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Developing a Quantitative 
Ultrasound Image Feature Analysis 
scheme to Assess tumor treatment 
Efficacy Using a Mouse Model
Seyedehnafiseh Mirniaharikandehei  1, Joshua Vanosdol2, Morteza Heidari1, 
Gopichandh Danala1, sri Nandhini sethuraman2, Ashish Ranjan2 & Bin Zheng1

the aim of this study is to investigate the feasibility of identifying and applying quantitative imaging 
features computed from ultrasound images of athymic nude mice to predict tumor response to 
treatment at an early stage. A computer-aided detection (CAD) scheme with a graphic user interface 
was developed to conduct tumor segmentation and image feature analysis. A dataset involving 
ultrasound images of 23 athymic nude mice bearing C26 mouse adenocarcinomas was assembled. 
These mice were divided into 7 treatment groups utilizing a combination of thermal and nanoparticle-
controlled drug delivery. Longitudinal ultrasound images of mice were taken prior and post-treatment 
in day 3 and day 6. After tumor segmentation, CAD scheme computed image features and created 
four feature pools including features computed from (1) prior treatment images only and (2) difference 
between prior and post-treatment images of day 3 and day 6, respectively. To predict tumor treatment 
efficacy, data analysis was performed to identify top image features and an optimal feature fusion 
method, which have a higher correlation to tumor size increase ratio (TSIR) determined at Day 10. Using 
image features computed from day 3, the highest Pearson Correlation coefficients between the top 
two features selected from two feature pools versus TSIR were 0.373 and 0.552, respectively. Using an 
equally weighted fusion method of two features computed from prior and post-treatment images, the 
correlation coefficient increased to 0.679. Meanwhile, using image features computed from day 6, the 
highest correlation coefficient was 0.680. Study demonstrated the feasibility of extracting quantitative 
image features from the ultrasound images taken at an early treatment stage to predict tumor response 
to therapies.

Before performing clinical trials on cancer patients, mouse models are frequently used as an important step in 
biomedical research to screen and test new investigative chemotherapy drugs and/or therapeutic methods in 
order to identify effective drug agents, drug delivery methods, and other treatment technologies for improving 
the efficacy of cancer treatment1. The advantages and necessity of applying mouse models in the initial steps of 
developing new drugs and/or cancer treatment methods have been extensively investigated and discussed in 
previous studies2,3. As a result, a large number of mouse models bearing different types of simulated carcinoma 
tumors have been developed and used in cancer research field4–6.

In order to non-invasively visualize and characterize tumor response and/or tissue changes during and/or 
after cancer treatment, medical imaging plays an important role by helping validate certain study hypotheses7. 
Many imaging modalities, such as x-ray imaging including micro-computed tomography (µCT), magnetic res-
onance imaging (MRI), nuclear and optical imaging, and ultrasound imaging, have been proposed and used for 
this purpose in the recent years8–10. Each imaging modality has its advantages and limitations in predicting or 
assessing the efficacy of tumor response to the treatment. Compared to other imaging modalities, ultrasound 
has a number of unique characteristics making it a more attractive tool to predict or assess cancer prognosis to 
some clinicians. It is a portable, safe (no harmful radiation), easy-to-use, and low-cost imaging modality to assist 

1School of Electrical and Computer Engineering, University of Oklahoma, 73019, Norman, OK, USA. 2center for 
Veterinary Health Science, Oklahoma State University, Stillwater, 74078, OK, USA. Correspondence and requests 
for materials should be addressed to B.Z. (email: bin.zheng-1@ou.edu)

Received: 11 December 2018

Accepted: 2 May 2019

Published: xx xx xxxx

opeN

https://doi.org/10.1038/s41598-019-43847-7
http://orcid.org/0000-0002-1070-4517
mailto:bin.zheng-1@ou.edu


2Scientific RepoRts |          (2019) 9:7293  | https://doi.org/10.1038/s41598-019-43847-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

in monitoring and assessing tumor response and change of tissue characteristics prior and post-treatment11,12. 
However, despite the potential advantages of using ultrasound imaging to assess treatment efficacy, ultrasound 
often includes higher noise resulting in a relatively low signal-to-noise ratio. Reliably detecting and computing 
quantitative image features of tumors from ultrasound images is considered more difficult than computing image 
features from other imaging modalities (i.e., µCT and MRI). As a result, the feasibility of developing or identifying 
new quantitative imaging markers computed from ultrasound to predict or assess cancer treatment efficacy at an 
early stage has not been investigated and validated to date.

