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First in-situ observation of a moving 
natural pyroclastic density current 
using Doppler radar
Lea Scharff1, Matthias Hort1 & Nick R. Varley  2

pyroclastic density currents are one of the most devastating volcanic hazards. Understanding their 
dynamics is a key to develop successful hazard mitigation strategies. the hazard associated with 
pyroclastic density currents is commonly investigated a posteriori from their deposits or a priori using 
analogue and numerical experiments. Despite the low probability of observing a natural moving 
pyroclastic density current, we present the first in-situ analysis of the internal particle velocities of 
pyroclastic density currents at Volcán de Colima using a Doppler radar. our data show two Vulcanian 
explosions, immediately followed by column collapse and a first pyroclastic density current travelling 
down the south flank with an average speed of 30 m/s (>50 m/s maximum speed) to a distance of 3 
km from the crater rim. the direction of the pyroclastic density current coincided with that of the radar 
beam enabling measurement of velocity spectra (histogram of particle velocities within the radar 
beam). The measurement geometry enables the simultaneous measurement of the dense undercurrent 
at the crater rim (with <20 m/s and an increasing echo power over 20 s) and the dilute cloud higher 
above the topography approaching the radar (with >20 m/s and approximately constant echo power). 
the presented data set may be used as a benchmark for future experimental and numerical models that 
simulate the dynamics of pyroclastic density currents. Using the measured velocities of the collapsing 
column as input for numerical models will permit the validation of the models for the prediction of the 
true run-out distance, and thus provide valuable information for hazard assessments.

Numerical models and analogue experiments show that both pyroclastic density currents (PDCs) and snow ava-
lanches are comprised of a dense undercurrent, behaving like a granular flow, overlain by a dilute ash (or snow) 
cloud controlled by turbulence and entrainment. Besides the general similarities, three fundamental mechanisms 
for the generation of PDCs can be identified1,2: gravitational break-up of lava domes (so-called Merapi-type3), 
directed lateral explosions (e.g. the eruption of Mt. St. Helens, 18 May 19804,5), and the gravitational collapse 
of eruption columns (e.g. during the Plinian eruption of Mt. Vesuvius, Italy, 79AD, which destroyed Pompeii6). 
During Merapi-type block-and-ash flows, large blocks break off the lava dome and fragment during their 
descent down the flank, thereby releasing volcanic gases7. In the case of a directed lateral explosion, an unstable, 
over-pressured lava dome collapses and releases volcanic gases and volcanic material explosively onto the flank8. 
The third type, the gravitational collapse of an eruption column, is a consequence of insufficient entrainment of 
ambient air into an initially non-buoyant, momentum-driven eruption column1.

The impact of PDCs on the local population and infrastructure9 and why they occur10,11 has been the focus of 
many research studies during the last decades. Up to now, the dynamics of PDCs have either been inferred from 
their deposits11,12 or were investigated using numerical models13–18 and small- to large-scale analogue experi-
ments19–23. Experiments are typically equipped with video cameras for the analysis of dynamics, which is greatly 
hampered by the PDC’s opaqueness. To look into a PDC, remote sensing techniques such as Doppler radar can 
be used, however, they would require a much larger experimental setup, which is currently not possible for the 
volcanic case. So far only one comparable Doppler radar measurement exists: it reveals the internal dynamics of 
a snow avalanche (a controlled experiment) travelling down the flank of a fjord at 120 km/h24 (=33 m/s). This 
Doppler radar data set has subsequently been used to validate a numerical model for snow avalanches25, which is 
still used for hazard assessment26.
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Similar to avalanches, a PDC’s dense undercurrent is largely controlled by the local topography (see 
Supplementary Fig. S1). The dilute cloud above it, however, can decouple from the dense flow and overtop top-
ographic barriers. Using numerical modelling, it is possible to produce maps of areas potentially affected by 
PDCs20. Usually these maps are also used by scientists to find safe places, outside the possible pathways of PDCs 
to install monitoring equipment. For a profiling stationary instrument, like the Doppler radar, this means that 
the probability to observe one of these PDCs is very low. Until now, nobody has captured a collapsing eruption 
column, culminating in a PDC approaching a radar installation, thereby enabling the measurement of particle 
velocities during the collapse and within the PDC.

Here we present the first in-situ measured velocities of a PDC that occurred on 21 November 2014, 18:24 
UTC, at Volcán de Colima, Mexico, during a Vulcanian explosion. The associated eruption column ascended 
to 7 km above the crater27 (10–11 km above sea level). The PDC descended down the south flank and split into 
the Montegrande and San Antonio ravines, reaching a run-out distance of 2.9 and 3.1 km, respectively27,28. The 
Doppler radar recorded almost continuously from March 2014 until it was destroyed in July 2015 by another 
sequence of PDCs29–32. The Doppler radar data of the 2014 event, presented and analysed here, is unique with 
respect to the recorded dynamics (e.g. temporal evolution of velocities). We identified several characteristic 
dynamic phases during the 21 November eruptive event, which we will summarize first. A detailed analysis of our 
data is presented afterwards.

