μ = 7.01 and λ = 22.55. The distances of the empirical WT distribution to the LSA and the 
nonlinear model WT distributions are, DLSA = 0.15 and Dnon = 0.07, respectively.
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Regarding equation (4), other functions could have been used to fit the data, but we have attempted to use pol-
ynomials with the minimal degree that fit the reconstructed Langevin functions. In the Supplementary Material, 
the Langevin functions g(x) and h(x) are shown for all the subjects, normalized such that all have the same mean 
value. It can be observed that the normalized functions obtained have the following property: the function g(x) is 
approximately odd (g(x) = −g(−x)) in x for all subjects, channels, and trials, whereas the function h(x) is approx-
imately even in x (h(x) = h(−x)). The corresponding best fits for those functions can be achieved with polyno-
mials of odd degree (n = 1, 3, 5…) for g(x) and even degree (n = 2, 4, 6…) for h(x). We have chosen polynomials 
of minimal order to avoid over-fitting. Indeed, we used a polynomial of order 2 to fit the function h(x). For the 
function g(x) it was clear from the obvious nonlinearity of the traces (see Supplementary Material, where it can 
be observed that the traces have local maxima and minima) that the case n = 1 does not produce a good fit to the 
data. Therefore, we have chosen n = 3, that is a cubic polynomial, for the best fit. However, we emphasize that this 
is not the only approach to generating signals with a 1/fα spectrum, and we do not claim generality in this context. 
Our approach is heuristic, given that a fit is never exact, i.e. it is possible to fit data by several models, so, even if 
we have found a SDE that best fits the data, we do not exclude that other more complex models might also fit the 
data equally well (using rational, but not integer coefficients for the exponents in the functions g(x) and h(x), for 
example).

The assumption that there is a brain correlate for the decision variable is supported by empirical evidence. 
Recently, sensory evidence and decision signals in EEG recordings were found in a gradual target detection task 
in humans, using electroencephalographic recordings6. These accumulation-to-bound signals exhibited the same 
dynamics (and anatomical location in centro-parietal areas) as those associated with decision-making in neuro-
physiological experiments in monkeys, and were independent of sensory modality. As for self-initiated actions, 
neural correlates of a decision variable were identified in single neurons in rats that could abort waiting for a large 
reward and spontaneously opt for a smaller, but immediate reward9. Two populations of neurons in the secondary 
motor cortex (M2) were interpreted as “evidence” (mean firing rate during the trial correlated with waiting time) 
and decision signals (ramping at rates proportional to waiting times until a threshold was reached). Finally, an 
association between a decision variable and the electrophysiological signal has been established in7, in the very 
same data set we are using in the current work.

One could argue that the spontaneous initiation of movement does not require the integration of evidence. 
But this just depends on what is meant by “accumulated evidence”. Even in a task where the subject is given an 
indefinite amount of time to perform a movement (as in7), no subject ever took longer than about 20 seconds to 
produce a movement, and typically took no longer than 5 to 7 seconds. This holds even when subjects are clearly 
told and reminded that there is no time limit. In this context, one can consider the demand characteristics of the 
task as the “evidence”. It is implicit in the nature of the task that subjects should produce a movement within a rea-
sonable amount of time, because the experiment is about making movements. Subjects understand this without it 
ever being said explicitly and one can argue that it takes the place of sensory evidence in the accumulator model. 
Indeed, without at least a small amount of drift in the leaky stochastic accumulator, it was not possible to fit the 
behavioral and brain data from subjects performing the task7.