Thus, based on the concept and scientific premise of Radiomics13, the objective of this study is to test the feasi-
bility of identifying and extracting new quantitative image features or markers computed from ultrasound images 
to predict efficacy of cancer treatment at an early stage. In order to achieve the study objective, we developed an 
interactive computer-aided detection (CAD) scheme with an easy-to-use graphic user interface (GUI) to process 
ultrasound images acquired from the colon carcinoma tumor bearing mice and treating with a variety of ther-
mal therapies. From the segmented tumor regions depicted on the ultrasound images, CAD scheme computes a 
large pool of image features based on tumor morphology, density distribution, and texture related features. Data 
analysis was then performed to identify top image features and their fusion method to generate new quantitative 
imaging markers to predict and compare the efficacy of the thermal therapies under tests at an early stage.

Materials and Methods
In this study, we assembled an experimental dataset that includes 23 athymic nude mice bearing C26 ade-
nocarcinomas. These mice were treated with 7 different thermal based therapies that combine the focused 
ultrasound-induced mild hyperthermia and chemotherapeutic nanoparticle formulations. Specifically, these 7 
treatment methods include (1) high intensity focused ultrasound (HIFU), (2) the chemotherapeutic drug dox-
orubicin (DOX), (3) DOX and HIFU, (4) low-temperature sensitive liposomes (LTSL), (5) HIFU and LTSL,  
(6) echogenic low-temperature sensitive liposomes (E-LTSL), and (7) HIFU and E-LTSL. Both LTSL and E-LTSL 
are different nanoparticle formulations that encapsulate DOX. The details of these treatment methods have been 
previously reported14.

In brief, HIFU is a non-invasive therapeutic technique that uses the focused ultrasound energy to heat a 
targeted region of tissue in a controlled manner. DOX is a commonly administered, clinically available chemo-
therapeutic drug, which is often used for treating a wide range of different cancer types. The addition of HIFU 
hyperthermia increases blood flow to the tumor region and increases drug perfusion in a targeted manner. 
LTSLs are thermosensitive liposomes that carry a DOX payload to the tumor site; should heating be applied via 
HIFU (39–42 °C), DOX will be released at tumor site, granting the DOX an additional degree of targeting effect. 
E-LTSLs have the same lipid composition of the aforementioned LTSL, but also incorporate an ultrasound con-
trast agent that becomes echogenic (visible on ultrasound) during HIFU heating. They also have the added benefit 
of promoting improved drug penetration via HIFU/nanobubble interaction.

In the mouse model used in this study, all animal-related procedures were approved and carried out under the 
regulations and guidelines of the Oklahoma State University Animal Care and Use Committee (ACUP VM-13-24).  
Specifically, in order to establish a mouse model of colon cancer, C26 cells were grown as a monolayer to 80–90% 
confluence in RPMI supplemented with 10% v/v fetal bovine serum (FBS) and 1% v/v streptomycin/penicillin. 
Confluent cells were harvested, washed, and diluted with sterile cold PBS to generate 0.5 × 105 cells/50 μl. Next, 50 
μl of cell inoculum was injected per mouse in the thigh region of the mouse hind leg using a 25-gauge needle (BD, 
Franklin Lakes, NJ, USA). Mice were monitored and tumor growth was measured by serial caliper measurements 
(General Tools Fraction+™, New York, NY, USA). Tumor volumes were calculated using the formula (length × 
width2)/2, where length is the largest dimension and width is the smallest dimension perpendicular to the length. 
After 3 days, tumors typically grow and reach to a treatment volume of greater than 50 mm3 14.

