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Powerful and Efficient Strategies 
for Genetic Association Testing of 
Symptom and Questionnaire Data 
in Psychiatric Genetic Studies
Aaron M. Holleman1,2, K. Alaine Broadaway3, Richard Duncan3, Andrei todor2,3, 
Lynn M. Almli4, Bekh Bradley4,5, Kerry J. Ressler6, Debashis Ghosh7, Jennifer G. Mulle2,3 & 
Michael P. Epstein2,3

Genetic studies of psychiatric disorders often deal with phenotypes that are not directly measurable. 
Instead, researchers rely on multivariate symptom data from questionnaires and surveys like the PTSD 
Symptom Scale (PSS) and Beck Depression Inventory (BDI) to indirectly assess a latent phenotype of 
interest. Researchers subsequently collapse such multivariate questionnaire data into a univariate 
outcome to represent a surrogate for the latent phenotype. However, when a causal variant is only 
associated with a subset of collapsed symptoms, the effect will be challenging to detect using the 
univariate outcome. We describe a more powerful strategy for genetic association testing in this 
situation that jointly analyzes the original multivariate symptom data collectively using a statistical 
framework that compares similarity in multivariate symptom-scale data from questionnaires to 
similarity in common genetic variants across a gene. We use simulated data to demonstrate this 
strategy provides substantially increased power over standard approaches that collapse questionnaire 
data into a single surrogate outcome. We also illustrate our approach using GWAS data from the 
Grady Trauma Project and identify genes associated with BDI not identified using standard univariate 
techniques. The approach is computationally efficient, scales to genome-wide studies, and is applicable 
to correlated symptom data of arbitrary dimension.

Evidence indicates that common genetic variants should explain a sizeable role of the variation in many psychiat-
ric disorders. For example, common variants are estimated to explain 40% of the heritability for bipolar disorder1, 
21% of the heritability of depression2, 30–45% of the heritability of post-traumatic stress disorder (PTSD)3–6, and 
50% of the heritability of autism spectrum disorder7. However, even in studies involving thousands of subjects, 
identification of specific common trait-influencing polymorphisms remains a challenge. To discover new associ-
ations, much attention has been spent on improving genotyping and sequencing technologies to interrogate more 
genetic variation; however, comparatively less attention has been afforded to thorough characterization of the 
underlying psychiatric phenotypes that are considered for genetic analysis.

In genetic analyses of a psychiatric phenotype, we often envision our outcome of interest as a single, measura-
ble entity. In practice, we are rarely able to measure the outcome of interest directly and instead attempt to capture 
the true, latent phenotype via several connected but discrete measurements. As an example, psychiatric genetic 
studies attempt to account for the heterogeneity of symptoms found in a single psychiatric disorder by meas-
uring the symptoms from several angles via a questionnaire or exam. For example, in studies of post-traumatic 
stress disorder (PTSD), researchers often measure the outcome using the PTSD Symptom Scale (PSS), which is a 
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17-item questionnaire for assessing and diagnosing PTSD according to the DSM-IV. Each item corresponds to a  
PTSD symptom and is rated from 0 to 3, with higher scores indicating greater symptom frequency/intensity8,9. 
Meanwhile, in studies of depression, many studies attempt to measure the phenotype using multiple symptom 
measurements from the Beck Depression Inventory-II (BDI). The BDI is a 21-item questionnaire with each ques-
tion developed to correspond to DSM-IV diagnostic criteria for major depressive disorder. The answers to each 
question are scored from 0 to 3, with higher scores indicating more severe depressive symptoms10.

Data captured by the PSS, BDI or other questionnaires can actually be considered a collection of interrelated 
multivariate phenotypes that, in the case of symptom scales, are usually ordinal in nature. The view of a men-
tal disorder as a constellation of multiple correlated symptoms is aligned with the National Institute of Mental 
Health’s (NIMH) Research Domain Criteria (RDoC), which emphasize basic functional dimensions or mecha-
nisms involved in psychopathology (e.g., fear, reward-seeking, attention, perception, arousal) rather than DSM 
or ICD diagnostic categories11. Nevertheless, practical use of such multivariate symptom data in genetic analysis 
is complicated by the fact that standard statistical techniques for genetic analysis are generally univariate and 
designed to handle a single outcome at a time. To improve analytical utility, many questionnaires like the BDI 
and PSS were designed so that the multivariate symptoms are collapsed into a univariate phenotype for analysis. 
The simplest and most common collapsing method is unweighted summation of each question’s score10,12–14 into 
a univariate cumulative score. The cumulative score can then be treated either as a continuous outcome, or cutoffs 
can be applied to indicate presence/absence of disease symptoms.