Scale-free dynamics –exhibiting a power spectrum of the type 1/fα – are characteristic of complex systems, 
and brain activity is not an exception: electrophysiological recordings indicate widespread scale-free dynamics, 
both in the resting state and during cognitive tasks18. Our data also show the power spectrum of 1/f type (Fig. 9). 
Recent research has emphasized the importance of the broadband (typically 1/f) component of brain dynamics, 
in contrast to the also pervasive oscillatory (narrowband) activity observed in brain recordings20. In a recent 
review, experimental work from the visual, language and motor systems was revisited, showing that power spec-
tral measurements reveal broadband spectral changes (in scalp EEG recordings) being correlated with cortical 

Figure 9. Spectral properties of MEG data. (A) Topographic map of the coefficient α in S~1/fα power law, 
obtained from the power spectral density S at all channels for subject 5.
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function, and tracking the activation of asynchronous local neuronal populations21. In agreement with this litera-
ture, we have found that the parameters of our nonlinear model change spatially over the electrode array (Fig. 6).

The time series of neural activity in the brain has spectral density of the form 1/fα, varying typically in the 
range 1 < α < 2. α is not constant in real neural data, it varies over time and according to task demands. The 
canonical accumulator model of decision making, by contrast, generates time series with α = 2, exactly. To the 
extent that accumulator models are used to model neural time series, arguably the output of the model should be 
faithful to the spectral properties of those neural time series. This is not possible with a canonical accumulator 
model (e.g. drift-diffusion model, or leaky stochastic accumulator). Here we have used the Langevin equation to 
derive a generalization of the leaky stochastic accumulator model, from MEG data, that allows for varying α in 
the 1/fα power spectrum, and that approximates the empirical WT distribution better than the leaky stochastic 
accumulator. With increasing interest in 1/f noise in the brain, the focus on computational modeling might begin 
to shift towards modeling the noise more faithfully (in the diffusion process) and not just the drift coefficient. Our 
work here represents a first step in that direction.

Materials and Methods
Simultaneous magnetoencephalography (MEG), electroencephalography (EEG), and behavioral data were col-
lected as part of a previous study, for which details of the EEG and behavioral data have already been reported7. 
Here we focus our analyses on the MEG data from that study.

Human subjects. A total of 16 subjects participated in the experiment (6 female, mean age 28 years, 1 left 
handed), all with normal or corrected-to-normal vision. All subjects gave written informed consent and were 
paid for their participation in the experiment. The research protocol was approved by the Ethics Committee 
on Human Research at the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA, DRF/I2BM, 
NeuroSpin, Gif-sur-Yvette, France) and conformed to the Declaration of Helsinki. Two of the subjects did not 
exhibit a readiness potential (a negative slope in voltage from −1.00 s to −0.25 s at either Cz, C3, or FC1) and so 
were excluded from the analyses leaving N = 14. In the original study, each subject completed two different tasks, 
a “classic” Libet task19, and a slight variant of it that we called the “interruptus” task. Here we focus on the data 
from the classic task.

stimuli and task. The task was almost identical to that of19. Subjects monitored an analog clock dial on a 
back-projection screen positioned at a distance of about 60 cm. A small dot made one cycle around the perimeter 
of the clock every 3 seconds (50 ms per “second” on the clock). The subject held a cylindrical button bar in his/her 
dominant hand and pressed the button at the top of the bar with his/her thumb. The subject sat comfortably with 
his/her head inside the MEG helmet, inside of a magnetically and electrically shielded chamber. The subject was 
instructed to fixate a small ‘+’ sign positioned at the center of the clock dial throughout the duration of each trial.

The appearance of the fixation cross in the center of the screen signaled the beginning of each trial. The dot would 
then begin to circle the clock face, always starting at the top. The subject was instructed to allow the dot to make one 
full revolution around the edge of the clock face, and that s/he could then press the thumb button at any time after 
that. The subject was instructed to be spontaneous: do not pre-plan the time of the button press, but rather make a 
single abrupt flexion of the thumb at a random instant. Subjects were specifically told to always keep the thumb in 
contact with the button, such that the movement in question would always be an abrupt flexion of the thumb rather 
than a lift-drop type of movement. Subjects were reminded that after the dot made one full cycle around the clock 
face, the button press could happen at any time. No subject ever waited longer than 30 seconds before pressing the 
button. Each subject completed anywhere from 49 to 99 trials. For the complete details of the task see7.