In this study, each mouse was treated twice using the targeted thermal therapy on Day 3 and Day 6 after cell 
inoculum was injected, respectively. The longitudinal ultrasound images were taken prior and post-treatment 
in these two days using a Vevo 2100 ultrasound imaging system at a frequency of 21 MHz14. During the process, 
mice were anesthetized and held in custom built mouse holders attached to a 3D positioning stage and the tumors 
were positioned so that the target was in the center of the focal zone of the ultrasound imaging transducer. In 
each image acquisition process, multiple ultrasound image frames or a series of imaging video were taken and 
recorded. Each mouse was monitored for 10 days. At Day 10, the mouse was sacrificed. The tumor was resected 
and the tumor size was measured.

In this study, we developed an interactive computer-aided detection (CAD) scheme with a graphic user inter-
face (GUI) platform. Following three steps were taken to perform image processing and feature computation. 
First, after uploading a complete set of ultrasound imaging video series into the GUI, the operator (i.e., a research 
assistant in the study laboratory) selects one ultrasound image (representing the best frame in the video) in which 
the tumor area is considered clearly visible. The tumor region is then segmented manually from the ultrasound 
image. Figure 1 illustrates an example of the tumor regions and their boundary contours segmented from 4 sets of 
ultrasound images acquired from one mouse prior and post-DOX treatment in Day 3 and Day 6 using the GUI of 
our CAD scheme, respectively. Specifically, we used the algorithm illustrated in Fig. 2 for processing the images.

After tumor segmentation, the CAD scheme applies a low pass Gaussian filter to the images in order to reduce 
the inherent noise of the ultrasound images (Fig. 3). CAD then computes image features. A total of 284 image 
features are computed from each segmented tumor region. The similar tumor-related image features have been 
computed from other imaging modalities (i.e., CT and MRI) in our previous studies to develop quantitative 
image markers for predicting tumor response to chemotherapies of treating breast and ovarian cancer15,16. These 
features can be categorized into 4 groups as summarizied in Table 1, which include (1) 9 morphology-based 
image features; (2) 21 tumor density distribution related image features; (3) 44 grayscale run length (GSRL) based 
texture related image features17, which include (a) Short Run Emphasis (SRE), (b) Long Run Emphasis (LRE), 
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(c) Gray-Level Nonuniformity (GLN), (d) Run Length Nonuniformity (RLN), (e) Run Percentage (RP), (f) Low 
Gray-Level Run Emphasis (LGRE), (g) High Gray-Level Run Emphasis (HGRE), (h) Short Run Low Gray-Level 
Emphasis (SRLGE), (i) Short Run High Gray-Level Emphasis (SRHGE), (j) Long Run Low Gray-Level Emphasis 
(LRLGE), and (k) Long Run High Gray-Level Emphasis (LRHGE) computed in four different directions (0°, 45°, 
90°, and 135°), respectively; and (4) 210 image features computed from the wavelet transformation maps.

Specifically, to compute image features in group 4, CAD applies the wavelet transform on the ultrasound 
image so that the image is decomposed into four components including ILL, ILH, IHL, and IHH, where H and L are 
labeled as the high- or low-scale decomposition in either the X or Y direction. Intrinsically, in this computation, 
IHL denotes the component after applying the high-scale and low-scale filter along the X and Y directions, respec-
tively. For each component, the density and texture features measured in the second and third group are recalcu-
lated, respectively. Figure 4 shows a two-step algorithm to filter images and compute image features.

After image processing and feature computation, we assembled 4 initial image feature pools, which include the 
image features computed from (1) prior treatment on Day 3, (2) the difference between prior and post-treatment 
on Day 3, (3) prior treatment on Day 6, and (4) the difference between prior and post-treatment of Day 6. 
Afterward, all computed features in each feature pool were normalized to the values between 0 and 1. Hence, 
for each thermal treatment in Day 3 or Day 6, two initial feature pools were established. The first one includes 

Figure 1. An example of four ultrasound images taken from a mouse in Day 3 (A) prior- DOX treatment and 
(B) post-treatment, in Day 6 (C) prior-treatment and (D) post-treatment, respectively. The tumor boundary 
contours are marked on each image.

Figure 2. Proposed Algorithm for processing each image.
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image features extracted from prior treatment ultrasound images only and the second one includes image fea-
ture difference by subtraction between two features computed from the two matched images acquired prior and 
post-thermal therapy of the same mouse.