An important issue with applying a univariate cumulative score in genetic analysis is that reducing multivar-
iate information to univariate data nearly always comes at a cost. Carefully defining a phenotype is as vital in a 
GWAS as reliable genotyping; any association between gene and trait may be diluted by phenotypic heterogeneity. 
For example, if a gene were associated with a subset of the BDI questionnaire outcomes (e.g., a somatic symptom 
of depression-like changes in sleep patterns) but not other subsets (e.g., affective symptoms like mood or atti-
tude), the magnitude of the overall effect size of the gene would be attenuated if the two subsets were combined 
into a univariate outcome measure.

A few key assumptions must be met in order for a univariate cumulative score to sufficiently summarize 
multivariate ordinal data. As noted by van der Sluis et al.15–17, the three primary assumptions that must be met 

Figure 1. QQ plots applying GAMuT, KMR, and linear regression to 10,000 simulated null data sets assuming 
sample sizes of 1,000 (top row) or 2,500 (bottom row), for STAT3. For each simulation, 21 ordinal questionnaire 
items were generated for each subject. For KMR and linear regression, the 21 questionnaire items were summed 
together to yield a single cumulative score. Results are shown applying GAMuT using a projection matrix and a 
linear kernel for modeling phenotypic similarity. GAMuT and KMR analyses used a weighted linear genotype 
kernel, with weights based on sample MAF.
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are: (1) the correlation between all questions in the questionnaire must be explained by a single (latent) phe-
notype; (2) the genetic effect must be on the latent phenotype; (3) the genetic effect—acting through the latent 
phenotype—must have identical effects on all of the questions in the questionnaire. For applied psychiatric phe-
notypes, it is more plausible that the assumptions are violated than maintained, a perspective that is supported 
by NIMH’s focus on RDoC. Depressive symptoms identified by the BDI might come from multiple sources (e.g., 
major depressive disorder, bereavement, post-traumatic stress disorder), violating the first assumption. The causal 
genetic effect might directly increase somatic symptoms of depression such as changes in appetite and sleep, but 
not impact mood, violating the second assumption. Alternatively, a variant might in fact affect each trait identi-
fied by every question, but have slightly different effect sizes on different questions. If any of these assumptions are 
not met, association analysis using the cumulative score will result in a substantial loss of power15,17–19.

A few alternatives have been presented to model the complex multivariate data captured within question-
naires. A popular type of approach is a data reduction method like principal component analysis (PCA), which 
relies on identifying a linear combination of the set of questionnaire responses that maximizes response variance 
across questions. Once the top few principal components are identified (i.e., those principal components that 
explain most of the questionnaire variance), association testing is performed between those top principal compo-
nents and genotype20,21. However, PCA-based strategies that consider only high-variance principal components 
were recently shown to be generally suboptimal22. As an alternative, van der Sluis et al.17 presented a multivariate 
gene-based association test by extended Simes procedure (MGAS) that combines the P-values obtained from 
standard, single-SNP association tests for each outcome to produce a single multivariate gene-based P-value. 
However, MGAS relies on permutations to establish significance, which make genome-wide analyses of psychiat-
ric phenotypes cumbersome. Alternatively, Basu et al.23 introduced a rapid multivariate multiple linear regression 
method (RMMLR), which operates on a MANOVA-based platform. However, while RMMLR establishes signifi-
cance analytically, it cannot incorporate the important ordinal outcomes commonly measured in questionnaires 
and surveys.