Results
The Doppler radar was set up roughly 2,700 m slant distance from the crater rim (i.e. approximately 3000 m slant 
distance from the vents) on the south flank (see Fig. 1, blue triangle), on a ridge in-between the ravines where 
the PDCs descended (solid and dashed red line, respectively, Fig. 1). The Doppler radar was installed to monitor 
the volcanic activity by measuring the velocity and echo power (a proxy for the amount of tephra33) within the 
radar beam (cone above the topography in Fig. 1). The radar beam is split into six distance intervals (i.e., range 
gates). Each of the range gates is a conical volume of 600 m length and an increasing radius with distance to the 
radar (opening angle of approximately 1.5°). Range gate 5, for example, is centred above the crater and has a mean 
diameter of 80 m. In each range gate, the velocity component along the radar beam of all particles is measured 
together with the cumulative reflected power for each velocity. Because the reflected power depends on the con-
centration and size of particles (for details see ref.33) it is only a zero order measure for mass moving inside the 
nearly cylindrical volume covered by each range gate. For each of these “volumes” the Doppler radar provides 
information on the velocities of all particles moving inside this volume, i.e. a velocity spectrum. The amplitude 
(i.e. reflected power) for each measured velocity is a measure of the number of particles (not necessarily of the 
same size) moving at that speed. We use the term “particles” here to avoid any implicit hints on sizes. Depending 
on particle concentration, our radar, operating at a wavelength of 1.25 cm, is able to “see” particles with radii 
larger than a millimetre.
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Figure 1. Topography and setup of the Doppler radar (blue triangle) at Volcán de Colima, Mexico. Topography 
from digital elevation model39 with radar beam (grey cone) shown to scale. Blue crosses separate distance 
intervals for which the range is given. Cross section profile (along black line, deviates 14.24° from N) projected 
on the right. Range gate length is 600 m, the radar beam centre is at about 100 m height above the dome 
and has a diameter of 77 m at that distance. The map is centred at the crater at 19.5125°N and −103.617°E. 
Altitude is colour coded and the same for topography and profile. 200 m contours are shown. Red lines mark 
possible pathways of the dense ground hugging component of PDCs down the San Antonio (solid) and 
Montegrande (dotted) ravines. Paths were calculated by following the steepest descent along the topography 
(see Supplementary Fig. S1, for more details). Note that the pathway of the PDC highly depends on its starting 
point. PDCs down the dotted line will not be recorded by the radar because of the SSW wind direction on that 
day. Wind is indicated by the blue arrow and blows toward the NNE (into the figure, see Supplementary Fig. S4).
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The radar data are presented in an overview plot, a so-called velocigram (Fig. 2a), showing the temporal evo-
lution of apparent vertical velocity and echo power in the distance interval covering the summit. Note that we 
use the term apparent vertical velocity, because the Doppler radar measures the component of a particle’s velocity 
along the radar beam, termed radial velocity. Under the assumption of vertical motion, and using the known 
inclination α of the radar beam, these radial velocities vr can be converted to apparent vertical velocities vav by 
the trigonometric formula: vr = vav/sin(α). Here, the Doppler radar beam was inclined upward (α = −27°), thus 
radial and apparent vertical velocities are approximately related by a factor of −2. The echo power is the reflected 
power converted to dB and depends on the amount and size of particles in the volume covered by each range gate 
(see Fig. 1). In a velocigram of one range gate each pixel thus carries information on how much material (col-
our) is moving at a specific apparent vertical velocity (vertical axis) at a specific point in time (horizontal axis). 

Figure 2. (a) Doppler radar data displayed as a velocigram. Each pixel shows the approximate amount of 
material (echo power in dB, colour coded) moving at a certain velocity (y-axis) and in time (x-axis). The echo 
power is in dB relative to the noise level. The left y-axis shows apparent vertical velocity (see methods section) 
and the right y-axis shows measured radial velocity (+ and − indicate toward and away from the radar, resp.). 
Time is in seconds and zero time corresponds to the beginning of the event at 21 Nov. 2014 at 18:24:24 UTC. 
Shown is the range gate above the dome, centred at 3,000 m slant distance from the radar (see Supplementary 
Fig. S2 for the complete data set with all range gates). (b–f) Schematic drawings of the inferred dynamics within 
the eruption cloud and PDC at specific times in a cross-section through dome and radar beam (purple lines). 
Schematic drawings are inspired by a suite of numerical modelling results40. Grey scale indicates concentration 
of particles, yellow arrows show main flow directions. (b) Jet-like ejection of particles. The purple arrows point 
into positive apparent vertical (vav) and radial (vr) velocity, respectively. (c) Initiation of collapse as entrainment 
is not sufficient to reduce concentration in cloud centre. (d) Collapse develops into ground hugging dense 
underflow with turbulently convecting head. (e) PDC head and dense underflow travel down the flank below 
the radar beam. Entrainment in dilute upper part initiates a buoyantly rising thermal, which is re-entrained 
into the main eruption plume. (f) The buoyant thermal merges with the main plume. PDC re-enters the radar 
beam near the radar where the beam approaches the ground. Note that this schematic drawing shows an 
extended view, compared to (b–e). (g) Slant distance of the apparent centre of mass (see the methods section 
and Supplementary Figs S2 and S3) from the radar as a function of time. The colour is a proxy for the amount 
of material detected at each sub-range gate distance interval. Purple lines in (g) indicate average velocities of 
the PDC moving toward the radar (30 m/s, dashed, and 50 m/s, dash-dotted) and away from the radar (20 m/s, 
dotted).
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Because the particle motion is mainly influenced by gravity and, depending on its size, also by air friction, the 
temporal evolution of apparent vertical velocities can give information on the size of particles34 and atmospheric 
dynamics35.

In the velocigram, the explosive event can be clearly identified as a sudden appearance of fast particles in range 
gate 5 at 100 m above the vent (Fig. 2a, t = 0 s). Decreasing velocities after the initial peak mark a deceleration 
phase, which is due to gravity and friction with air36. A subsequent pulse at t = 10 s can be identified accordingly 
(Fig. 2a,b, t = 10 s).