In order to identify and select the potentially effective quantitative image features or markers, we used tumor 
size change during the period of starting tumor treatment (Day 3) to the end of monitoring (Day 10) as a com-
parison reference (“ground-truth” of treatment efficacy) in this study. Specifically, the tumor size increment ratio 
(TSIR) for each mouse during this period is computed with the following formula.

Figure 3. Illustration of applying Gaussian filter to the ultrasound image, which shows (A) manually marked 
tumor boundary contour, (B) the segmented tumor region and (C) tumor image after applying the Gaussian 
filter.
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where x1 and x2 is the mouse tumor size at day 3 and day 10, respectively. This TSIR based evaluation criterion 
is similar to Response Evaluation Criteria in Solid Tumors (RECIST) guidelines used in current clinical practice 
to assess tumor response to therapies among the cancer patients18. Then, the computed TSIR were normalized 
between 0 and 1. Figure 5 shows the normalized TSIR for all 23 mice and is averaged among all therapy groups 
that were used in this study.

In order to identify the association between the image features and treatment efficacy, we computed the cor-
relation coefficient of each feature with TSIR using the following equation4:

= ∑ − ∑ ∑

∑ − ∑ ∑ − ∑
r n xy x y

n x x n y y

( ) ( )( )

[ ( ) ][ ( ) ]2 2 2 2

where “r” is the Pearson correlation coefficient, “x” and “y” are one selected image feature and the TSIR, respec-
tively. “n” is the case study size, which is 23 in this study. Interpretation of the computed Pearson’s Correlation 
coefficient to the association between two compared parameters (i.e., one image feature and TSIR in this study) is 
listed in Table 2 19. Thus, the image features that have higher Pearson’s correlation coefficients with TSIR indicate 
the higher performance to predict treatment efficacy in this study.

By computing Pearson’s correlation coefficients of 284 image features stored in each of the 4 initial feature 
pools representing the ultrasound imaging tests performed on Day 3 and Day 6, we first selected the top five 
image features that have a higher correlation with TSIR in each feature pool. Next, we calculated the correlation 
coefficient of these five features with each other. Then, in order to reduce redundancy, we selected two features 
among these 5 top features, which have the lowest correlation coefficient, to generate a new fusion marker using 
an equally weighting method, = +F F F( )/2new 1 2 . Similar fusion method has been used in our previous studies 
(i.e.20).

We also recognize that unlike other imaging modalities (i.e., CT or MRI), an ultrasound imaging test usually 
acquires multiple image frames. In this study, one ultrasound imaging test or scan typically includes up to 200 
image frames. In order to test scientific rigor or reproducibility of the quantitative image features computed from 
different ultrasound image frames, we defined one frame originally selected by the operator of the GUI of our 
CAD scheme as the base frame of a set of ultrasound images acquired in one test. We also processed and com-
puted the same image features of the segmented tumor region from all other ultrasound image frames (i.e., the 
remaining 199 frames) in this set. Then, we computed the mean correlation coefficient and the standard deviation 
of the features computed from the base frame and all other 199 frames. Figure 6 shows an algorithm to examine 
the reproducibility of the features computed from the base frame as compared to the features computed from all 
other frames.

Results
Table 3 shows two sets of 5 optimal image features with the highest Pearson correlation coefficients with the 
treatment outcome (TSIR) and the corresponding p-values. These features are selected from the two initial image 
feature pools that record the image features computed from the ultrasound images acquired prior treatment on 
Day 3 and Day 6, respectively. It shows that using image features computed from prior treatment ultrasound 
images acquired on Day 3 yielded a moderate correlation and there are no significant differences between the top 
5 features (p > 0.05), while using the image features computed from prior treatment ultrasound images acquired 

Feature Class Feature Number Feature Description

Morphology 1–9 Volume, convexity, maximum radius, radius standard deviation (STD), surface area, compactness, 
maximum three-dimensional diameter, spherical disproportion, and spherical ratio.

Density 10–30
Density, density STD, gradient mean, gradient STD, ISO-intensity, fluctuation mean, fluctuation STD, 
mean contrast, contrast, skewness, kurtosis, STD ratio of tumor to the boundary, energy, entropy, 
maximum intensity, mean absolute deviation, median, minimum, range, RMS, and uniformity.

Texture 31–74 11 gray-level run length-based features in four directions (0°, 45°, 90°, and 135°).