To allow computationally-efficient and powerful genetic analysis of multivariate symptom data, we show in 
this paper that we can use a kernel distance-covariance (KDC)24–28 method called the Gene Association with 
Multiple Traits (GAMuT) test29, to assess association between high-dimensional symptom data and multiple var-
iants (common or rare) in a gene. The framework is designed to test whether pairwise similarity in questionnaire 
responses is independent of pairwise genotypic similarity in a region of interest. The framework allows for an 
arbitrary number of categorical questions within the questionnaire as well as an arbitrary number of genotypes, 
thereby permitting gene-based or pathway-based testing of genetic variants. The method allows for covariate 
adjustment and is a closed-form test that yields analytic P-values, thus scaling easily to genome-wide analysis. 
GAMuT is therefore well-suited to facilitate research that is directly aligned with RDoC’s goal of encouraging 
investigation of biological, cognitive-behavioral, and self-report data using multivariate methods11.

The remainder of this manuscript is organized as follows. We first provide a short overview of the GAMuT 
method and its features. We then present simulation work to demonstrate that the framework can be considerably 
more powerful than the standard univariate test based on a cumulative score derived from a questionnaire. We 
then illustrate the approach using a GWAS study of BDI scores collected as part of the Grady Trauma Project30–32. 
We finish with concluding remarks and discuss potential extensions to our approach.

Methods
Overview of GAMuT. We provide a brief overview of the GAMuT method29 here and relegate the technical 
details of the procedure to the Supplementary Methods section online. For a sample of N unrelated subjects, 
GAMuT examines the relationship between a set of Q questions (each question assumed to be an ordinal categori-
cal variable with an arbitrary number of levels) and a set of V genetic variants within a gene or pathway of interest. 

Sample Size = 1,000 Sample Size = 2,500

α = 0.05 α = 0.01 α = 0.001 α = 0.05 α = 0.01 α = 0.001

STAT3

GAMuT: 
Projection Matrix 0.0492 0.0073 0.0010 0.0503 0.0099 0.0008

GAMuT: Linear 
Kernel 0.0515 0.0110 0.0013 0.0466 0.0100 0.0009

KMR 0.0533 0.0098 0.0013 0.0455 0.0108 0.0010

Linear Regression 0.0541 0.0112 0.0013 0.0479 0.0093 0.0013

LRFN5

GAMuT: 
Projection Matrix 0.0506 0.0095 0.0012 0.0445 0.0080 0.0008

GAMuT: Linear 
Kernel 0.0480 0.0096 0.0014 0.0492 0.0105 0.0010

KMR 0.0491 0.0102 0.0010 0.0500 0.0107 0.0006

Linear Regression 0.0508 0.0111 0.0011 0.0533 0.0104 0.0007

Table 1. Empirical Type-I Error Rates. Empirical type-I error rates are presented for GAMuT, univariate KMR 
and linear regression, considering two genes (STAT3 on chromosome 17 and LRFN5 on chromosome 14) and 
different combinations of sample size and significance (α) level. Error rates are calculated as the proportion 
of P-values less than the specified significance threshold given 10,000 null simulations. All GAMuT and KMR 
analyses used a weighted linear genotype kernel, with weights based on sample MAF. GAMuT, KMR and linear 
regression properly control for type-I error across all scenarios tested.
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GAMuT is motivated by the idea that, for a pair of individuals, increased genetic similarity at trait-influencing 
loci across a gene should lead to increased similarity of their questionnaire outcome data. Consequently, GAMuT 
constructs two different similarity matrices; one similarity matrix for the questionnaire outcomes and the other 
similarity matrix for the genetic variation within a gene. Each similarity matrix has N rows and N columns with 
individual elements of the matrix denoting the similarity (phenotypic or genetic) among different pairs of sub-
jects. GAMuT creates a test statistic that evaluates whether the pairwise elements in the similarity matrix of ques-
tionnaire outcomes is independent of the pairwise elements in the genetic similarity matrix. The resulting test 
follows a known asymptotic distribution, which leads to easy and rapid calculation of P-values. GAMuT allows 
for questionnaire outcomes of arbitrary dimension and can further adjust for covariates.