In a typical Vulcanian event at Volcán de Colima, the buoyant rise of an eruption cloud evolves after one or 
more explosive pulses. A buoyant convecting cloud can be identified in a velocigram as a band of velocities (see 
Fig. 2a t > 110 s) with similar echo power that extends over tens of seconds. The mean value of this velocity band 
is the velocity at which the buoyant cloud rises (through the radar beam). For the event reported here, buoyant 
convection begins at roughly 80 s into the event. The apparently decreasing maximum velocity indicates that the 
convecting cloud leaves the radar beam and propagates upwards.

For this particular event, however, the explosions at the beginning (Fig. 2a, t = 0 s and t = 10 s) and the typical 
buoyant convection at the end (Fig. 2a, t > 110 s) are separated by a phase of entirely negative (downward) veloc-
ities (Fig. 2a, t = 23–45 s), followed by a phase of almost constant upward acceleration (Fig. 2a, t = 45–55 s). Such 
dynamics have not been observed at a volcano with radar before. There are three scenarios that can explain the 
phase of purely negative velocities indicating falling particles: (i) particles ejected at a vent to the left or right of 
the radar beam fall back to the ground through the beam; (ii) the concentration of falling particles is so high that 
they create a “curtain”, behind which the rising particles become invisible, due to attenuation of the radar beam; 
and/or (iii) a PDC has formed that moves toward the radar (Fig. 2d), in which case radial rather than vertical 
velocities have to be used for interpretation. With a novel technique (see Methods section) to analyse our data, we 
are able to distinguish between these scenarios and confirm that the latter is the cause of the negative velocities. 
However, attenuation of the radar beam most likely occurs as well, and the activity above the crater becomes 
temporally invisible between t = 23–45 s.

We use an FMCW-Doppler radar and therefore it is possible (see Methods section) to retrieve the position of 
the apparent centre of mass at sub-range gate distance resolution (see Fig. 2g). Any PDC following the topogra-
phy with motion towards the radar will show up successively in different range gates in the data. The event starts 
at the distance of the dome (approximately 3,000 m slant distance). Most likely the second pulse (Fig. 2, t = 10 s) 
also emanates from this location. Afterwards, the apparent centre of mass moves toward the radar (see Fig. 2g), 
its time corresponding to the column collapse (Fig. 2c). The flow front, i.e. the maximum extent of the centre 
of mass, apparently rests at 2,200 m for a couple of seconds before it moves back toward the crater region. This 
apparent stagnation of the flow front at 2,200 m (dark blue patches in Fig. 2g) can be explained by the topography 
dipping below the radar beam (see Fig. 3) so that the dense undercurrent, as well as the dilute cloud of the PDC, 
leave the radar beam at its base. Note that the radar beam re-approaches the ground at distances closer than 600 m 
(Fig. 3) and thus parts of the PDC may re-enter the radar beam. Indeed, a second centre of mass at less than 300 m 
distance (see Fig. 2g,f beginning at 110 s) indicates that the PDC at least travelled this far. Which part of the PDC 
(the PDC head, the dilute cloud or the dense undercurrent) reached the radar cannot be inferred from the radar 
data. From Fig. 2g we can see that the apparent centre of mass moved from the crater to the radar location at an 
average speed of 30 m/s (dashed line). The flow front and thus the fastest particles may have moved initially at 

Figure 3. Height of the radar beam above the topography as a function of distance from the vent. The thick 
purple line follows the centre of the radar beam, thin purple lines indicate the width of the beam (opening angle 
of 1.5°). Blue lines mark the range gate borders. Assuming, the PDC head to be 150 m high (light grey area), 
the PDC head can only be seen in RG5, RG4 and RG1, whereas it is invisible to the radar in RG3 and RG2. 
Assuming that the dense undercurrent (dark grey) has a thickness of 20% of the PDC height23, it would only be 
visible to the radar directly at the crater rim in RG5. The schematic drawing in the lower left is for clarification 
of the geometry and similar to Fig. 2f.
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50 m/s (dash-dotted line). Both velocities inferred from the apparent center of mass movement are consistent with 
the velocigram data (Fig. 2a), where the maximum (radial) velocity toward the radar is >50 m/s and the bulk of 
material moves at 30 m/s and slower.

Because of the measurement geometry, the radar can see the dense undercurrent of the first PDC only at the 
crater rim, where the radar beam is near the ground (Fig. 3). Closer to the radar a dense undercurrent following 
the topography will dip below the radar beam. In Fig. 4 the velocity spectra of the first 12 s of the PDC are shown. 
At the beginning of the PDC (t = 23 s, Fig. 4) the velocity spectrum shows a wide range of velocities with an 
equally wide distribution of reflected power (no prominent maximum). The wide velocity spectrum is indicative 
of convection, with its mean velocity representing the effective velocity of the vortex. This wide spectrum shows 
the eruption column collapse, when it first hits the ground and moves over the crater rim.

Two seconds later, the shape of the spectrum becomes more peaked (t = 25 s, Fig. 4), which indicates that the 
main part of the flow moves at 15 m/s toward the radar. The fastest particles inside the radar beam move at 40 m/s. 
The head vortex of the PDC has left the radar beam and is followed by a less turbulent, more narrowed flow (main 
body). Another two seconds later (t ≥ 27 s) the velocity spectrum becomes split into two parts: The velocities 
below 20 m/s have a maximum at 15 m/s (decreasing to 11 m/s in later spectra), whereas velocities above 20 m/s 
have a linearly decreasing spectrum. The maximum velocity constantly increases from one spectrum to the next 
up to 60 m/s (t = 43 s). The cumulative reflected power for the fast particles stays approximately constant, whereas 
the cumulative reflected power for the slow particles increases from 50 to 85% (of the total sum).