Wavelet 75–284 Apply the density and texture features on the four wavelet decompositions.

Table 1. List of the computed 284 image features in four feature groups.

Figure 4. The proposed algorithm for image filtering and feature computation.

https://doi.org/10.1038/s41598-019-43847-7


6Scientific RepoRts |          (2019) 9:7293  | https://doi.org/10.1038/s41598-019-43847-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

on Day 6 increase the correlation level to a strong positive correlation and the number one feature yielded signif-
icantly higher correlation as compared to other 4 top features (p < 0.01).

The top 5 performed image features selected on Day 3 and Day 6 are different as shown in Table 3, which 
indicates that treatments have an impact on the change of tumor morphological and texture characteristics. In 
addition, Table 4 shows and compares 5 sets of correlation coefficients of the same image features computed from 
prior treatment ultrasound images acquired on both Day 3 and Day 6. The results show that image features con-
tain increased discriminatory power or higher correlation coefficients as they approach the endpoint of Day 10 
(i.e., Day 6 vs. Day 3) to predict treatment efficacy or outcome.

Table 5 shows the correlation coefficients between TSIR and 5 top image features selected from the feature 
pool that contains image feature difference computed between prior and post-treatment ultrasound images 
acquired on Day 3. It shows that using the image features that represent the difference of the tumor response or 
characteristic change prior and post-therapies yield higher correlation with TSIR or higher prediction power. In 
addition, by selecting two of the 5 top features (as listed in Table 5), which have the smallest correlation coeffi-
cients among the 5 top features, we applied an equally weighted fusion method to generate a new image marker. 
The correlation coefficient of this new fusion based image marker and TSIR significantly increased to 0.679 as 
shown in Table 5.

Figure 5. Distribution of the normalized TSIR ratios based on (A) each mouse and (B) average of each therapy 
group.

“r “ Value Relation

+0.70 or higher (−0.70 or lower) Very strong positive (negative) relationship

+0.40 to +0.69 (−0.40 or −0.69) Strong positive (negative) relationship

+0.30 to +0.39 (−0.30 or −0.39) Moderate positive (negative) relationship

+0.20 to +0.29 (−0.20 or−0.29) Weak positive (negative) relationship

+0.01 to +0.19 (−0.01 or −0.19) No or negligible relationship

0 No relationship [zero correlation]

Table 2. Pearson Correlation coefficient interpretation19.
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Table 6 shows the 5 selected image features computed from the differences between the prior and post-treatment  
ultrasound images acquired on Day 6 with the highest correlation coefficients to TSIR. However, when comparing 
the correlation coefficients of the top 5 features computed from prior treatment ultrasound images acquired on 
Day 6 (Table 3), correlation coefficients decrease, which indicates that adding the image features computed from 
post-treatment ultrasound images on Day 6 does not help increase power to predict treatment outcome (TSIR 
determined on Day 10).

Subsequently, we separately analyzed and sorted feature distribution in 7 groups of different thermal ther-
apy methods. Each of the 7 treatment groups involves 2 to 4 mice. For example, Fig. 7 shows the distribution 
(or boxplot) of one of the top image features (the GLNHL values) computed from the difference of prior and 
post-treatment ultrasound images acquired on Day 3 across the treatment groups. The result shows a trend 
indicating that the image feature values vary when using different thermal therapy methods. Finally, Table 7 
shows examples of the mean correlation coefficient, standard deviation and 95% confidence interval of the 
base frame and the other 199 frames for the top five image features computed from the difference of prior and 

Figure 6. The proposed algorithm for examining reproducibility or consistency between the image features 
computed from the base frame and other frames.

Day 3

P value 
comparing 
to Range

Day 6

P value 
comparing 
to GLNHLFeature

Correlation 
coefficient with 
TSIR Feature

Correlation 
coefficient with TSIR

Range 0.375 GLNHL 0.680

EntropyHH 0.361 0.468 RPHL 0.643 <0.01

RPLL 0.359 0.415 GLNHL 90° 0.605 <0.01

EntropyLL 0.355 0.478 RLNLL 0.598 <0.01

GLNHL 90° 0.344 0.377 EntropyHL 0.597 <0.01

Table 3. List of two sets of the selected 5 top image features from 2 image features of prior treatment on Day 3 
and Day 6.