Simulations. We conducted simulations to verify that GAMuT properly preserves type-I error (i.e., empirical 
size) and to assess power of GAMuT relative to standard association tests that treat questionnaire responses as a 
univariate outcome variable resulting from summing the responses into a continuous score. We briefly summa-
rize the simulation design here and provide more comprehensive details in the Supplementary Methods section 
online. We considered sample sizes of either 1,000 or 2,500 independent subjects. We performed simulations 
based on SNPs and LD patterns located within 2 kb up- and down-stream from two genes: signal transducer and 
activator of transcription 3 (STAT3), a gene on chromosome 17q21.31, and leucine rich repeat and fibronectin 
type III domain containing 5 (LRFN5), a gene on chromosome 14q21.1 recently identified as possibly involved in 
major depressive disorder33 (see Supplementary Figs S1 and S2 for the MAF and pairwise LD structure of SNPs 
in STAT3 and LRFN5). We generated simulated genotypes for all SNPs identified in HapMap within these genes 
(27 SNPs for STAT3; 127 SNPs for LRFN5), but applied the testing approaches only to those SNPs that would be 
typed on standard genotyping arrays (14 SNPs for STAT3; 50 SNPs for LRFN5).

We simulated multivariate questionnaire data to mimic the BDI questionnaire results obtained from Grady 
Trauma Project participants. The BDI consists of 21 groups of statements that reflect various symptoms and 
attitudes associated with depression. Each group includes 4 statements, which correspond to a scale of 0 to 3 in 
terms of intensity. The BDI is scored by summing the ratings given to each of the 21 items, yielding a cumulative 

Figure 2. QQ plots applying GAMuT, KMR, and linear regression to 10,000 simulated null data sets assuming 
sample sizes of 1,000 (top row) or 2,500 (bottom row), for LRFN5. For each simulation, 21 ordinal questionnaire 
items were generated for each subject. For KMR and linear regression, the 21 questionnaire items were summed 
together to yield a single cumulative score. Results are shown applying GAMuT using a projection matrix and a 
linear kernel for modeling phenotypic similarity. GAMuT and KMR analyses used a weighted linear genotype 
kernel, with weights based on sample MAF.

https://doi.org/10.1038/s41598-019-44046-0


5Scientific RepoRts |          (2019) 9:7523  | https://doi.org/10.1038/s41598-019-44046-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

score ranging from 0–63. To mimic the BDI, we generated 21 ordinal responses using the observed distributions 
and correlations of these responses within the GTP BDI dataset. We show the correlation matrix among ordinal 
responses in Supplementary Fig. S3 and the distribution of observations for each of the 21 ordinal responses in 
Supplementary Fig. S4.

For both STAT3 and LRFN5, we applied GAMuT to 10,000 null simulated datasets to estimate empirical size. 
To investigate the performance of GAMuT under confounding and to assess whether the approach can success-
fully adjust for relevant covariates in this setting, we also tested empirical size by simulating questions under a 
confounding model where question responses were independent of genotype, but both questions and genotype 
were associated with a continuous covariate. For power models, we simulated data sets in which each of the SNPs 
within the particular gene was modeled as being causal (i.e., each of the 27 SNPs within STAT3 was modeled 
as causal, and each of the 127 SNPs within LRFN5 was set as causal) with effect size of the causal SNP on each 
question resulting in mean effect sizes with modest effect on the overall cumulative score. We varied the number 
of questions associated with the causal SNP, considering situations where 18/21, 12/21, and 6/21 questions were 
actually associated with the causal SNP.

Using the simulated data, we evaluated GAMuT using either projection matrices or linear kernels to model 
phenotypic similarity and using weighted linear kernels to model genotypic similarity (with weights based on 
sample MAF). We compared GAMuT to two standard approaches that use the univariate cumulative question-
naire score for inference: standard linear regression and kernel machine regression (KMR)34. Standard linear 
regression considers individual SNPs for analysis. KMR tests, on the other hand, jointly model multiple SNPs 
within a gene. KMR can be thought of as a specialized version of GAMuT that considers only one phenotype 
(the univariate cumulative sum of symptoms/questions) rather than the observed multivariate phenotypes. For 
KMR, we modeled genotypic similarity in a fashion analogous to GAMuT by using a weighted linear kernel with 
weights based on sample MAF. Thus, comparison of GAMuT to KMR helps highlight the benefit of considering a 
multivariate questionnaire phenotype over a traditional cumulative-based score for gene-based analysis.