Magnetoencephalographic (MEG) recordings. MEG data were recorded inside of a magnetically 
shielded chamber at 1000 Hz with a 333 Hz analog lowpass filter (no high-pass filtering was applied – data were 
recorded in DC mode). The Elekta NeuroMag ® MEG system has 102 magnetometers and 102 pairs of orthogo-
nal planar gradiometers. The subject also wore a 60-channel MEG-compatible EEG cap. [For details of the EEG 
data see7. Here we have focused on the MEG data primarily due to its higher spatial resolution, and the analy-
ses reported here were carried out only on the MEG data.] Four small coils used to estimate the subject’s head 
position inside the MEG helmet were affixed to the EEG cap, and their positions digitized with respect to three 
fiducial points (nasion and just above the tragus on each ear). The subject’s head position was measured at the 
beginning of each block of trials and this information was used offline during the data analysis to transform the 
data from each block into a head-centered coordinate frame.

Electro-oculogram (EOG; horizontal and vertical) and electro- myogram (EMG; flexor pollicis longus mus-
cle) were also recorded. Apart from delaying the signals by approximately 50 ms, time locking to the button press 
yielded similar results to time locking to the rectified high-pass filtered EMG. EMG data were either unavailable 
or unreliable for four subjects (among the N = 14 subjects), so all time-locking was done with respect to the time 
of the button press.

MEG data pre-processing. The first step in preprocessing the MEG data was to apply the MaxFilter soft-
ware application developed by Elekta NeuroMag. This software tool automatically detects and interpolates “bad” 
channels and applies the Signal Space Separation (SSS) algorithm which attenuates magnetic field fluctuations 
originating outside of the MEG helmet. MaxFilter then transforms the data into a head-centered coordinate 
frame using the head-position measurements taken at the beginning of each block of trials. The data were also 
downsampled to 250 Hz at this stage. The remainder of the preprocessing was done using the FieldTrip (fieldtrip.
fcdonders.nl) toolbox for MatLab ® (MathWorks Inc). Ocular and cardiac artifacts were isolated and removed 
using independent components analysis22, and trials that still had significant artifacts after this step were identi-
fied by visual inspection and excluded from the analyses.
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MEG data analyses and statistics. Drift and diffusion coefficients were calculated using a method to 
extract model equations from noisy experimental data14. This method has been validated in the context of elec-
trophysiological signals15 and in particular, it has been successfully used to characterize EEG recordings from 
epileptic patients16. Here, we briefly describe this method. The main idea is that noisy dissipative dynamical 
systems can be fully described by the Langevin equation, equation (2), that is, a first order differential equation 
with a deterministic (first term in the RHS of equation (2)) and a stochastic function (second term in the RHS of 
equation (2)). In this equation noise is additive, generated by a Gaussian white noise process Γ(t), assumed to be 
uncorrelated, <Γ(t)Γ(t′) >= δ(t − t′) and with zero mean, <Γ(t) >= 0. The functions g(x, t) and h(x, t) are related 
to the drift (D(1)(x, t)) and diffusion (D(2)(x, t)) coefficients of the Fokker – Planck equation11,12 by the relations 
D(1)(x, t) = g(x, y) and D(2)(x, t) = h2(x, y).

The stochastic differential equation (2) was used to describe the underlying dynamics generating the MEG 
time series observed in the experiment. The corresponding stochastic process describes a dynamics lacking mem-
ory effects (Markovian)15: the time development of the system is completely characterized by its current state, 
independently of its previous history. This assumption is typically satisfied by electrophysiological brain signals16.