GLNHL 90° Tumor Volume RLNHL RPHH 90° GLNLL

Day3 0.344 0.341 0.329 0.326 0.318

Day6 0.605 0.525 0.586 0.546 0.551

Table 4. Comparison of the correlation coefficients of the same image features computed from prior treatment 
ultrasound images acquired on Day 3 and Day 6.

No. Features
Correlation 
coefficient with TSIR

P value 
comparing to F1

F1 GLNHL 0.552

F2 LGRE 0° 0.495 0.128

F3 RangeHL 0.388 0.011

F4 LGRELL 0.387 0.530

F5 Gradient STDLH 0.373 0.809

Fusion Average (F1 & F3) 0.679 <0.01

Table 5. List of the 5 selected image features computed from the difference of prior and post-treatment 
ultrasound images acquired on Day 3 with the high correlation with TSIR.
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post-treatment ultrasound images acquired on Day 3. These image features were computed from a mouse within 
the HIFU+ELTSL treatment group. The results show the image features computed from different frames of ultra-
sound images acquired in one test are highly correlated or invariant.

Discussion
In cancer research, many previous studies have reported to develop and apply either molecular biomarkers (i.e.,21–23)  
or quantitative image markers (i.e.15,16,24–26) to predict tumor response to chemotherapies and/or other therapeu-
tic methods at an early stage. In this study, we investigated and demonstrated the feasibility of identifying new 
quantitative image markers computed from ultrasound images. This study has a number of unique characteris-
tics and potential impacts. First, in the previous studies, quantitative image markers were computed based on 
Radiomics concept that uses CT and/or MRI images to predict cancer prognosis or tumor response to treatment13.  
In this study, we applied the Radiomics approach to ultrasound images to identify new quantitative image mark-
ers to predict the efficacy of cancer treatment. Due to the advantages of ultrasound imaging as a diagnostic 
modality, developing highly performed and robust image markers could be a cost-effective approach in future 
research and clinical service. Second, thermal based therapies have been emerging as a promising cancer treat-
ment method. However, accurate prediction aimed at determining efficacy or treatment outcomes of different 
therapeutic approaches remains an unsolved challenge. This is the first study that presents a computer-aided 
approach to develop new quantitative imaging markers that can predict the efficacy of thermal therapies using 
a mouse model. Third, we computed and compared image features of the longitudinal images acquired not only 
from prior and post-treatment ultrasound images but also from two-time points (Day 3 and Day 6 after initial 
tumor cell embedment). As a result, we are able to conduct a more comprehensive data analysis and identify an 
optimal approach to extract and compute image markers in order to more accurately predict treatment efficacy 
or outcome at an early stage.

Feature
Correlation 
coefficient with TSIR

P value comparing to 
RLNHH 45°

RLNHH 45° 0.428

RLNHH 135° 0.420 <0.01

RPHH 90° 0.358 <0.01

RPHH 0.357 <0.01

LGRELL 0.306 0.251

Table 6. The top image features computed from the difference of prior and post-treatment ultrasound images 
acquired on Day 6 with the high correlation with TSIR.

Figure 7. The GLNHL values computed from all mice under different treatments, which are sorted from low to 
high performance (right to left), respectively.

Mean 
Correlation 
Coefficient

95% Confidence 
Interval

Standard 
deviation

GLNHL 0.978 [0.951, 1.00] 0.125

LGRE 0° 0.9668 [0.019, 0.917] 0.224

RangeHL 0.9491 [−0.058, 0.608] 0.167

LGRELL 0.9719 [0.100, 0.978] 0.219

Gradient STDLH 0.9513 [0.089, 0.905] 0.204

Table 7. An example of the base frame and other frames relationships.
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From the experiments and data analysis results, we can make the following new observations. First, this study 
shows that it is possible to identify quantitative ultrasound image feature based markers at an early stage (i.e., Day 
3 in this study) to predict thermal therapy efficacy. However, in the early stage, using the image marker computed 
from both prior and post-treatment ultrasound images can yield substantially higher prediction accuracy as 
compared to using the prior treatment images only (i.e., correlation coefficients of 0.375 vs. 0.679 as shown in 
Tables 3 and 5). This observation is consistent with our previous study of developing quantitative image markers 
computed from prior and post-chemotherapy CT images to predict the response of ovarian cancer patients to 
chemotherapy in the clinical trials16.