Analysis of the Grady Trauma Project. Data used in our analyses were collected as part of the Grady 
Trauma Project (GTP), which investigates the role of genetic risk factors for psychiatric disorders such as PTSD 
and depression32,35. This study has been carried out according to protocols approved by the IRBs of Emory 
University School of Medicine and Grady Memorial Hospital. Participants in the GTP are served by the Grady 

Figure 3. Power for GAMuT, KMR, and linear regression is plotted as a function of causal SNP, for STAT3. 
Top plot assumes the causal SNP is associated with 18 of the 21 BDI questions. Middle plot assumes 12 of 21 
questions are associated with causal SNP. Bottom plot assumes only 6 of 21 questions are associated with the 
causal SNP. Results are shown applying GAMuT using a projection matrix and a linear kernel for modeling 
phenotypic similarity. GAMuT and KMR analyses used a weighted linear genotype kernel, with weights based 
on sample MAF. Sample size is 2,500. Power is calculated assuming a significance (α) level of 0.001.
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Hospital in Atlanta, Georgia, and are predominantly urban, African American, and of low socioeconomic status. 
GTP staff approach subjects in the waiting rooms of Grady Primary Care, Obstetrics and Gynecology, and other 
clinics, obtaining their written informed consent to participate. In addition to collecting an Oragene salivary 
sample for DNA extraction, GTP staff conduct an extensive verbal interview, which includes demographic infor-
mation, a history of stressful life events, and several psychological surveys, including the BDI.

The GTP initially genotyped participants on the Illumina HumanOmni1-Quad array to permit GWAS anal-
yses. Applying standard GWAS quality control filters left 4,607 African-American subjects with good quality 
genotype data. Further removal of subjects who did not report at least one past trauma, subjects with missing BDI 
scores, or subjects with incomplete covariate data (age, gender, and the top ten principal components to account 
for ancestry) yielded a final sample size of 3,520 subjects.

For our sample, we used the support files provided by Illumina to identify 765,580 common genetic variants 
(MAF > 5%) that fell within 19,609 autosomal genes. We applied GAMuT to the BDI data using a linear kernel to 
measure pairwise phenotypic similarity in multivariate symptom scores. To measure genetic similarity, we used 
a linear genotype kernel within GAMuT and performed unweighted analyses as well as weighted analyses, with 
weights based on variants’ MAF or the variants’ estimated log odds ratios derived from external and independent 
GWAS studies of MDD, bipolar disorder, and schizophrenia that are available from the Psychiatric Genomics 
Consortium36–38. For comparison, we also applied SNP-based linear regression and gene-based univariate KMR 
to the cumulative BDI score. For KMR, we applied the same genotype weighting schemes as used for the GAMuT 
analyses.

Results
Type-I error simulations. Fig. 1 shows the quantile-quantile (QQ) plots based on application of GAMuT, 
KMR, and linear regression to null datasets consisting of 1,000 or 2,500 subjects assayed for 21 BDI questions and 
SNPs within STAT3. We also present empirical type-I error rates for the STAT3 gene at three nominal significance 
thresholds in the top half of Table 1. The results show that, for both sample sizes tested, GAMuT properly con-
trols for type-I error, even at the extreme tails of the test. KMR and linear regression, using the cumulative score 
approach, also demonstrated appropriate empirical size. Null simulations for LRFN5 likewise produced results 
indicating that GAMuT, KMR and linear regression all properly control for type-I error (see QQ plots in Fig. 2 

Figure 4. Power for GAMuT, KMR, and linear regression is plotted as a function of causal SNP, for LRFN5. 
Top plot assumes the causal SNP is associated with 18 of the 21 BDI questions. Middle plot assumes 12 of 21 
questions are associated with causal SNP. Bottom plot assumes only 6 of 21 questions are associated with the 
causal SNP. Results are shown applying GAMuT using a projection matrix and a linear kernel for modeling 
phenotypic similarity. GAMuT and KMR analyses used a weighted linear genotype kernel, with weights based 
on sample MAF. Sample size is 2,500. Power is calculated assuming a significance (α) level of 0.001.
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and empirical type-I error rates in the bottom half of Table 1). Supplementary Fig. S5 shows that residualization 
of questionnaire data prior to GAMuT analysis effectively controls for confounding that, unadjusted, would yield 
inflated results.