The signal between 45–55 s after the onset of the event (Fig. 2a) shows a linear increase in velocity for the 
bulk of the material, meaning that the acceleration acting on each particle is similar and almost constant. This 
velocity reversal indicates that the bulk of the (initially falling) material, at least the part inside the radar beam, 
has become buoyant and experiences constant upward acceleration until it moves upward again (Fig. 2e). This 
phase of velocity reversal (Fig. 2e,a, t ≈ 50 s) corresponds to the movement of the apparent centre of mass from 
the flank toward the vent (see Fig. 2g) at an average speed of 20 m/s (dotted lines). This is faster than atmospheric 
wind speed at this time of day (10 m/s from south-south-west, see Supplementary Fig. S4), which indicates that 
this phase of velocity reversal is dominated by buoyancy. Our interpretation is that the upper part of the PDC 
entrained enough ambient air to become buoyant and decouples from the basal flow that continues down the 
flank below the radar beam (Fig. 2e).

During this event several PDCs descended down the south, south-west and west flanks29. We have several 
indications in our Doppler radar data for at least one second PDC. The buoyant cloud that develops above the 
PDC would have been transported by atmospheric winds. The prevailing wind direction during this time was 
from the SSW at 10 m/s (sub-parallel to radar beam, see Supplementary Figs S4 and S1), which means that a 
buoyant cloud would have been blown towards the NNE. A PDC that follows a path west of the radar beam, can 
possibly be seen indirectly by its associated buoyant cloud that is blown through the radar beam high above the 
ground. Beginning at t = 180 s the apparent centre of mass (Fig. 2g) moves toward the radar again and propagates 
at 30–50 m/s. The apparent centre of mass reaches a distance of 2,000 m (from the radar), which corresponds to 
the highest beam elevation above the topography (see Fig. 3). The propagation velocity is the same as for the first 
PDC, but the amount of material inside the radar beam appears to be much less (light blue colour in Fig. 2g). 
Unlike the first PDC, the velocity spectra show a convection pattern with predominantly upward velocities (see 
Supplementary Fig. S2, t ≥ 190 s). Thus individual particles move upward (5 to 10 m/s radially away from the 
radar), but the distance at which particles move through the radar beam shifts toward the radar. This means that 
the PDC follows a path outside, yet near the radar beam, so that the PDC itself cannot be seen. However, any 
buoyantly rising material from the PDC rose through the beam. The recorded velocities thus belong to the buoy-
ant cloud above the approaching PDC.

To summarize, the eruptive event started with two successive sub-vertical Vulcanian explosions, separated 
by 10 s with maximum ejection velocities of >100 m/s (vertical). Immediately after the second explosion the 
eruption column began to collapse and a PDC emerged from the crater rim descending the south flank (20–45 s 
since start of eruption, initial velocity of 30–50 m/s). The PDC travelled down the S flank with an average velocity 
of 30 m/s and finally reached the radar at 110 s. Simultaneously, entrainment of ambient air into the head and 

Figure 4. Velocity spectra of range gate 5 at seven different times during the PDC descent. Each velocity 
spectrum is a “vertical slice” through the velocigram. The vertical scale is the same for all spectra. Reflected 
power is in arbitrary units (instead of echo power in dB). The time for each spectrum is given on the left and 
equals the times given in Fig. 2.
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dilute upper part of the PDC23 led to a density decrease and development of a thermal11 moving toward the crater 
rim (45–80 s, velocity of 20 m/s) and eventually merging to ascend with the remainder of the eruption column 
(70–100 s). At the crater, buoyant convection successively transported material to greater heights until at 180 s the 
activity shifted again toward the radar. This indicates a second PDC heading towards the SW.

Discussion
PDCs can have several causes, one of them being the collapse of the eruption column. Numerical modelling of a 
collapsing column shows that in this case a momentum driven fountain develops13,14. Such motion appears in a 
velocigram as linearly decaying velocities (i.e. constant gravitational acceleration), which can be seen in Fig. 2a, 
t ≈ 20 s. Other causes for PDCs, such as gravitational breakup of a lava dome or a directed explosion would 
experience different starting velocities and acceleration scenarios, which would appear in a velocigram with 
their respective typical signature37. As neither a constant acceleration of initially resting material (gravitational 
break-up), nor a sudden appearance of apparently falling material without it being ejected upward in advance 
can be seen, we favour the eruption column collapse-scenario for the first PDC. For the second PDC, there is no 
indication of a vertical explosion with subsequent column collapse. Therefore we suggest that the second PDC is 
generated by gravitational break-off of dome material descending the flank outside the radar beam after the first 
explosion destabilized the dome3.

From large scale experiments it is known that the highest velocity inside a PDC is near the ground, slightly 
above the boundary between dense undercurrent and dilute cloud19,23,38. Both parts of the PDC (dense under-
current and dilute cloud) move at comparable velocities. The particle volume concentration, however, is two to 
three orders of magnitude larger in the dense undercurrent23 and so the reflected power is orders of magnitude 
larger. Therefore, when looking into an experimental PDC, the radar would mainly record the dynamics of the 
dense undercurrent, the contribution of the dilute cloud being negligible. The velocity spectra that we measured 
at Volcán de Colima, however, show two distinctly different parts (see Fig. 4): The main body, moving slower than 
20 m/s with a gradual increase in concentration, and a less dense fast part (>20 m/s) with approximately constant 
concentration.