Second, we observed that using quantitative image markers computed from the prior treatment ultrasound 
images acquired on Day 6 yielded substantially higher prediction power than the image markers computed from 
the prior treatment ultrasound images acquired on Day 3. The correlation coefficients increase from the mod-
erate level to the strong positive level for both different top 5 features as shown in Table 3 and the same highly 
performed features as shown in Table 4. Thus, the trend is consistent, which indicates that the images acquired at 
the later stage (i.e., Day 6 in this study) contain higher discriminative information or predictive power to evaluate 
treatment outcome.

Third, we also observed a different phenomenon when using the image features computed from the difference 
between prior and post-treatment ultrasound images acquired on Day 3 and Day 6. Unlike the image markers 
computed on Day 3, adding post-treatment ultrasound images acquired on Day 6 does not further increase pre-
diction power or have lower correlation coefficients as shown in Table 6. It reveals that in the earlier day (Day 3), 
the tumors have higher positive responses to the thermal therapies than those in the later day (Day 6), which may 
indicate that at the later stage, tumors are more resistant to the treatment. Thus, the observation may clearly show 
that early treatment (i.e., on Day 3) is more important and effective than later treatment (i.e., on Day 6 in this 
study), which is consistent with the established scientific evidence in cancer treatment research.

Fourth, the computed image feature values also vary on the ultrasound images acquired from the mice under 
different treatment methods. In this study, 23 mice were treated with 7 different thermal therapies. Based on 
the final tumor size measurement results or TSIR on Day 10, the effectiveness of these 7 thermal methods has a 
monotonically decreased trend from thermal therapy method 1 (HIFU) to method 7 (HIFU + E-LTSL). The com-
puted image features also show a similar trend as shown in Fig. 7, which indicates the high correlation between 
the image features and thermal therapy methods. Thus, using quantitative image markers also has the potential to 
help identify optimal therapy methods.

Last, although computer-aided detection schemes of medical images can be quite sensitive to change of image 
noise27, we observed that image features computed from all image frames (i.e., 200 in this study) acquired at one 
ultrasound imaging test of a mouse were highly correlated or invariant to the small change of inherent image 
noise. As an example shown in Table 7, the mean correlation coefficients of the top five image features computed 
from the base image frame and other 199 image frames in one ultrasound imaging scan of a mouse ranged from 
0.949 to 0.978. The results revealed that as long as using a well-established or controlled imaging protocol, it is 
feasible to robustly compute quantitative image features from the ultrasound images for predicting the efficacy of 
tumor response to therapies.

Despite the promising data analysis results and observations, this is a preliminary study with limitations. 
For example, in this study, we only used a small dataset including 23 athymic nude mice, which were divided 
into 7 groups treated with 7 different thermal therapies. The ultrasound images were acquired by one group of 
researchers in one research laboratory. Thus, in order to validate the study results and enhance the feasibility of 
developing robust image feature based markers to predict cancer treatment efficacy, more studies are needed by 
using larger and diverse datasets from both prior clinical (using mouse models) and clinical (using real patient 
images) researches in the future.

Conclusion
Ultrasound is a safe, easy-to-use, and low-cost medical imaging modality. In this study, we investigated the fea-
sibility of identifying and applying quantitative image feature based markers computed from ultrasound images 
using a C26 adenocarcinoma bearing mouse model to assess tumor response to thermal therapies. The study 
results demonstrated that ultrasound images acquired prior and post-therapy at an early stage (i.e., Day 3 of this 
study) contained useful and highly discriminative information that can possibly predict tumor response to ther-
apies at an early stage. Although ultrasound images may have a higher inherent noise level than other medical 
imaging modalities (i.e., CT or MRI), this study also indicated the possibility of computing highly robust image 
features for the task of developing robust image feature based markers. Thus, based on the preliminary results of 
this study, future studies using larger and more diverse image datasets are needed to further validate the perfor-
mance and potential utility of this methodology and similar approaches.
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