Power simulations. Next we compared the power of GAMuT with univariate KMR and linear regres-
sion analyses in a series of simulation studies. For these power simulations, we set sample size to 2,500. For all 
approaches, power was estimated as the proportion of P-values < 0.001 and was evaluated based on 500 replicates 
of the data per model. To calculate the power of linear regression on the gene-level, we conducted inference on the 
smallest SNP-level P-value in the gene. We adjusted this minimum P-value for the multiple correlated SNP-based 
tests performed in the gene using PACT

39 and used the resulting adjusted P-value as a gene-level P-value.
Figures 3 and 4 show the power results for STAT3 and LRFN5, respectively. We plot power as a function of the 

causal SNP, where the causal SNPs are ordered by genomic location. The genotyped SNPs (14 for STAT3 and 50 
for LRFN5; denoted by ‘x’ on the bottom of Supplementary Figs S1 and S2) were used to calculate test statistics, 
but all SNPs (27 for STAT3 and 127 for LRFN5) were treated as causal in turn. Therefore, in situations where the 
causal SNP is not typed, we rely on correlation of the causal SNP with observed typed SNPs in the gene to gain 
statistical power. GAMuT offers considerably more power than the two competing univariate methods using 
cumulative scores for each of the three simulation models considered. For STAT3, when approximately half of 
the questions (12/21) are associated with the causal SNP, both KMR and linear regression observe less than 30% 
power to detect all 27 causal SNPs; by comparison, GAMuT using a projection matrix to model phenotypic sim-
ilarity maintains power greater than 80% for 26 of the 27 causal SNPs, while GAMuT using a linear kernel for 
modeling phenotypic similarity maintains power greater than 50% for 7 of the causal SNPs. When only six ques-
tions are associated with the causal SNP, the univariate methods using cumulative scores show nearly zero power 
for detecting effects across all SNPs, whereas GAMuT employing a projection matrix maintains power greater 
than 60% for 25 of the 27 causal SNPs.

Similarly, for LRFN5, when 12 of 21 questions are associated with the causal SNP, both KMR and linear regres-
sion show less than 20% power for detecting all 127 causal SNPs; whereas GAMuT employing a projection matrix 
observes greater than 80% power to detect 55 of the causal SNPs and greater than 50% power to detect 96 causal 
SNPs. For the LRFN5 simulations, when only 6 of the 21 questions have an association with the causal SNP, the 
univariate methods have almost zero power for detecting all 127 causal SNPs, while GAMuT with a projection 
matrix maintains greater than 50% power for detecting 57 of the causal SNPs.

We observe a slight drop in power using GAMuT when nearly all of the questions are associated with the 
causal variant (top row Figs 3 and 4) compared with when approximately half of questions are associated (middle 
row Figs 3 and 4). This pattern of decreased power when the proportion of associated phenotypes is close to 1 
has been observed in other multivariate approaches, including multivariate analysis of variance (MANOVA)40,41. 
Regardless, our power results demonstrate the benefits of modeling the questionnaire data in a multivariate 
framework like that employed by GAMuT rather than using a traditional cumulative score.

Application to Grady Trauma Project. We used the GTP dataset to test for associations between the BDI 
questionnaire and common variants in up to 19,609 genes. Prior to analyses, we controlled for gender, age, and 
ancestry in the 3,520 unrelated subjects. We applied GAMuT using a linear kernel to measure pairwise pheno-
typic similarity. We used several approaches for weighting SNPs, including MAF-based weights as well as external 
weights based on log odds ratio estimates from the PGC GWAS of MDD, bipolar disorder, and schizophrenia. 
For external weights, we note that not all GTP variants were present within the PGC GWAS results, and therefore 
the GAMuT analyses utilizing PGC-based genotype weights necessarily included fewer SNPs and corresponding 
genes than the analyses using MAF-based weights or no weights. Specifically, GAMuT analyses using PGC MDD 
weights involved 16,716 genes containing 469,582 SNPs. Meanwhile, GAMuT analyses using PGC bipolar dis-
order weights involved 16,761 genes containing 586,505 SNPs while analyses using PGC schizophrenia weights 