The main difference between experiments and numerical eruption column models to natural PDCs is the 
particle size distribution. Scaled experiments use particle diameters <1 cm, while numerical eruption column 
models often assume particle sizes of less than a few millimetres, due to approximations in the model equa-
tions14. In deposits of natural PDCs, however, all particle sizes up to several metres in diameter can be found32. 
In fact, particles >1 cm are most abundant and their influence on the PDC dynamics must be taken into account. 
Numerical models for granular flow or dry avalanches15,16 make no assumptions on particle sizes. Instead the 
dense undercurrent is modelled as a fluidized mixture of particles (all sizes) and gas whose flow is governed by 
internal friction. These models, however, cannot describe the dilute cloud atop the dense undercurrent.

With this Doppler radar we measure the velocity of large particles (>1 mm) as they reflect more of the elec-
tromagnetic wave than small particles (<1 mm) assuming the same concentration. We interpret the two parts 
of the velocity spectra as dense undercurrent of the PDC (<20 m/s) overflowing the crater rim and being fed by 
the fountain-like eruption column that is invisible to the radar due to complete attenuation of the radar beam by 
the dense undercurrent. The dense undercurrent dips below the radar beam at around 2600 m distance from the 
radar (100 m below the crater rim). The fast particles (>20 m/s) were accelerated within the collapsing column 
by gravity and decouple from the dense undercurrent. These fast particles are visible in the radar beam up to a 
distance of 2200 m from the radar, by which time the dense undercurrent has already left the beam. The fastest 
particles (larger than 1 mm) thus move in suspension with the dilute cloud to greater heights above the topogra-
phy than has been previously seen in experiments. The timing of the first arrival of particles near the radar, where 
they still have a maximum velocity of 15 m/s, indicates that the cloud front at least travelled with a velocity of 
30 m/s and a significant proportion was comprised of mm- to cm-sized particles.

The separation of a dense undercurrent and dilute upper part have been investigated experimentally19,23. The 
development of thermals from the dilute upper part of the density current and the subsequent merging with the 
eruption column have already been simulated numerically13,14. The abundance of large particles in the PDC has 
been reported from deposit-studies, but not included into numerical models because of the lack of an appropriate 
parametrisation of the interaction between gas and particles larger than a few millimetres14. There exists one set 
of experiments23 that investigates the feedback of particles up to 8 mm diameter on the PDC flow structure and 
dynamic pressure during flow. They show that “larger” particles should be taken into account for a correct esti-
mation of dynamic pressure and thus hazard mitigation. We here present for the first time a data set of internal 
particle velocities during column collapse, and beginning of a PDC that can now be used, together with a realistic 
particle size distribution (e.g. inferred from deposits) as well as the topography as the input to numerical models 
for the simulation of PDCs. Because we know the approximate path of the PDC while approaching the radar, as 
well as the run-out distance of at least 3 km, we can evaluate whether state-of-the-art numerical models (which 
are currently used for hazard assessment studies) are able to replicate this particular PDC. Such a comparison 
between data and models has given valuable insights into the dynamics of snow avalanches25 and could now be 
done for volcanic PDCs.

Methods
the FMCW-Doppler radar. Radar makes use of reflection and scattering of electromagnetic waves by 
objects. A radar typically transmits a signal (pulsed or continuous wave, CW) and records the reflected incoming 
signals as well as the round-trip travel time, which is directly proportional to the distance of the reflector. The 
amplitude of the incoming signal is related to the size and shape of the target object (ref.33 and references therein). 
For distributed targets, like rain or volcanic tephra, the amplitude relates to the target’s size and concentration. 
However, it is not possible to record individual round-trip travel times for distributed targets, and therefore the 
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incoming signal is divided into time intervals, which directly translate into distance intervals, the so called range 
gates. To measure round-trip travel times with a CW radar a modulation of the transmitted wave is required (a 
pulse is an extreme case of amplitude modulation). The FMCW radar uses frequency modulation (FM, here a 
decreasing sawtooth shape). The travel time can now be determined from the frequency difference of simulta-
neously received and transmitted signal. The larger this difference, the longer the travel time. In practice, both 
the incoming and transmitted signals are mixed and low-pass filtered, such that the mixed signal only contains 
the difference frequencies (of multiple targets). This mixed signal is then analysed using a Fourier transform; the 
resulting power spectrum is a histogram of material at various distances, irrespective of their velocity.

A radar has Doppler capability, meaning that in addition to amplitude and distance, it also provides veloc-
ity information. When targets move within the radar beam, the distance between radar and target (i.e. the 
round-trip travel time or frequency difference) changes between two measurements. These changes are recorded 
as a phase-change of the continuously received incoming signal. This phase-change is directly proportional to the 
targets radial (along-beam) velocity and is obtained via a Fourier transform of the distance measurement. The 
result is a histogram of target velocities for each range gate (see Supplementary Fig. S3).

Retrieval of the centre of mass. The main difference between pulsed- and FMCW-Doppler radars lies 
in the interpretation of the amplitude in neighbouring range gates. A pulsed radar uses a time interval to assign 
parts of the signal to range gates, so that targets exclusively appear in their correct range gate35. This is different for 
FMCW-Doppler radar, as the signal is analysed using a Fourier transform, which suffers from spectral leakage. In 
a discrete Fourier transform, spectral leakage “smears” the amplitude that belongs to one specific frequency across 
neighbouring frequencies. This means, that each target will appear in its correct range gate, but also in the neigh-
bouring range gates, however, with a much smaller amplitude. In the internal processing of our FMCW-radar, 
leakage affects roughly the three nearest neighbours on both sides of the true frequency. Spectral leakage occurs 
for both, the range and the velocity Fourier transform, but can be neglected for the calculation of velocities, 
because we chose a high velocity resolution of 0.28 m/s. For the less well resolved range gates (600 m), the spectral 
leakage effect is significant, but also contains additional information.