It is further assumed that the functions g(x, t) and h(x, t) are not explicitly time-dependent.
With these assumptions, it is possible to calculate the deterministic and the stochastic functions of the 

Langevin equation (2), using the Itô stochastic calculus23,
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In other words, drift and diffusion coefficients are defined as the first and second conditional moments of the sto-
chastic variable x(t). The numerical evaluation of the limits in Equations (6) and (7) was obtained by extrapolation: 
(1) For a time series x(t) the range of variation of x was calculated:[xmin, xmax]. (2) That range was divided into 100 
bins. For each bin, a set was constructed that contains all the possible values of x(ti + τ) such that x(ti) = x, for a given 
time step τ (with τ ranging from 10/fs to 1/fs (10 values), fs being the sampling frequency of 250 Hz). (3) For each τ, 
the averages A1 =< x(t + τ) − x(t)> and A2 = (x(t + τ) − x(t))2 were calculated (of course A1and A2 cannot be calcu-
lated for the last 10 samples of the time series, so those final samples (“right boundary”) were not used for the analy-
sis). (4) A polynomial function was constructed that best fit the functions A1(τ) and A2(τ). (5) The limit in equations 
(6) and (7) was found by extrapolating the values of the averages as τ → 0 for the functions A1(τ) and A2(τ).

We defined x(t) as being the MEG time series of an individual trial in the interval where the evoked potential 
was found. We took as the beginning of this interval the latency of 2.5 seconds prior to button pressing, and as the 
end of the interval, the latency of 0.5 seconds after button pressing. No further preprocessing was applied on top 
of the preprocessing described in section “Data Preprocessing”. For the calculation of the Langevin coefficients in 
Case 1 of the Results section we proceeded as follows: for each subject, at each MEG channel and for each condi-
tion, a data set was created with all the trials (ranging from 48 to 99 for different subjects) so as to constitute a vec-
tor y(t) = [x1(t), x2(t), … xN(t)], where xi(t) is the time series for trial i and N is the total number of trials. In other 
words, in Case 1, individual trials (xi(t)) are concatenated to constitute a vector (y(t)) for the analysis (in contrast, 
in Case 2 data from an individual trial [“individual traces”: xi(t))] are used for the analysis). This extended data set 
contains a large number of samples (each trial contains 750 samples, for a total duration of 3 s). This is very useful 
for the statistical evaluation of the Langevin coefficients, given that the efficiency of algorithm to fit the Langevin 
coefficients is proportional to the number of samples in the data. We used the extended data set y(t) instead of x(t) 
in equations (6) and (7), following the five steps described above (for the calculation, the data samples at the “right 
boundaries” of each trial were not used, see step 3 above). For numerical reasons (to avoid division by very small 
numbers in the algorithm), it was convenient to re-scale the values of x in Case 2. The scale factor used is 109 (see 
Fig. 5). To summarize, the algorithm applied is the same in both cases (1 and 2) but it is applied to different input: 
in Case 2 it is applied to individual trials and in Case 1 to a concatenated vector containing all the trials available.