Gene Chr
Number of 
variants

Genotype 
weights GAMuT KMR

Linear regression (minimum 
P-value of SNP in gene)

ZHX2 8
97 PGC SZ 2.73 × 10−6 4.42 × 10−4

1.00 × 10−3

76 PGC MDD 8.59 × 10−6 1.36 × 10−3

FAM43A 3 115 PGC BPD 7.35 × 10−5 4.15 × 10−4 2.27 × 10−5

NUP214 9 19 MAF-based 7.97 × 10−5 5.16 × 10−3 5.57 × 10−3

E2F6 2 29 PGC MDD 9.45 × 10−5 4.91 × 10−2 3.32 × 10−2

GUK1 1 6 PGC SZ 9.54 × 10−5 5.52 × 10−3 2.34 × 10−3

SLC22A5 5 38 PGC SZ 9.69 × 10−5 3.20 × 10−3 3.98 × 10−4

Table 2. Full GAMuT Results for BDI (21 items). Genes with P < 1 × 10−4 identified in the GAMuT analyses 
are shown. For all analyses, GAMuT employed a linear kernel to model phenotypic similarity, and both GAMuT 
and KMR utilized a linear genotype kernel (possibly weighted). Of the genes listed, univariate KMR identified 
none using these same criteria, and standard linear regression identified no SNPs of suggestive significance 
(suggestive significance threshold for single SNPs: P < 1 × 10−6) within the gene. PGC MDD, PGC BPD, PGC 
SZ denote weights based on log odds ratios from the Psychiatric Genomics Consortium GWAS of major 
depressive disorder, bipolar disorder, and schizophrenia, respectively; MAF-based = weights based on minor 
allele frequencies of variants calculated using the Grady Trauma Project genotype data.
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involved 18,067 genes containing 661,879 SNPs. For comparison with the GAMuT results, we ran univariate KMR 
using the cumulative BDI. For these KMR analyses, we employed the same genotype weighting schemes as used 
for GAMuT, and tested the exact same genes as tested in the GAMuT analyses. We also performed standard uni-
variate linear regression of each of 775,255 common variants (SNP-level analyses) on the cumulative BDI score.

Since GAMuT and KMR analyze genes whereas linear regression analyzes SNPs, the multiple-testing adjusted 
significance thresholds differ between the former tests and the latter test. For each GAMuT and KMR analysis, we 
set a stringent study-wise significance threshold corresponding to a Bonferroni correction based on the number 
of genes tested (e.g., 0.05/19,609 = 2.55 × 10−6). Thus, the study-wise significance threshold differed depending 
on the particular genotype weights used, ranging from a threshold of 0.05/16,716 = 2.99 × 10−6 for PGC MDD 
weights to 0.05/19,609 = 2.55 × 10−6 for MAF-based weights and no weights. For all GAMuT and KMR analyses 
we considered P-values less than P < 1 × 10−4 as suggestive. For SNP-based linear regression, we tested 775,255 
SNPs across the genome. While we could apply the standard GWAS significance threshold of 5 × 10−8, we note 
that this threshold is more conservative than a Bonferroni correction based on the number of SNPs tested. Thus, 
for linear regression, we instead used a study-wise significance threshold of 0.05/775,255 = 6.45 × 10−8, and we 
considered P-values less than P < 1 × 10−6 as suggestive.