A PDC, or a dense cloud of particles, approaching the Doppler radar will cross one range gate after the other. 
Thus the amplitude (or the reflected power) moves across the range gates. Using a pulsed radar, where every par-
ticle appears exclusively in its associated range bin, the PDC will appear to approach the radar in steps (with step 
length equal to range gate length). In the FMCW-radar, however, the range is determined via Fourier transform 
that suffers from spectral leakage. To reduce this leakage effect, a Gaussian window is applied before the Fourier 
transform. This Gaussian window forces the leaked amplitudes to a well-defined Gaussian curve shape, with its 
maximum at the true frequency (which might lie between the Fourier transform’s frequency bins).

Fitting the well-defined Gaussian curve to the leaked amplitudes (using the Levenberg-Marquardt algorithm) 
gives the amplitude and position of the maximum of the Gaussian curve, which corresponds to the true distance 
of the reflector. This can be done for each velocity sample separately (see Supplementary Fig. S3, for a graphical 
explanation of the method). For distributed targets (like rain drops or volcanic tephra) one velocity sample con-
tains information of how much material (reflected power) moves with the respective velocity in the radar beam 
at various distances (range gates). The algorithm returns the apparent centre of mass for each respective velocity 
sample in sub-range gate resolution. Because the analysis is done for each velocity sample independently, the 
algorithm can resolve different parts of the particle cloud that move at different distances and velocities.

For dense clouds, however, attenuation of the radar beam will limit the distance the radar beam penetrates 
into the cloud. Thus the reflections all correspond to this limited distance and the derived centre of mass also 
belongs to this limited part of the cloud. Therefore we named our parameter “apparent” centre of mass, because it 
is the centre of the attenuated path length, which, depending on particle concentration, is shorter than the length 
of the radar beam crossing the particle cloud. Thus the true centre of mass can be further away from the radar 
than the apparent centre of mass.

The propagation velocity of the centre of mass may or may not be related to the velocity of individual par-
ticles and/or the front of the particle cloud. For an individual batch of particles, the propagation velocity of the 
centre of mass will equal the mean velocity of particles, i.e. the true propagation velocity of the batch (as long as 
it moves along the radar beam). For a continuously fed flow toward the radar, and neglecting attenuation of the 
radar beam, the velocity of the flow front will be twice the propagation velocity of the centre of mass. Considering 
attenuation, the apparent centre of mass will move with a velocity between those two end-member case scenarios.

The range gate resolution of FMCW-Doppler radars can thus be highly increased by fitting a Gaussian curve to 
the data. Using this trick, the sub-range resolution outperforms pulsed-Doppler radars because FMCW-Doppler 
radars do not suffer from the inability to correctly identify particles that move faster than some maximum unam-
biguous velocity.

Data Availability
The data is available upon request.

References
 1. Valentine, G. A. & Fisher, R. V. Pyroclastic surges and blasts. In Encyclopedia of Volcanoes, 571–580 (Academic Press, 2000).
 2. Roche, O., Phillips, J. C. & Kelfoun, K. Pyroclastic Density Currents. In Modelling Volcanic Processes: The Physics and Mathematics of 

Volcanism. Chap. 10, 203–229 (Cambridge University Press, 2013).
 3. Sato, H., Fujii, T. & Nakada, S. Crumbling of dacite dome lava and generation of pyroclastic flows at Unzen volcano. Nature 360, 

664–666, https://doi.org/10.1038/360664a0 (1992).
 4. Lipman, P. W. & Mullineaux, D. R. The 1980 eruptions of Mount St. Helens, Washington, USGS Professional Paper 1250, https://doi.

org/10.3133/pp1250 (US Geological Survey, 1981).

https://doi.org/10.1038/s41598-019-43620-w
https://doi.org/10.1038/360664a0
https://doi.org/10.3133/pp1250
https://doi.org/10.3133/pp1250


8Scientific RepoRts |          (2019) 9:7386  | https://doi.org/10.1038/s41598-019-43620-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

 5. Esposti Ongaro, T., Clarke, A. B., Voight, B., Neri, A. & Widiwijayanti, C. Multiphase flow dynamics of pyroclastic density currents 
during the May 18, 1980 lateral blast of Mount St. Helens. Journal of Geophysical Research: Solid Earth 117, https://doi.
org/10.1029/2011jb009081 (2012).

 6. Sigurdsson, H., Carey, S., Cornell, W. & Pescatore, T. The eruption of Vesuvius in A.D. 79. National Geographic Research 1, 332–387 
(1985).

 7. Ui, T., Matsuwo, N., Sumita, M. & Fujinawa, A. Generation of block and ash flows during the 1990–1995 eruption of Unzen volcano, 
Japan. Journal of Volcanology and Geothermal Research 89, 123–137, https://doi.org/10.1016/s0377-0273(98)00128-0 (1999).

 8. Kieffer, S. W. Blast dynamics at Mount St Helens on 18 May 1980. Nature 291, 568–570, https://doi.org/10.1038/291568a0 (1981).
 9. Valentine, G. A. Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects. Journal of Volcanology 

and Geothermal Research 87, 117–140, https://doi.org/10.1016/s0377-0273(98)00094-8 (1998).
 10. Sparks, R. S. J. et al. Volcanic plumes. (John Whiley, New York, 1997).
 11. Sulpizio, R., Dellino, P., Doronzo, D. & Sarocchi, D. Pyroclastic density currents: state of the art and perspectives. Journal of 

Volcanology and Geothermal Research 283, 36–65, https://doi.org/10.1016/j.jvolgeores.2014.06.014 (2014).
 12. Gardner, J. E., Andrews, B. J. & Dennen, R. Liftoff of the 18 May 1980 surge of Mount St. Helens (USA) and the deposits left behind. 