Behavioral models and simulations. Langevin equation. The parameters of the Langevin equation were 
extracted from neural data in the following way: (1) A set of MEG channels that maximally resemble a readiness 
potential was chosen for the analysis (a different set for each subject). For each subject, this set was constructed 
by defining a weight (W) characterizing the resemblance of a given channel to a readiness potential. To this end, 
the event related field ERF(t) was calculated as the mean across trials in the usual way. A region of analysis was 
chosen with a time window of 0.4 s centered at the time of button press (t = 0). Within that region, the maximum 
of the ERF was calculated, and W was defined as the temporal average of the ERF around that maximum, in a time 
window of 0.2 s. W is proportional to the ERF maximum value in the vicinity of t = 0, as expected for a readiness 
potential. Evoked responses were visually inspected for each of the channels chosen according to our method 
and they do indeed correspond to the intuitive idea of a readiness potential, a slow buildup of activity. Finally, we 
chose a set of 5 channels having the largest values of W, for each subject. (2) For each channel in this set, MEG 
data were first re-scaled and a time window chosen. The scaling factor was taken to be 1013, in such a way that 
the relationship between neural data (x) and accumulated evidence (z) was z = 1013 x. The scale factor was taken 
arbitrarily in order to get an evidence variable that was manageable for simulations (numbers of the size of x, that 
is, of the order of 1012 can lead to numerical overflow during simulations) and also compatible with the orders of 
magnitude of z typically used in the literature. The time window chosen started at a latency of 3 seconds prior to 
button pressing and finished at button pressing (−3 s < t < 0 s). We have chosen this interval, and not the interval 
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used for the complete MEG analysis exposed in the previous section (that extends to 0.5 s after button pressing), 
because we are interested in the dynamics related to accumulation of evidence, developing before button pressing. 
Indeed, we observe a change in dynamics as seen in the ERF at button pressing or slightly after (~0.2 s), resulting 
in the culmination of the readiness potential and the return to baseline. (3) The parameters of the Langevin equa-
tion were calculated from the ensemble of trials. For each trial, g(z) and h(z) were calculated as in equations (6) 
and (7), as explained in the previous section. However, the polynomial fit to these functions was not done trial 
by trial, as was the case in the MEG data fitting (Case 2). Instead, all the trials were used for polynomial fitting, in 
order to get a single set of parameters for the Langevin equation. This is in agreement with models of accumula-
tion of evidence, where a single Langevin equation is used, that is parameters are not changed across trials in the 
simulation of behavioral data. For the LSA, g(z) and h(z) were fit to polynomials of order 1 and 0, respectively, and 
for the nonlinear model, they were fit to polynomials of order 3 and 2, respectively.

Simulations. Using the Langevin equation with parameters as explained in the previous paragraph, numerical 
simulations were performed for the chosen set of channels. NT = 100 simulations were done for each value of the 
threshold crossing (β). The Euler-Maruyama method24 was used to numerically solve the Langevin equation, with 
constant discrete time step of Δt = 2−8 s. Each simulation started at the same initial condition z(0) = 0. A waiting 
time (WT) distribution was calculated for the ensemble of the simulations at a given β. WT was defined as the 
first time a given simulation had values within the interval |z − β| < 0.01.

Waiting time distributions were fit to the inverse Gaussian (or Wald) distribution25. The probability density 
function of this distribution is given by,
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where μ is the mean of the distribution, λ is called the shape parameter and w are the values of WT. The inverse 
Gaussian distribution describes the distribution of arrival times of Brownian paths to a fixed threshold.

Optimization. The parameter β was varied in order to find the model with optimal WT distribution. The opti-
mal WT distribution was chosen to be the closest to the WT distribution across all subjects and trials (that was 
fitted to an inverse Gaussian probability density function ρ(w; M, L), with M and L, the mean and shape param-
eters of the distribution, respectively). An optimization function was defined as the Euclidean distance between 
the WT distribution for all subjects and the WT distribution of the model for a given value of β in the (μ, λ) plane,

β μ β λ β= − Μ + −E L( ) ( ( ) ) ( ( ) ) ,2 2

where μ(β) and λ(β) are the mean and shape parameter for a given threshold β. The value of β that best fit the WT 
distribution of all subjects was found by minimization of E,

β β= .Earg min( ( ))0

The threshold (β) was varied until a minimum of E(β) was found, typically in the interval from β = 2 to β = 8. 
The optimal WT distribution is given by ρopt = ρ(w; μ(β0), λ(β0)).

Finally, the LSA and nonlinear models used to describe the complete dataset (Figs 8, 9) were the models that 
achieve the minimal value of E across subjects.

Distance between statistical distributions. The optimal WT distributions for the nonlinear and the LSA model 
were compared with the empirical WT distribution. To quantify this comparison, a distance between statistical 
distributions was used. We used a conventional metric, the scalar product between two real functions f(x) and 
g(x) in Hilbert space26, defined as

∫= .
−∞

∞
f g f x g x dx, ( ) ( )

Using this metric, we calculated the distance between two statistical distributions ρ1(w) and ρ2 (w) as,
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All the algorithms were coded in MATLAB©.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request
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