We provide QQ and Manhattan plots for all GAMuT, KMR, and linear regression analyses of BDI in 
Supplementary Fig. S6. We also list genes identified by GAMuT to be associated with BDI at study-wise or suggestive 

Figure 5. QQ and Manhattan plots for GAMuT, KMR, and linear regression analyses of BDI. The GAMuT 
analysis used a linear kernel to model phenotypic similarity and genotype weights derived from results 
of the PGC GWAS for schizophrenia. The KMR analysis also used weights based on the PGC GWAS for 
schizophrenia. In the Manhattan plots, the red line represents the study-wise significance threshold and the blue 
line represents the suggestive significance threshold. The study-wise significance thresholds for the GAMuT and 
KMR analyses are based on a Bonferroni correction for 18,067 genes tested, while the study-wise significance 
threshold for the linear regression analysis is based on a Bonferroni correction for 775,255 SNPs tested. In the 
Manhattan plot for the GAMuT results, the point exceeding the study-wise significance threshold is the −
log10(P-value) for ZHX2, a gene on chromosome 8. These analyses used a sample of N = 3,520.
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significance levels within Table 2. The GAMuT analyses of BDI identified one gene exceeding study-wise significance, 
while univariate KMR and linear regression of BDI did not detect any study-wise associated genes or SNPs. GAMuT 
found ZHX2, on chromosome 8, to be strongly associated with BDI (P = 2.73 × 10−6), when using genotype weights 
based on estimated log odds ratios from the PGC GWAS for schizophrenia. We present QQ and Manhattan plots for 
this particular analysis in the first column of Fig. 5. As noted in Table 2, ZHX2 was also found to be highly suggestively 
associated with BDI when employing genotype weights based on the PGC GWAS of MDD (P = 8.59 × 10−6). Previous 
research suggests a possible link between ZHX2 and autism spectrum disorder42. In comparison with the GAMuT 
analyses, KMR of cumulative BDI did not identify ZHX2 as having even suggestive association (Table 2; Fig. 5, middle 
column; Supplementary Fig. S6b), and univariate linear regression revealed no SNPs suggestively associated with BDI 
within ZHX2 or anywhere else across the genome (Table 2; Fig. 5, last column; Supplementary Fig. S6c).

Discussion
As genetic studies of mental-health and psychiatric disorders increasingly shift to the study of high-dimensional 
symptom and questionnaire data (in greater alignment with NIMH RDoC), it is imperative to employ powerful 
statistical tests that maximize the possibility of novel genetic discoveries. Here, we have shown that multivariate 
methods like GAMuT are substantially more powerful for gene mapping of multivariate symptom data than 
standard methods that typically summarize such symptoms into a single univariate cumulative score for analysis. 
Methods like GAMuT that jointly model individual questionnaire outcomes are robust to phenotypic heteroge-
neity, in which a genetic risk factor only affects a subcategory within the questionnaire. In standard cumulative 
approaches, including KMR and linear regression, phenotypic heterogeneity can dilute the association between 
gene and trait, making the association extremely difficult to detect. While we focused here on gene-based studies 
of common variants, we note that our findings are generalizable to studies of rare genetic variation as well as 
studies of methylation patterns throughout the genome.

We applied GAMuT to the GTP dataset to test for associations between the BDI questionnaire and up to 
19,609 genes. After controlling for important covariates, GAMuT found a strong association between BDI and 
ZHX2 (P = 2.73 × 10−6), which previous research suggests might be associated with autism spectrum disorder42. 
In comparison, univariate KMR and linear regression did not identify ZHX2 or SNPs within it to be associated 
with BDI, at even suggestive levels. This demonstrates through use of real-world data the capacity for multivariate 
methods like GAMuT to detect genotype-phenotype associations that would be missed using standard cumula-
tive univariate approaches.

GAMuT derives analytic P-values based on Davies’ exact method, thereby improving computational effi-
ciency and permitting application of the approach on a genome-wide scale. Like the popular KMR framework 
for univariate analysis, our approach allows for inclusion of prior information, such as biological plausibility of 
the SNPs under study. We provide R43 software implementing the approach on our website (see Web Resources). 
Computation run times for GAMuT are primarily dependent on sample size. Using an R script running 
single-threaded on a 1.7 GHz Intel Core i7 CPU processor, the time required for GAMuT to analyze 10 pheno-
types for 1,000, 5,000, and 10,000 subjects is 0.52 seconds/gene, 13.2 seconds/gene, and 68.6 seconds/gene. Thus, 
genome-wide implementation is feasible particularly when high-performance cluster services are available.

Web resources. Epstein Software: https://github.com/epstein-software.
OMIM: http://www.omim.org.

Data Availability
The Grady Trauma Project dataset is available from KJR on reasonable request.
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