Bulletin of Volcanology 79, https://doi.org/10.1007/s00445-016-1095-3 (2016).
 13. Clarke, A. B., Voight, B., Neri, A. & Machedonio, G. Transient dynamics of vulcanian explosions and column collapse. Nature 415, 

897–901, https://doi.org/10.1038/415897a (2002).
 14. Neri, A., Di Muro, A. & Rosi, M. Mass partition during collapsing and transitional columns by using numerical suimulations. J 

Volcanol Geotherm Res 115, 1–18, https://doi.org/10.1016/S0377-0273(01)00304-3 (2002).
 15. Patra, A. et al. Parallel adaptive numerical simulation of dry avalanches over natural terrain. Journal of Volcanology and Geothermal 

Research 139, 1–21, https://doi.org/10.1016/j.jvolgeores.2004.06.014 (2005).
 16. Kelfoun, K., Samaniego, P., Palacios, P. & Barba, D. Testing the suitability of frictional behaviour for pyroclastic flow simulation by 

comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71, 1057–1075, https://doi.
org/10.1007/s00445-009-0286-6 (2009).

 17. Cerminara, M., Ongaro, T. E. & Berselli, L. C. Ashee-1.0: a compressible, equilibrium-Eurlerian model for volcanic ash plumes. 
Geosci. Model Dev. 9, 697–730, https://doi.org/10.5194/gmd-9-697-2016 (2016).

 18. Benage, M. C., Dufek, J. & Mothes, P. A. Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, 
Ecuador: Integrating field proxies with numerical simulations. Geophysical Research Letters 43, 6932–6941, https://doi.
org/10.1002/2016gl069527 (2016).

 19. Dellino, P. et al. Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard. Earth and Planetary Science 
Letters 295, 314–320, https://doi.org/10.1016/j.epsl.2010.04.022 (2010).

 20. Sulpizio, R. et al. Predicting the block-and-ash flow inundation areas at Volcán de Colima (Colima, Mexico) based on the present 
day (February 2010) status. Journal of Volcanology and Geothermal Research 193, 49–66, https://doi.org/10.1016/j.
jvolgeores.2010.03.007 (2010).

 21. Breard, E. C. P. et al. Coupling of turbulent and non-turbulent flow regimes within pyroclastic density currents. Nature Geoscience 
9, 767–771, https://doi.org/10.1038/ngeo2794 (2016).

 22. Sulpizio, R., Castioni, D., Rodriguez-Sedano, L. A., Sarocchi, D. & Lucchi, F. The influence of slope-angle ratio on the dynamics of 
granular flows: insights from laboratory experiments. Bulletin of Volcanology 78, https://doi.org/10.1007/s00445-016-1069-5 (2016).

 23. Breard, E. C. P. & Lube, G. Inside pyroclastic density currents — uncovering the enigmatic flow structure and transport behaviour 
in large-scale experiments. Earth and Planetary Science Letters 458, 22–36, https://doi.org/10.1016/j.epsl.2016.10.016 (2017).

 24. Schreiber, H., Randeu, W. L., Schaffhauser, H. & Rammer, L. Avalanche dynamics measurement by pulsed Doppler. Annals of 
Glaciology 32, 275–280, https://doi.org/10.3189/172756401781819021 (2001).

 25. Sailer, R., Rammer, L. & Sampl, P. Recalculation of an artificially released avalanche with SAMOS and validation with measurements 
from a pulsed Doppler radar. Natural Hazards and Earth System Science 2, 211–216 (2002).

 26. Austrian Research Centre for Forests. Snow and Avalanches - BFW. URL bfw.ac.at/db/bfwcms.web?dok=6057 (2019).
 27. Global Volcanism Program. Report on Colima (Mexico). In Venzke, E. (ed.) Bulletin of the Global Volcanism Network, vol. 40, 

https://doi.org/10.5479/si.GVP.BGVN201510-341040 (2015).
 28. Varley, N. R. Monitoring the Recent Activity: Understanding a Complex System. In: Volcán de Colima: portrait of a persistently 

hazardous volcano. Active Volcanoes of the World, 159–193 (Springer, 2019).
 29. Reyes-Dávila, G. A. et al. Volcán de Colima dome collapse of July, 2015 and associated pyroclastic density currents. Journal of 

Volcanology and Geothermal Research 320, 100–106, https://doi.org/10.1016/j.jvolgeores.2016.04.015 (2016).
 30. Capra, L. et al. Preliminary report on the July 10–11, 2015 eruption at Volcán de Colima: Pyroclastic density currents with 

exceptional runouts and volume. Journal of Volcanology and Geothermal Research 310, 39–49, https://doi.org/10.1016/j.
jvolgeores.2015.11.022 (2016).

 31. Zobin, V. M. Development of the 10–11 July 2015 two-stage sequence of multiple emplacements of pyroclastic density currents at 
Volcán de Colima, México: Insight from associated seismic signals. Journal of Volcanology and Geothermal Research 351, 29–40, 
https://doi.org/10.1016/j.jvolgeores.2017.12.012 (2018).

 32. Capra, L. et al. The anatomy of a pyroclastic density current: the 10 July 2015 event at Volcán de Colima (Mexico). Bulletin of 
Volcanology 80, https://doi.org/10.1007/s00445-018-1206-4 (2018).

 33. Hort, M. & Scharff, L. Detection of Airborne Volcanic Ash Using Radar. In Volcanic Ash. 131–160, https://doi.org/10.1016/b978-0-08-
100405-0.00013-6 (Elsevier BV, 2016).

 34. Scharff, L., Hort, M. & Gerst, A. The dynamics of the dome at Santiaguito volcano, Guatemala. Geophys J Int 197, 926–942, https://
doi.org/10.1093/gji/ggu069 (2014).

 35. Donnadieu, F., Valade, S. & Moune, S. Three dimensional transport speed of wind-drifted ash plumes using ground-based radar. 
Geophys Res Lett 38, https://doi.org/10.1029/2011GL049001 (2011).

 36. Scharff, L., Ziemen, F., Hort, M., Gerst, A. & Johnson, J. B. A detailed view into the eruption clouds of Santiaguito volcano, 
Guatemala, using Doppler radar. J Geophys Res 117, https://doi.org/10.1029/2011JB008542 (2012).

 37. Vöge, M. & Hort, M. Automatic classification of dome instabilities based on Doppler radar measurements at Merapi volcano, 
Indonesia: Part I. Geophys J Int 172, 1188–1206, https://doi.org/10.1111/j.1365-246X.2007.03605.x (2008).

 38. Kneller, B. C., Bennett, S. J. & McCaffrey, W. D. Velocity structure, turbulence and fluid stresses in experimental gravity currents. 
Journal of Geophysical Research: Oceans 104, 5381–5391, https://doi.org/10.1029/1998jc900077 (1999).

 39. USGS Shuttle radar topography mission, 3 arc second scene SRTM_n19w104, unfilled unfinished 2.0. Global Land Cover Facility, 
University of Maryland, College Park, Maryland (2004).

 40. Scharff, L. Eruption Dynamics of Vulcanian and Sub-Plinian Volcanoes: From the Generation of Pulses to the Formation of Clouds. 
Ph.D. thesis, Universität Hamburg, Von-Melle-Park 3, 20146 Hamburg, ediss.sub.uni-hamburg.de/volltexte/2012/5746/ (2012).

Acknowledgements
NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at 
https://www.esrl.noaa.gov/psd/. LS acknowledges funding from DFG-project Ho1411 20-1.

https://doi.org/10.1038/s41598-019-43620-w
https://doi.org/10.1029/2011jb009081
https://doi.org/10.1029/2011jb009081
https://doi.org/10.1016/s0377-0273(98)00128-0
https://doi.org/10.1038/291568a0
https://doi.org/10.1016/s0377-0273(98)00094-8
https://doi.org/10.1016/j.jvolgeores.2014.06.014
https://doi.org/10.1007/s00445-016-1095-3
https://doi.org/10.1038/415897a
https://doi.org/10.1016/S0377-0273(01)00304-3
https://doi.org/10.1016/j.jvolgeores.2004.06.014
https://doi.org/10.1007/s00445-009-0286-6
https://doi.org/10.1007/s00445-009-0286-6
https://doi.org/10.5194/gmd-9-697-2016
https://doi.org/10.1002/2016gl069527
https://doi.org/10.1002/2016gl069527
https://doi.org/10.1016/j.epsl.2010.04.022
https://doi.org/10.1016/j.jvolgeores.2010.03.007
https://doi.org/10.1016/j.jvolgeores.2010.03.007
https://doi.org/10.1038/ngeo2794
https://doi.org/10.1007/s00445-016-1069-5
https://doi.org/10.1016/j.epsl.2016.10.016
https://doi.org/10.3189/172756401781819021
https://doi.org/10.5479/si.GVP.BGVN201510-341040
https://doi.org/10.1016/j.jvolgeores.2016.04.015
https://doi.org/10.1016/j.jvolgeores.2015.11.022
https://doi.org/10.1016/j.jvolgeores.2015.11.022
https://doi.org/10.1016/j.jvolgeores.2017.12.012
https://doi.org/10.1007/s00445-018-1206-4
https://doi.org/10.1016/b978-0-08-100405-0.00013-6
https://doi.org/10.1016/b978-0-08-100405-0.00013-6
https://doi.org/10.1093/gji/ggu069
https://doi.org/10.1093/gji/ggu069
https://doi.org/10.1029/2011GL049001
https://doi.org/10.1029/2011JB008542
https://doi.org/10.1111/j.1365-246X.2007.03605.x
https://doi.org/10.1029/1998jc900077
http://ediss.sub.uni-hamburg.de/volltexte/2012/5746/
https://www.esrl.noaa.gov/psd/


9Scientific RepoRts |          (2019) 9:7386  | https://doi.org/10.1038/s41598-019-43620-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author Contributions
L.S. developed the method and analysed the data. M.H. significantly contributed to the discussion of the data. 
L.S. wrote the manuscript and helped maintaining and installing the instrument. M.H. and N.V. installed and 
maintained the instrument and improved the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-43620-w.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-43620-w
https://doi.org/10.1038/s41598-019-43620-w
http://creativecommons.org/licenses/by/4.0/

	First in-situ observation of a moving natural pyroclastic density current using Doppler radar
	Results
	Discussion
	Methods
	The FMCW-Doppler radar. 
	Retrieval of the centre of mass. 

	Acknowledgements
	Figure 1 Topography and setup of the Doppler radar (blue triangle) at Volcán de Colima, Mexico.
	Figure 2 (a) Doppler radar data displayed as a velocigram.
	Figure 3 Height of the radar beam above the topography as a function of distance from the vent.
	Figure 4 Velocity spectra of range gate 5 at seven different times during the PDC descent.




